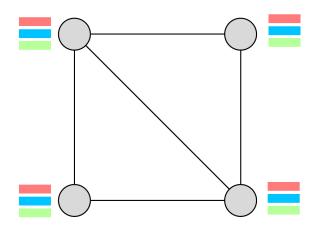
Flexible list coloring and maximum average degree

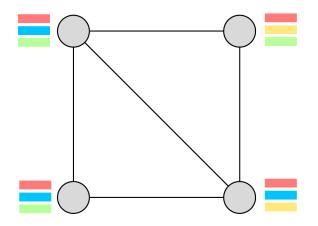
Peter Bradshaw (contains joint work with Richard Bi)

AMS Fall Central Sectional, 2023

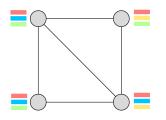
Proper coloring



List coloring

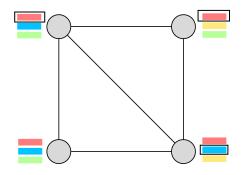


Choosability



If G has a list coloring for every assignment of lists of size k, then G is k-choosable.

List coloring with preferences



We say that G is ϵ -flexibly k-choosable if for every assignment of lists of size k, and for every set of coloring preferences, there exists a list coloring of G satisfying an ϵ proportion of all preferences.

Examples

- An independent set is 1-flexibly 1-choosable.
- A path is $\frac{1}{2}$ -flexibly 2-choosable.
- The square of a path is $\frac{1}{3}$ -flexibly 3-choosable.

Some positive results

Theorem (PB, Masařík, Stacho)

If G has maximum degree $\Delta \geq 3$ and no $K_{\Delta+1}$ subgraph, then G is $\frac{1}{6\Delta}$ -flexibly Δ -choosable.

Some positive results

Theorem (Dvořák, Masařík, Musílek, Pangrác)

There exists a value $\epsilon > 0$ such that if G is planar and triangle-free, then G is ϵ -flexibly 4-choosable.

Meta question

Question (Dvořák, Norin, Postle 2019)

Suppose \mathcal{G} is a graph class consisting of k-choosable graphs. Does there exist a value $\epsilon > 0$ such that every graph in \mathcal{G} is ϵ -flexibly k-choosable?

A more specific question

Question (Dvořák, Norin, Postle 2019)

Suppose \mathcal{G} is the class of d-degenerate graphs. Does there exist a value $\epsilon > 0$ such that every graph in \mathcal{G} is ϵ -flexibly (d+1)-choosable?

The average degree of a graph G, written ad(G), is the mean taken over all values deg(v) for $v \in V(G)$.

The maximum average degree of G is the maximum value ad(H) taken over all nonempty subgraphs H of G.

If G has maximum average degree < d+1, then G is d-degenerate.

An even more specific question

Question

Suppose \mathcal{G} is the class of graphs with maximum average degree < d+1. Does there exist a value $\epsilon > 0$ such that every graph in \mathcal{G} is ϵ -flexibly (d+1)-choosable?

An even more specific answer

Theorem (Bi, PB)

If G has maximum average degree less than 3, then G is 2^{-30} -flexibly 3-choosable.

This result improves:

Theorem (Dvořák, Masařík, Musílek, Pangrác)

If G is planar with girth at least 6, then G is ϵ -flexibly 3-choosable.

Reducible subgraphs

Let G be a graph, and let H be an induced subgraph. We say that H is *reducible* if:

- Each $v \in V(H)$ has at most one neighbor in $G \setminus H$;
- For every assignment of lists of size 3 on H and coloring of $G \setminus H$, there exists a distribution on colorings of H, so that each available color is used at its vertex with probability at least $\alpha = 3^{-16}$.

Lemma (Dvořák, Masařík, Musílek, Pangrác)

There exists a value $\epsilon > 0$ such that if every induced subgraph of G has a reducible subgraph, then G is ϵ -flexibly 3-choosable.

A simple application of the framework

Proposition (Dvořák, Norin, and Postle)

If G has maximum average degree < 2.4, then G is ϵ -flexibly 3-choosable.

Suppose *G* has no reducible subgraph.

- Let each v receive charge deg(v) 2.4.
- Each deg 2 vertex takes charge 0.2 from each neighbor.
- The final charge is nonnegative, which is impossible.

Some of our reducible subgraphs

- A path with endpoints of degree 2 and internal vertices of degree 3
- A terminal block with maximum degree 3
- A subdivision of $K_{1,3}$ with leaves of degree 2, a center of degree 4, and internal vertices of degree 3