Maximizing the number of odd cycles in a planar graph

Emily Heath
Joint with Ryan Martin and Chris Wells

October 7, 2023

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.
- The degree of face $f, \operatorname{deg}(f)$, is the number of edges incident to $f \ldots$

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.
- The degree of face $f, \operatorname{deg}(f)$, is the number of edges incident to $f \ldots$... except for bridges, which are counted twice.

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.
- The degree of face $f, \operatorname{deg}(f)$, is the number of edges incident to $f \ldots$... except for bridges, which are counted twice.

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.
- The degree of face $f, \operatorname{deg}(f)$, is the number of edges incident to $f \ldots$... except for bridges, which are counted twice.

Lemma (Handshaking Lemma for plane graphs)

For every plane graph $G, 2|E|=\sum_{v \in V} \operatorname{deg}(v)=\sum_{f \in F} \operatorname{deg}(f)$.

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.
- The degree of face $f, \operatorname{deg}(f)$, is the number of edges incident to $f \ldots$... except for bridges, which are counted twice.

Lemma (Handshaking Lemma for plane graphs)

For every plane graph $G, 2|E|=\sum_{v \in V} \operatorname{deg}(v)=\sum_{f \in F} \operatorname{deg}(f) \geq 3|F|$.

Planar graphs

A drawing of a graph in the plane without any crossing edges is called a plane graph. A graph with a plane graph drawing is a planar graph.

- The degree of vertex $v, \operatorname{deg}(v)$, is the number of edges incident to v.
- The degree of face $f, \operatorname{deg}(f)$, is the number of edges incident to $f \ldots$... except for bridges, which are counted twice.

Lemma (Handshaking Lemma for plane graphs)

For every bipartite plane graph $G, 2|E|=\sum_{v \in V} \operatorname{deg}(v)=\sum_{f \in F} \operatorname{deg}(f) \geq 4|F|$.

Euler's Theorem

Theorem (Euler 1758)
Let G be a plane graph with vertices V, edges E, and faces F. Then,

$$
|V|-|E|+|F|=2
$$

Euler's Theorem

Theorem (Euler 1758)
Let G be a plane graph with vertices V, edges E, and faces F. Then,

$$
|V|-|E|+|F|=2
$$

By the Handshaking Lemma, every plane graph G with $|E| \geq 2$ has

- $|F| \leq \frac{2}{3}|E|$;
- $|F| \leq \frac{1}{2}|E|$, if G is bipartite.

Euler's Theorem

Theorem (Euler 1758)
Let G be a plane graph with vertices V, edges E, and faces F. Then,

$$
|V|-|E|+|F|=2
$$

By the Handshaking Lemma, every plane graph G with $|E| \geq 2$ has

- $|F| \leq \frac{2}{3}|E|$;
- $|F| \leq \frac{1}{2}|E|$, if G is bipartite.

Corollary

For every plane graph G with $|V| \geq 3$,

- $|E| \leq 3|V|-6$
- $|E| \leq 2|V|-4$, if G is bipartite.

Euler's Theorem

Corollary

For every plane graph G with $|V| \geq 3$,

- $|E| \leq 3|V|-6$
- $|E| \leq 2|V|-4$, if G is bipartite.

Euler's Theorem

$$
|V|=5,|E|=10
$$

$|V|=6,|E|=9$

Theorem

If G is a graph, then G is planar iff

- G has no subdivision of K_{5} or $K_{3,3}$; [Kuratowski, 1930]
- G has no minor of K_{5} or $K_{3,3}$. [Wagner, 1937]

An extremal problem

Let $\mathbf{N}_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex planar graph.

Theorem

If $n \geq 3$, then $\mathbf{N}_{\mathcal{P}}\left(n, K_{2}\right)=3 n-6$.

This is achieved by any planar triangulation.
Tutte showed that there are $\frac{n^{-7 / 2}}{64 \sqrt{6 \pi}}\left(\frac{256}{27}\right)^{n-2}$ planar triangulations.

Hakimi-Schmeichel

Let $\mathbf{N}_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex planar graph.

Theorem (Hakimi-Schmeichel, 1979)
If $n \geq 3$, then $\mathbf{N}_{\mathcal{P}}\left(n, C_{3}\right)=3 n-8$.

Hakimi-Schmeichel

Let $\mathbf{N}_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex planar graph.

Theorem (Hakimi-Schmeichel, 1979)
If $n \geq 3$, then $\mathbf{N}_{\mathcal{P}}\left(n, C_{3}\right)=3 n-8$.

Hakimi-Schmeichel

Let $\mathbf{N}_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex planar graph.

Theorem (Hakimi-Schmeichel, 1979)
If $n \geq 3$, then $\mathbf{N}_{\mathcal{P}}\left(n, C_{3}\right)=3 n-8$.

Hakimi-Schmeichel

Let $\mathbf{N}_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex planar graph.

Theorem (Hakimi-Schmeichel, 1979)
If $n \geq 3$, then $\mathbf{N}_{\mathcal{P}}\left(n, C_{3}\right)=3 n-8$.

Hakimi-Schmeichel

Let $\mathbf{N}_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex planar graph.

Theorem (Hakimi-Schmeichel, 1979)
If $n \geq 3$, then $\mathbf{N}_{\mathcal{P}}\left(n, C_{4}\right)=\frac{n^{2}+3 n-22}{2}$.

Hakimi-Schmeichel

Let $\mathbf{N}_{\mathcal{P}}(n, H)$ denote the maximum number of copies of H in an n-vertex planar graph.

Theorem (Hakimi-Schmeichel, 1979)
If $n \geq 3$, then $\mathbf{N}_{\mathcal{P}}\left(n, K_{2,2}\right)=\frac{n^{2}+3 n-22}{2}$.

Other results

Alon and Caro (1984)

Győri, Paulos, Salia, Tompkins, Zamora (2019)

Ghosh, Győri, Martin, Paulos, Salia, Xiao, Zamora (2021)

Seven-paths and six-cycles

Theorem (Cox-Martin, 2022)

$$
\mathbf{N}_{\mathcal{P}}\left(n, P_{7}\right)=\frac{4}{27} n^{4}+O\left(n^{4-1 / 5}\right)
$$

Seven-paths and six-cycles

Theorem (Cox-Martin, 2022)

$$
\mathbf{N}_{\mathcal{P}}\left(n, P_{7}\right)=\frac{4}{27} n^{4}+O\left(n^{4-1 / 5}\right)
$$

Seven-paths and six-cycles

Theorem (Cox-Martin, 2022)

$$
\begin{aligned}
& \mathbf{N}_{\mathcal{P}}\left(n, P_{7}\right)=\frac{4}{27} n^{4}+O\left(n^{4-1 / 5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{6}\right)=\left(\frac{n}{3}\right)^{3}+O\left(n^{3-1 / 5}\right)
\end{aligned}
$$

Seven-paths and six-cycles

Theorem (Cox-Martin, 2022)

$$
\begin{aligned}
& \mathbf{N}_{\mathcal{P}}\left(n, P_{7}\right)=\frac{4}{27} n^{4}+O\left(n^{4-1 / 5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{6}\right)=\left(\frac{n}{3}\right)^{3}+O\left(n^{3-1 / 5}\right)
\end{aligned}
$$

Even cycles

Theorem (Cox-Martin, 2022 \& 2023)

$$
\begin{aligned}
& \mathbf{N}_{\mathcal{P}}\left(n, C_{8}\right)=\left(\frac{n}{4}\right)^{4}+O\left(n^{4-1 / 5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{10}\right)=\left(\frac{n}{5}\right)^{5}+o\left(n^{5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{12}\right)=\left(\frac{n}{6}\right)^{6}+o\left(n^{6}\right)
\end{aligned}
$$

Even cycles

Theorem (Cox-Martin, 2022 \& 2023)

$$
\begin{aligned}
& \mathbf{N}_{\mathcal{P}}\left(n, C_{8}\right)=\left(\frac{n}{4}\right)^{4}+O\left(n^{4-1 / 5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{10}\right)=\left(\frac{n}{5}\right)^{5}+o\left(n^{5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{12}\right)=\left(\frac{n}{6}\right)^{6}+o\left(n^{6}\right)
\end{aligned}
$$

If $m \geq 4$, then

$$
4 m\left(\frac{n}{m}\right)^{m+1}+O\left(n^{m}\right) \leq \mathbf{N}_{\mathcal{P}}\left(n, P_{2 m+1}\right) \leq \frac{n^{m+1}}{2 \cdot(m-1)!}+O\left(n^{m+4 / 5}\right)
$$

If $m \geq 5$, then

$$
\left(\frac{n}{m}\right)^{m}+O\left(n^{m}\right) \leq \mathbf{N}_{\mathcal{P}}\left(n, C_{2 m}\right) \leq \frac{n^{m}}{m!}+O\left(n^{m-1 / 5}\right)
$$

Even cycles

Theorem (Cox-Martin, 2022 \& 2023)

$$
\begin{aligned}
& \mathbf{N}_{\mathcal{P}}\left(n, C_{8}\right)=\left(\frac{n}{4}\right)^{4}+O\left(n^{4-1 / 5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{10}\right)=\left(\frac{n}{5}\right)^{5}+o\left(n^{5}\right) \\
& \mathbf{N}_{\mathcal{P}}\left(n, C_{12}\right)=\left(\frac{n}{6}\right)^{6}+o\left(n^{6}\right)
\end{aligned}
$$

Theorem (Lv-Győri-He-Salia-Tompkins-Zhu, 2022)
For all $k \geq 3$,

$$
\mathbf{N}_{\mathcal{P}}\left(n, C_{2 k}\right)=\left(\frac{n}{k}\right)^{k}+o\left(n^{k}\right) .
$$

Odd cycles

Theorem (H.-Martin-Wells, 2023)

$$
\begin{aligned}
\mathbf{N}_{\mathcal{P}}\left(n, C_{5}\right) & =2 n^{2}+O\left(n^{2-1 / 5}\right) \\
\mathbf{N}_{\mathcal{P}}\left(n, C_{2 m+1}\right) & =2 m\left(\frac{n}{m}\right)^{m}+O\left(n^{m-1 / 5}\right) \text { for } m \in\{3,4\} \\
\mathbf{N}_{\mathcal{P}}\left(n, C_{2 m+1}\right) & \leq 3 m\left(\frac{n}{m}\right)^{m}+O\left(n^{m-1 / 5}\right) \text { for } m \geq 5 .
\end{aligned}
$$

Proof idea

Idea: Reduce the problem of bounding $\mathbf{N}_{\mathcal{P}}(n, H)$, assuming H has a special subdivision structure, to a maximum likelihood estimator question.

Proof idea

Idea: Reduce the problem of bounding $\mathbf{N}_{\mathcal{P}}(n, H)$, assuming H has a special subdivision structure, to a maximum likelihood estimator question.

An edge probability measure is a probability measure on the edges of a complete graph:

$$
\mu:\binom{V}{2} \rightarrow[0,1] \text { such that } \sum_{e \in\binom{v}{2}} \mu(e)=1 .
$$

Proof idea

Idea: Reduce the problem of bounding $\mathbf{N}_{\mathcal{P}}(n, H)$, assuming H has a special subdivision structure, to a maximum likelihood estimator question.

An edge probability measure is a probability measure on the edges of a complete graph:

$$
\mu:\binom{V}{2} \rightarrow[0,1] \text { such that } \sum_{e \in\binom{v}{2}} \mu(e)=1 .
$$

Question

Which probability distribution μ on the edges of a clique maximizes the probability that $e\left(H^{\prime}\right)$ many edges sampled independently from μ yields a copy of H^{\prime} ?

Probability mass on a graph

Let μ be an edge probability measure for a clique K.
For each subgraph $H \subseteq K$, define $\mu(H)=\prod_{e \in E(H)} \mu(e)$.
For each graph H, define $\beta(\mu ; H)=\sum_{H^{\prime} \text { a copy of } H \text { in } K} \mu\left(H^{\prime}\right)$.

Probability mass on a graph

Let μ be an edge probability measure for a clique K.
For each subgraph $H \subseteq K$, define $\mu(H)=\prod_{e \in E(H)} \mu(e)$.
For each graph H, define $\beta(\mu ; H)=\sum_{H^{\prime} \text { a copy of } H \text { in } K} \mu\left(H^{\prime}\right)$.

Lemma (Reduction lemma for even cycles (Cox-Martin))

For every n-vertex planar graph G, there is an edge probability measure μ such that for all $m \geq 3$, the number of copies of $C_{2 m}$ in G is at most

$$
\beta\left(\mu ; C_{m}\right) \cdot n^{m}+O\left(n^{m-1 / 5}\right)
$$

Probability mass on a graph

Let μ be an edge probability measure for a clique K.
For each subgraph $H \subseteq K$, define $\mu(H)=\prod_{e \in E(H)} \mu(e)$.
For each graph H, define $\beta(\mu ; H)=\sum_{H^{\prime} \text { a copy of } H \text { in } K} \mu\left(H^{\prime}\right)$.

Lemma (Reduction lemma for odd cycles (H.-Martin-Wells))

For every n-vertex planar graph G, there is an edge probability measure μ such that for all $m \geq 3$, the number of copies of $C_{2 m+1}$ in G is at most

$$
\left(2 m \beta\left(\mu ; C_{m}\right)+\beta\left(\mu ; P_{m+1}\right)\right) \cdot n^{m}+O\left(n^{m-1 / 5}\right)
$$

Reduction lemma for odd cycles

Proof idea: Given a planar graph G on n vertices, find a planar graph G^{\prime} with the following properties:

- G^{\prime} is highly structured
- G^{\prime} and G have the same number of copies of $C_{2 m+1}$, up to a small error term
- Counting the cycles $C_{2 m+1}$ in G^{\prime} is asymptotically equivalent to solving our maximum likelihood problem

Reduction lemma for odd cycles

Proof idea：Given a planar graph G on n vertices，find a planar graph G^{\prime} with the following properties：
－G^{\prime} is highly structured
－G^{\prime} and G have the same number of copies of $C_{2 m+1}$ ， up to a small error term
－Counting the cycles $C_{2 m+1}$ in G^{\prime} is asymptotically equivalent to solving our maximum likelihood problem

Open problems

- Improve the bound on the maximum likelihood question for $C_{2 m+1}$ when $m \geq 5$
- Prove an analogous reduction lemma for even paths
- For a given graph H, what is the μ (on some K_{n} for all values of n) that maximizes the probability of finding a copy of H by choosing $|E(H)|$ edges independently at random from μ ?

Thank you!

Solving the maximum likelihood problem

Theorem (H.-Martin-Wells, 2023)

$$
\begin{array}{ll}
\sup _{\mu}\left(2 \sum_{e \in \operatorname{supp} \mu} \mu(e)^{2}+\beta\left(\mu ; P_{3}\right)\right)=2, & \text { and } \\
\sup _{\mu}\left(2 m \cdot \beta\left(\mu ; C_{m}\right)+\beta\left(\mu ; P_{m+1}\right)\right)=\frac{2}{m^{m-1}}, & \text { for } m \in\{3,4\}, \text { and } \\
\sup _{\mu}\left(2 m \cdot \beta\left(\mu ; C_{m}\right)+\beta\left(\mu ; P_{m+1}\right)\right)<\frac{2.7}{m^{m-1}}, & \text { for all } m \geq 5 .
\end{array}
$$

Proof ideas:

- KKT conditions
- AM-GM inequality
- Induction on number of vertices

