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Planar graphs

A drawing of a graph in the plane without any crossing edges is called a
plane graph. A graph with a plane graph drawing is a planar graph.

The degree of vertex v , deg(v), is the number of edges incident to v .

The degree of face f , deg(f ), is the number of edges incident to f . . .
. . . except for bridges, which are counted twice.

Lemma (Handshaking Lemma for plane graphs)

plane graph G, 2|E | =
∑
v∈V

deg(v) =
∑
f ∈F

deg(f )
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Lemma (Handshaking Lemma for plane graphs)

For every plane graph G, 2|E | =
∑
v∈V

deg(v) =
∑
f ∈F
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Planar graphs

A drawing of a graph in the plane without any crossing edges is called a
plane graph. A graph with a plane graph drawing is a planar graph.

The degree of vertex v , deg(v), is the number of edges incident to v .

The degree of face f , deg(f ), is the number of edges incident to f . . .
. . . except for bridges, which are counted twice.

Lemma (Handshaking Lemma for plane graphs)

For every bipartite plane graph G, 2|E | =
∑
v∈V

deg(v) =
∑
f ∈F

deg(f )≥ 4|F |.
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Euler’s Theorem

Theorem (Euler 1758)

Let G be a plane graph with vertices V , edges E , and faces F . Then,

|V | − |E |+ |F | = 2.
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Let G be a plane graph with vertices V , edges E , and faces F . Then,

|V | − |E |+ |F | = 2.

By the Handshaking Lemma, every plane graph G with |E | ≥ 2 has

|F | ≤ 2
3 |E |;

|F | ≤ 1
2 |E |, if G is bipartite.

Corollary

For every plane graph G with |V | ≥ 3,

|E | ≤ 3|V | − 6

|E | ≤ 2|V | − 4, if G is bipartite.
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Euler’s Theorem

K5 K3,3

|V | = 5, |E | = 10 |V | = 6, |E | = 9

Corollary

For every plane graph G with |V | ≥ 3,
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Euler’s Theorem

K5 K3,3

|V | = 5, |E | = 10 |V | = 6, |E | = 9

Theorem

If G is a graph, then G is planar iff

G has no subdivision of K5 or K3,3; [Kuratowski, 1930]

G has no minor of K5 or K3,3. [Wagner, 1937]
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An extremal problem

Let NP(n,H) denote the maximum number of copies of H in an n-vertex
planar graph.

Theorem

If n ≥ 3, then NP(n,K2) = 3n − 6.

This is achieved by any planar triangulation.

Tutte showed that there are n−7/2

64
√
6π

(
256
27

)n−2
planar triangulations.
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Hakimi-Schmeichel

Let NP(n,H) denote the maximum number of copies of H in an n-vertex
planar graph.

Theorem (Hakimi-Schmeichel, 1979)

If n ≥ 3, then NP(n,C3) = 3n − 8.

...
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Hakimi-Schmeichel

Let NP(n,H) denote the maximum number of copies of H in an n-vertex
planar graph.

Theorem (Hakimi-Schmeichel, 1979)

If n ≥ 3, then NP(n,C4) =
n2 + 3n − 22

2
.

...
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Hakimi-Schmeichel

Let NP(n,H) denote the maximum number of copies of H in an n-vertex
planar graph.

Theorem (Hakimi-Schmeichel, 1979)

If n ≥ 3, then NP(n,K2,2) =
n2 + 3n − 22

2
.

...
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Other results

Alon and Caro (1984)

... k
... k

Győri, Paulos, Salia, Tompkins, Zamora (2019)

Ghosh, Győri, Martin, Paulos, Salia, Xiao, Zamora (2021)
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Seven-paths and six-cycles

Theorem (Cox-Martin, 2022)

NP(n,P7) =
4

27
n4 + O

(
n4−1/5

)

NP(n,C6) =
(n
3

)3
+ O

(
n3−1/5

)

...

. . . . .
.
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Even cycles

Theorem (Cox-Martin, 2022 & 2023)

NP(n,C8) =
(n
4

)4
+ O

(
n4−1/5

)
NP(n,C10) =

(n
5

)5
+ o

(
n5
)

NP(n,C12) =
(n
6

)6
+ o

(
n6
)

...

...

· · · · · ·

. . . . .
.

· · · · · ·
...
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Even cycles

Theorem (Cox-Martin, 2022 & 2023)

NP(n,C8) =
(n
4

)4
+ O

(
n4−1/5

)
NP(n,C10) =

(n
5

)5
+ o

(
n5
)

NP(n,C12) =
(n
6

)6
+ o

(
n6
)

If m ≥ 4, then

4m
( n

m

)m+1
+ O (nm) ≤ NP(n,P2m+1) ≤

nm+1

2 · (m − 1)!
+ O

(
nm+4/5

)
.

If m ≥ 5, then( n

m

)m
+ O (nm) ≤ NP(n,C2m) ≤

nm

m!
+ O

(
nm−1/5

)
.
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Even cycles

Theorem (Cox-Martin, 2022 & 2023)

NP(n,C8) =
(n
4

)4
+ O

(
n4−1/5

)
NP(n,C10) =

(n
5

)5
+ o

(
n5
)

NP(n,C12) =
(n
6

)6
+ o

(
n6
)

Theorem (Lv-Győri-He-Salia-Tompkins-Zhu, 2022)

For all k ≥ 3,

NP(n,C2k) =
(n
k

)k
+ o

(
nk

)
.
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Odd cycles

Theorem (H.-Martin-Wells, 2023)

NP(n,C5) = 2n2 + O(n2−1/5)

NP(n,C2m+1) = 2m
( n

m

)m
+ O(nm−1/5) for m ∈ {3, 4}

NP(n,C2m+1) ≤ 3m
( n

m

)m
+ O(nm−1/5) for m ≥ 5.
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Proof idea

Idea: Reduce the problem of bounding NP(n,H), assuming H has a
special subdivision structure, to a maximum likelihood estimator question.

An edge probability measure is a probability measure on the edges of a
complete graph:

µ :
(V
2

)
→ [0, 1] such that

∑
e∈(V2)

µ(e) = 1.

Question

Which probability distribution µ on the edges of a clique maximizes the
probability that e(H ′) many edges sampled independently from µ yields a
copy of H ′?
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Probability mass on a graph

Let µ be an edge probability measure for a clique K .

For each subgraph H ⊆ K , define µ(H) =
∏

e∈E(H)

µ(e).

For each graph H, define β(µ;H) =
∑

H′ a copy of H in K

µ(H ′).

Lemma (Reduction lemma for even cycles (Cox–Martin))

For every n-vertex planar graph G, there is an edge probability measure µ
such that for all m ≥ 3, the number of copies of C2m in G is at most

β(µ;Cm) · nm + O
(
nm−1/5

)
.
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Probability mass on a graph

Let µ be an edge probability measure for a clique K .

For each subgraph H ⊆ K , define µ(H) =
∏

e∈E(H)

µ(e).

For each graph H, define β(µ;H) =
∑

H′ a copy of H in K

µ(H ′).

Lemma (Reduction lemma for odd cycles (H.–Martin–Wells))

For every n-vertex planar graph G, there is an edge probability measure µ
such that for all m ≥ 3, the number of copies of C2m+1 in G is at most

(2mβ(µ;Cm) + β(µ;Pm+1)) · nm + O
(
nm−1/5

)
.
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Reduction lemma for odd cycles

Proof idea: Given a planar graph G on n vertices, find a planar graph G ′

with the following properties:

G ′ is highly structured

G ′ and G have the same
number of copies of C2m+1,
up to a small error term

Counting the cycles C2m+1 in
G ′ is asymptotically equivalent
to solving our maximum
likelihood problem

. . . . .
.

· · · · · ·

...
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Open problems

Improve the bound on the maximum likelihood question for C2m+1

when m ≥ 5

Prove an analogous reduction lemma for even paths

For a given graph H, what is the µ (on some Kn for all values of n)
that maximizes the probability of finding a copy of H by choosing
|E (H)| edges independently at random from µ?
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Thank you!
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Solving the maximum likelihood problem

Theorem (H.-Martin-Wells, 2023)

sup
µ

(
2

∑
e∈suppµ

µ(e)2 + β(µ;P3)

)
= 2, and

sup
µ

(
2m · β(µ;Cm) + β(µ;Pm+1)

)
=

2

mm−1
, for m ∈ {3, 4}, and

sup
µ

(
2m · β(µ;Cm) + β(µ;Pm+1)

)
<

2.7

mm−1
, for all m ≥ 5.

Proof ideas:

KKT conditions

AM-GM inequality

Induction on number of vertices
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