Flexible list coloring and maximum average degree

Peter Bradshaw
(contains joint work with Richard Bi)

AMS Fall Central Sectional, 2023

Proper coloring

List coloring

Choosability

If G has a list coloring for every assignment of lists of size k, then G is k-choosable.

List coloring with preferences

We say that G is ϵ-flexibly k-choosable if for every assignment of lists of size k, and for every set of coloring preferences, there exists a list coloring of G satisfying an ϵ proportion of all preferences.

Examples

- An independent set is 1-flexibly 1-choosable.
- A path is $\frac{1}{2}$-flexibly 2 -choosable.
- The square of a path is $\frac{1}{3}$-flexibly 3-choosable.

Some positive results

Theorem (PB, Masařík, Stacho)
If G has maximum degree $\Delta \geq 3$ and no $K_{\Delta+1}$ subgraph, then G is $\frac{1}{6 \Delta}$-flexibly Δ-choosable.

Some positive results

Theorem (Dvořák, Masařík, Musílek, Pangrác)
There exists a value $\epsilon>0$ such that if G is planar and triangle-free, then G is ϵ-flexibly 4-choosable.

Meta question

Question (Dvorák, Norin, Postle 2019)

Suppose \mathcal{G} is a graph class consisting of k-choosable graphs. Does there exist a value $\epsilon>0$ such that every graph in \mathcal{G} is ϵ-flexibly k-choosable?

A more specific question

Question (Dvořák, Norin, Postle 2019)

Suppose \mathcal{G} is the class of d-degenerate graphs. Does there exist a value $\epsilon>0$ such that every graph in \mathcal{G} is ϵ-flexibly $(d+1)$-choosable?

The average degree of a graph G, written $\operatorname{ad}(G)$, is the mean taken over all values $\operatorname{deg}(v)$ for $v \in V(G)$.

The maximum average degree of G is the maximum value $\operatorname{ad}(H)$ taken over all nonempty subgraphs H of G.

If G has maximum average degree $<d+1$, then G is d-degenerate.

An even more specific question

Question

Suppose \mathcal{G} is the class of graphs with maximum average degree $<d+1$. Does there exist a value $\epsilon>0$ such that every graph in \mathcal{G} is ϵ-flexibly $(d+1)$-choosable?

An even more specific answer

Theorem (Bi, PB)
If G has maximum average degree less than 3 , then G is 2^{-30}-flexibly 3-choosable.

This result improves:
Theorem (Dvořák, Masařík, Musílek, Pangrác) If G is planar with girth at least 6 , then G is ϵ-flexibly 3-choosable.

Reducible subgraphs

Let G be a graph, and let H be an induced subgraph. We say that H is reducible if:

- Each $v \in V(H)$ has at most one neighbor in $G \backslash H$;
- For every assignment of lists of size 3 on H and coloring of $G \backslash H$, there exists a distribution on colorings of H, so that each available color is used at its vertex with probability at least $\alpha=3^{-16}$.

Lemma (Dvořák, Masařík, Musílek, Pangrác)

There exists a value $\epsilon>0$ such that if every induced subgraph of G has a reducible subgraph, then G is ϵ-flexibly 3 -choosable.

A simple application of the framework

Proposition (Dvorák, Norin, and Postle)

 If G has maximum average degree <2.4, then G is ϵ-flexibly 3-choosable.Suppose G has no reducible subgraph.

- Let each v receive charge $\operatorname{deg}(v)-2.4$.
- Each deg 2 vertex takes charge 0.2 from each neighbor.
- The final charge is nonnegative, which is impossible.

Some of our reducible subgraphs

- A path with endpoints of degree 2 and internal vertices of degree 3
- A terminal block with maximum degree 3
- A subdivision of $K_{1,3}$ with leaves of degree 2 , a center of degree 4, and internal vertices of degree 3

