Macaulay Posets and Rings

Nikola Kuzmanovski

University of Nebraska-Lincoln

October 8, 2023

KO K K Ø K K E K K E K V K K K K K K K K K

- 1. Macaulay posets.
- 2. Macaulay rings.
- 3. An equivalence between the two.
- 4. Maybe applications of the equivalence.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Macaulay Posets

Macaulay posets are posets in which an analog of the Kruskal-Katona Theorem holds.

Macaulay Rings

Macaulay rings are rings in which an analog of Macaulay's Theorem for lex ideals holds.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Objects in the Kruskal-Katona and Clements-Lindström Theorems

These theorems concern the hypercube/Boolean lattice/power set/grid.

Boolean Lattice

The set (for a fixed $d \in \mathbb{N}$)

$$
\{ (a_1,\ldots,d_d) \in \mathbb{N}^d \mid a_i \in \{0,1\} \} \cong \mathcal{P}(\{1,2,\ldots,d\}).
$$

Multiset lattices

Set of the form (for $d \in \mathbb{N}$ and $\ell_1, \ldots, \ell_d \in \mathbb{N} \cup \{\infty\}$)

$$
\{ (a_1,\ldots,d_d) \in \mathbb{N}^d \mid a_i < \ell_i \}.
$$

KORKARYKERKER POLO

2D and 3D Boolean Lattices

(a) The 2D Boolean lattice. (b) The 3D Boolean lattice.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

2D and 3D Multiset Lattices

$$
\dfrac{(0,3)\dfrac{(1,3)\dfrac{(2,3)}{(1,2)\dfrac{(2,2)}{(1,2)\dfrac{(2,2)}{(1,1)\dfrac{(2,1)}{(1,0)\dfrac{(2,0)}{(2,0)}}}}}
$$

(a) The 2D multiset lattice with $\ell_1 = 3$ and $\ell_2 = 4$.

(b) The 3D multiset lattice with $\ell_1 = 2, \ell_3 = 4$ and $\ell_3 = 4$.

Main Components in the Kruskal-Katona and Clements-Lindström Theorems

Shadows

The lower shadow, $\Delta(x)$, of an element x is the set of elements right before that element. The upper shadow, $\nabla(x)$, of an element x is the set of elements right after that element.

Initial Segment

Suppose that S is a finite set and $\mathcal O$ is a total order on S. For any $n \in \mathbb{N}$ the **initial segment** $\mathcal{O}[n]$ is the set of the first *n* elements of S under O.

Lexicographic Order

For any $x, y \in \mathbb{N}^d$ we say that x is less than y in **lexicographic order** $(x <_{\mathcal{L}} y)$ iff for some $i \in \{1, \ldots, d-1\}$ we have $x_1 = y_1, \ldots, x_i = y_i$ and $x_{i+1} < y_{i+1}$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Shadows

$$
\begin{array}{|c|c|} \hline (0,3) & (1,3) & (2,3) \\ \hline (0,2) & (1,2) & (2,2) \\ \hline (0,1) & (1,1) & (2,1) \\ \hline (0,0) & (1,0) & (2,0) \\ \hline \end{array}
$$

(a) $\Delta((1,1)) = \{(0,1), (1,0)\}.$

$$
\begin{array}{|c|c|} \hline (0,3) & (1,3) & (2,3) \\ \hline (0,2) & (1,2) & (2,2) \\ \hline (0,1) & (1,1) & (2,1) \\ \hline (0,0) & (1,0) & (2,0) \\ \hline \end{array}
$$

(b) ∇ ((1, 1)) = {(1, 2), (2, 1)}.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Shadows of Sets

$$
\begin{array}{|c|c|} \hline (0,3) & (1,3) & (2,3) \\ \hline (0,2) & (1,2) & (2,2) \\ \hline (0,1) & (1,1) & (2,1) \\ \hline (0,0) & (1,0) & (2,0) \\ \hline \end{array}
$$

(a) $\Delta({ \{(1,1), (2, 0)\}})$.

$$
\begin{array}{|c|c|} \hline (0,3) \ (1,3) \ (2,3) \ \hline (0,2) \ (1,2) \ (2,2) \ \hline (0,1) \ (1,1) \ (2,1) \ \hline (0,0) \ (1,0) \ (2,0) \ \hline \end{array}
$$

(b) ∇ ({(0, 2), (1, 1)}).

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Lexicographic Order

$$
\begin{array}{|c|c|} \hline (0,3) & (1,3) & (2,3) \\ \hline (0,2) & (1,2) & (2,2) \\ \hline (0,1) & (1,1) & (2,1) \\ \hline (0,0) & (1,0) & (2,0) \\ \hline \end{array}
$$

(a) Lexicographic Order in 2D. (b) Lexicographic Order in 3D.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Initial Segments

$$
\begin{array}{|c|c|} \hline (0,3) & (1,3) & (2,3) \\ \hline (0,2) & (1,2) & (2,2) \\ \hline (0,1) & (1,1) & (2,1) \\ \hline (0,0) & (1,0) & (2,0) \\ \hline \end{array}
$$

K ロ X (日) X (日)

Multiset lattices are ranked posets

Ranked Poset

A poset $\mathscr P$ is **ranked** if there exists a function $r : \mathscr P \to \mathbb N$, such that whenever we have $a \in \Delta(b)$ then $r(a) + 1 = r(b)$.

Levels

For $n \in \mathbb{N}$ we define the *n*-th **level**

$$
Lvl_n = \{x \in \mathscr{P} \mid r(x) = n\}.
$$

All posets will be ranked and we will always talk about initial segments inside levels.

KORKARYKERKER POLO

Initial Segments and Levels

 (a) LvI₅.

(b) $\mathcal{L}[3]$ in Lvl₅.

 $(3, 5) | (4, 5) | (5, 5)$

 $(3, 4)$ $(4, 4)$ $(5, 4)$

 $(3, 3) | (4, 3) | (5, 3)$

 $(3, 2) | (4, 2) | (5, 2)$

 $(3, 1) | (4, 1) | (5, 1)$

 $(3,0) | (4,0) | (5,0)$

K ロ K イロ K モ K モ K モ K モ コ イ コ Y Q Q Q

Theorem (Clements-Lindström 1969)

Suppose that $A \subseteq L_v$ is inside a multiset lattice with $\ell_1 \leq \cdots \leq \ell_d$. Then, where we write $\mathcal{L}[A]$ for the initial segment of L of size $|A|$,

KORKARYKERKER POLO

- 1. $\Delta(\mathcal{L}[A])$ is an initial segment of \mathcal{L} .
- 2. $\Delta(A)$ is at least as big as $\Delta(\mathcal{L}[A])$.

Clements-Lindström in Action

(a) $A \subseteq Lvl_5$ and $\Delta(A)$.

(b) $\mathcal{L}[A] \subseteq Lvl_5$ and $\Delta(\mathcal{L}[A])$.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

For a ranked poset $\mathscr P$ be say that $\mathscr P$ is **Macaulay** if there exists a total order $\mathcal O$ on $\mathscr P$, such that for every $n \in \mathbb N$ and every $A \subseteq Lvl_n$ we have

- 1. $\Delta(O[A])$ is an initial segment of O .
- 2. $\Delta(A)$ is at least as big as $\Delta(\mathcal{O}[A]).$

We say that $(\mathscr{P}, \mathcal{O})$ is Macaulay.

Theorem (Clements-Lindström)

Every multiset lattice is Macaulay, and we know a Macaulay ordering.

KORKAR KERKER SAGA

Main Components in Macaulay's Lex Ideal Theorems

Polynomial Ring

A field K and a polynomial ring $R = K[x_1, \ldots, x_d]$.

Monomials

A monomial is an element in R that has the form $x_1^{e_1} \cdots x_d^{e_d}$.

Graded Ideal An ideal $I \subseteq R$ is graded if it can be written as

$$
I=\bigoplus_{n=0}^{\infty}I_n,
$$

KORKARYKERKER POLO

where each I_n is a subspace of the vector space spanned by the monomials of degree n.

Polynomial Rings

Fields

Just think about K as \mathbb{R} .

Polynomial Rings

 $R = K[x_1, \ldots, x_d]$ is the set of all polynomials with coefficients from K. Elements like x_1x_d , $x_1 + x_d$, $x_1x_d + x_1^{1000000000}x_d^3$.

Ideals

Ideals are subsets of $K[x_1, \ldots, x_d]$.

- 1. They have 0.
- 2. If f is in then $-f$ is in.
- 3. If you add two things you still end up in the ideal.
- 4. If f is in the ideal and $g \in K[x_1, \ldots, x_d]$ then fg is in the ideal.

KORKAR KERKER SAGA

Monomials Geometrically

(a) The 2D multiset lattice with $\ell_1 = \ell_2 = \infty$.

. . .

. . .

. . .

. . .

(b) Monomials in $R = K[x_1, x_2]$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

A Graded Ideal

		$(0,5)$ $(1,5)$ $(2,5)$ $(3,5)$ $(4,5)$ $(5,5)$	
		$(0,4)$ $(1,4)$ $(2,4)$ $(3,4)$ $(4,4)$ $(5,4)$	
$(0,3)$ $(1,3)$ $(2,3)$ $(3,3)$ $(4,3)$ $(5,3)$			
(0,2)(1,2)(2,2)(3,2)(4,2)(5,2)			
$(0,1)$ $(1,1)$ $(2,1)$ $(3,1)$ $(4,1)$ $(5,1)$			
		$(0,0)$ $(1,0)$ $(2,0)$ $(3,0)$ $(4,0)$ $(5,0)$	

Figure: The ideal generated by x_1^3 and x_2^3 in $K[x_1, x_2]$.

The graded ideal algebraically

You need to have $I=\bigoplus_{n=0}^{\infty}I_n$, where I is generated by x_1^3 and x_2^3 .

$$
I_0 = \text{Span}_K(0)
$$

\n
$$
I_1 = \text{Span}_K(0)
$$

\n
$$
I_2 = \text{Span}_K(0)
$$

\n
$$
I_3 = \text{Span}_K(x_1^3, x_2^3)
$$

\n
$$
I_4 = \text{Span}_K(x_1^4, x_1^3x_2, x_1x_2^3, x_2^4)
$$

\n
$$
\vdots
$$

So, stuff like $x_1^3 + x_2^3$ and $x_1^3 + x_2^4$ is in the ideal, but NOT stuff like $\sum_{i=3}^{\infty} x_1^i$.

KID KA KERKER E VOOR

Hilbert Function

For a graded ideal $I = \bigoplus_{n=1}^{\infty} I_n \subseteq R = K[x_1, \ldots, x_d]$ we define the Hilbert function of I to be \overline{H} ilb $_I : \mathbb{N} \to \mathbb{N}$ such that

 $Hilb_I(n) = \dim_K I_n.$

If $R = K[x_1, x_2]$ and $I = (x_1^3, x_2^3)$ then

$$
HilbI(0) = 0
$$

\n
$$
HilbI(1) = 0
$$

\n
$$
HilbI(2) = 0
$$

\n
$$
HilbI(3) = 2
$$

\n
$$
HilbI(4) = 4
$$

\n
$$
HilbI(n) = n + 1 \text{ for all } n \ge 5
$$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Dual Order

Suppose that S is a poset with a partial order \mathcal{O} . The dual order \mathcal{O}^* is defined such that for $x, y \in S$ we have $x <_{\mathcal{O}^*} y$ iff $y <_{\mathcal{O}} x$.

Initial Lex Segment Space

For a graded ideal $I = \bigoplus_{n=0}^{\infty} I_n \subseteq R$ we define the initial lex segment space of *to be*

$$
\mathcal{L}^*[I] = \bigoplus_{n=0}^{\infty} \text{Span}_K(\mathcal{L}^*[dim_K I_n])
$$

KORKARYKERKER POLO

I and $\mathcal{L}^*[I]$

(a) $I = (x_1^3, x_2^3)$.

.
. $(0,5) (1,5) (2,5) (3,5) (4,5) (5,5)$... $(0,4)$ $(1,4)$ $(2,4)$ $(3,4)$ $(4,4)$ $(5,4)$... $(0,3)$ $(1,3)$ $(2,3)$ $(3,3)$ $(4,3)$ $(5,3)$... $(0, 2) |(1, 2)|(2, 2)|(3, 2)|(4, 2)|(5, 2)| \ldots$ $(0, 1) | (1, 1) | (2, 1) | (3, 1) | (4, 1) | (5, 1) | \ldots$ $(0,0)$ $(1,0)$ $(2,0)$ $(3,0)$ $(4,0)$ $(5,0)$...

 (b) $\mathcal{L}^*[l]$.

イロメ イ部メ イ君メ イ君メー ミー 299

Theorem (Macaulay 1927)

If I is a graded ideal in $R = K[x_1, \ldots, x_d]$ then

- 1. Hilb_I = Hilb_{\mathcal{L}^* [I].}
- 2. $\mathcal{L}^*[l]$ is a graded ideal.

- 1. Different rings, not just $K[x_1, \ldots, x_d]$.
- 2. Monomials.
- 3. Graded Ideals and Hilbert function.
- 4. A total order on the set of monomials.

For a graded ideal $H \subseteq R = K[x_1, \ldots, x_d]$ we are going to consider the quotient

$$
S=R/H.
$$

A monomial of S is a **nonzero** element of the form $x_1^{e_1} \cdots x_d^{e_d} + H$, and we say that it has degree $e_1 + \cdots + e_d$.

KORKARYKERKER POLO

Graded Ideals and Hilbert Functions

Graded Ideals in Quotients An ideal $I \subseteq S = R/H$ is graded if it can be written as

$$
I=\bigoplus_{n=0}^{\infty}I_n,
$$

where each I_n is a subspace of the vector space spanned by the monomials of degree *n*.

Hilbert Functions in Quotients

We define the Hilbert function of I to be $\mathsf{Hilb}_I : \mathbb{N} \to \mathbb{N}$ such that

 $Hilb_I(n) = \dim_K I_n$.

KELK KØLK VELKEN EL 1990

Monomial Partial Order

For two monomials m_1 and m_2 of S we say that $m_1 \le m_2$ iff there exists a **monomial** m such that $m_1 m = m_2$.

The Poset of Monomials

The above relation is a partial order and we can talk about the poset of monomials of the ring S, which will be denoted \mathcal{M}_S .

Ranks and Levels

The rank function of an element in \mathcal{M}_S is given by its degree. Thus, we can talk about the levels of \mathcal{M}_{S} .

KORKAR KERKER SAGA

Some Posets of Monomials

$$
\dfrac{(0,3)\dfrac{(1,3)\dfrac{(2,3)}{(1,2)\dfrac{(2,2)}{(1,2)\dfrac{(2,2)}{(1,1)\dfrac{(2,1)}{(1,0)\dfrac{(2,0)}{(2,0)}}}}
$$

(a) M_S with $\frac{K[x_1,x_2]}{(x_1^3,x_2^4)}$

Macaulay Rings $(K 2023+)$

Initial O Segment Space

Suppose that $\mathcal O$ is a total order on $\mathscr M_S$. For a graded ideal $I \subseteq S$ we define the initial $\mathcal O$ segment space of I to be

$$
\mathcal{O}^*[I] = \bigoplus_{n=0}^{\infty} \mathsf{Span}_K(\mathcal{O}^*[{\mathsf{Hilb}}_I(n)])
$$

Macaulay Ring

We say that S is Macaulay if there exists a total order ${\cal O}$ such that for every graded ideal $I \subseteq S$ we have:

KORKAR KERKER SAGA

- 1. $\mathcal{O}^*[I]$ is an ideal.
- 2. Hilb $I = Hilb_{\mathcal{O}^*[I]}$.

We say that (S, \mathcal{O}) is Macaulay.

Theorem (Macaulay 1927) $K[x_1, \ldots, x_d] \cong K[x_1, \ldots, x_d]/(0)$ is Macaulay.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Monomial Order

A total order $\mathcal O$ on $\mathscr M_S$ is a monomial order, if whenever we have $m_1, m_2, m \in \mathcal{M}_S$ with $m_1 < m_2$ then $mm_1 < mm_2$.

Theorem $(K 2023+)$

Suppose that:

- 1. \circ is a total order on \mathcal{M}_S .
- 2. Every level of M_S is linearly independent.
- 3. There exists a monomial order on \mathcal{M}_{S} .

Then (S, O) is Macaulay if and only if (M_S, O) is Macaulay.

KORKARYKERKER POLO

Main Ingredients in the Proof of the Macaulay Correspondence Theorem

Reducing from graded ideals to monomial ideals

Use the existence of a monomial order and level linear independence to obtain an ideal M that is generated by monomials and has the same Hilbert function.

Shadows and Multiplication

Upper shadows in \mathcal{M}_S correspond to multiplying by the variables.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Bezrukov's Dual Lemma (Bezrukov 1994)

 $(\mathscr{P}, \mathcal{O})$ is Macaulay if and only if $(\mathscr{P}^*, \mathcal{O}^*)$ is Macaulay.

Sum of Ideals \Longleftrightarrow Tensor Product of Rings \Longleftrightarrow Cartesian Product of Posets

Theorem $(K 2023+)$

Suppose that for all $i \in [d]$ we have $S_i = R_i/H_i$ for some graded ideal H_i of $R_i = K[x_{i,1},\ldots,x_{i,n_i}]$, and that S_1 is level linearly independent. Let

$$
S = \frac{K[x_{1,1},\ldots,x_{1,n_1},\ldots,x_{d,1},\ldots,x_{d,n_d}]}{(H_1+H_2+\cdots+H_d)}.
$$

Then

- 1. $S_1 \otimes \cdots \otimes S_d \cong S$.
- 2. $M_{S_1} \times \cdots \times M_{S_d} \cong M_S$.
- 3. \mathcal{M}_S is level linearly independent.
- 4. If there exist monomial orders for $\mathscr{M}_{\mathsf{S}_1},\ldots,\mathscr{M}_{\mathsf{S}_d}$ then there is a monomial order on \mathcal{M}_S .

KORKARYKERKER POLO

Get clever and apply this stuff. But we can be done too :)

Theorem (Mermin-Murai 2010)

Suppose that for all $i \in [d]$ we have $S_i = R_i/H_i$ with $H_i = (x_{i,1}, \ldots, x_{i,n_i})^2$ of $R_i = K[x_{i,1}, \ldots, x_{i,n_i}].$

$$
S = \frac{K[x_{1,1},\ldots,x_{1,n_1},\ldots,x_{d,1},\ldots,x_{d,n_d}]}{(H_1+H_2+\cdots+H_d)}.
$$

KORKARYKERKER POLO

Then S is Macaulay.

Decomposing the rings of Mermin and Murai

$$
R_i = K[x_{i,1}, x_{i,2}, x_{i,3}]
$$

\n
$$
H_i = (x_{i,1}, x_{i,2}, x_{i,3})^2 = (x_{i,1}^2, x_{i,2}^2, x_{i,3}^2, x_{i,1}x_{i,2}, x_{i,1}x_{i,3}, x_{i,2}x_{i,3})
$$

\n
$$
S_i = R_i/H_i
$$

Figure: The poset of monomials for one of the rings in the tensor product

KORKARYKERKER POLO

Star Posets

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶

 2990

Þ

Star Posets

A star poset is a product of basic star posets.

Theorem (Many authors contributed 1971-1997) All star posets are Macaulay.

The contributions to the star Macaulay Theorem

KORKARYKERKER POLO

- 1. Lindström 1971.
- 2. Leeb 1978.
- 3. Bezrukov 1988.
- 4. Frankl, Füredi and Kalai 1988.
- 5. Bollobás and Radcliffe 1990.
- 6. Bollobás and Leader 1990.
- 7. London 1994
- 8. Leck 1995.
- 9. Engel 1997.
- 1. Star posets are Macaulay.
- 2. By Bezrukov's Dual Lemma, duals of star posets are Macaulay.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

- 3. Thus, the tensor product of the smaller rings in the Mermin-Murai Theorem is Macaulay.
- 4. Therefore, all colored-square free rings are Macaulay.

Spider Posets

Bezrukov-Elsässer poset

A Bezrukov-Elsässer poset is a poset of the form $\mathscr{P} \times \cdots \times \mathscr{P}$. where $\mathscr P$ is a spider.

 4 ロ) 4 \overline{B}) 4 \overline{B}) 4 \overline{B}) 4

 299

Theorem (Bezrukov-Elsässer 2000) All Bezrukov-Elsässer posets are Macaulay.

Bezrukov-Elsässer Rings

A basic Bezrukov-Elsässer ring has the form

$$
S = \frac{K[x_1,\ldots,x_d]}{(x_1^{\ell},\ldots,x_d^{\ell}) + (x_ix_j \mid i < j)}.
$$

KORKARYKERKER POLO

A Bezrukov-Elsässer ring has the form $S \otimes \cdots \otimes S$.

Theorem $(K 2023+)$

All Bezrukov-Elsässer rings are Macaulay.

Proof

Do the same thing you did for stars.

$$
S = \frac{K[x_1, x_2, x_3]}{(x_1^3, x_2^3, x_3^3) + (x_i x_j \mid i < j)}.
$$

Figure: Relationship between spider posets and Bezrukov-Elsässer rings rings.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Tree Ring Classification

Tree Rings

We say that S is a tree ring if the Hasse graph of \mathcal{M}_S is a tree.

Theorem $(K 2023+)$

Suppose that:

- 1. S is a level linearly independent.
- 2. S is a tree ring.
- 3. M_s is finite.
- 4. $n \geq \max_{a \in \mathcal{M}_S} r(a) + 3$

Then the n-fold product $S \otimes \cdots \otimes S$ is Macaulay if and only if \mathcal{M}_S is isomorphic to the poset of monomials of a basic Bezrukov-Elsässer ring.

KORKARYKERKER POLO

Clements's Problem

Take a Macaulay poset $\mathcal M$ and another poset $\mathcal P$. When is $\mathscr{M} \times \mathscr{P}$ Macaulay? Clements could answer this question when all the elements in $\mathscr P$ are not comparable to each other.

The Bezrukov-Leck Problem, same as Clements's Problem Can we do better than Clements? Why don't we try making $\mathscr P$ a chain? It is still hard. They were able to solve the problem when M has only two levels and the order is lexicographic.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The Mermin-Peeva and Shakin Theorem

Theorem

Suppose that $R = K[x_1, \ldots, x_d]$ and let M be a ideal generated by monomials. If R/M is Macaulay with the lexicographic order, then $R[x_{d+1}]/(M)$ is Macaulay with the lexicographic order.

Corollary $(K 2023+)$

Let \mathcal{M}_{S} be the poset of monomials for the ring R/M above. If \mathcal{M}_S is Macaulay with the lexicographic order, then $\mathcal{M}_S \times \mathbb{N}$ is Macaulay with the lexicographic order.

Proof.

$$
\frac{R[x_{d+1}]}{(M)}\cong \frac{R}{M}\otimes \frac{K[x_{d+1}]}{(0)}.
$$

KORKAR KERKER ST VOOR

Consider rings of the form $S_1 \otimes \cdots \otimes S_d$, where

$$
S_i = \frac{K[x_{i,1}, x_{i,2}]}{(x_{i,1}^{\ell_i}, x_{i,2}^{\ell_i}, x_{i,1}x_{i,2}, x_{i,1}^{\ell_i-1} - x_{i,2}^{\ell_i-1})}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

What does the poset of monomials of \mathcal{S}_i look like?

Discrete Even Tori

Kロトメ部トメミトメミト ミニのQC

The Karakhanyan-Riordan Theorem

- 1. Karakhanyan in 1982 solved the vertex isoperimetric problem for products of discrete tori.
- 2. Riordan in 1998 solved the same problem as Karakhanyan.
- 3. Bollobás and Leader 1990 solved the problem for some products.

Corollary

All products of discrete even tori are Macaulay.

Corollary $(K 2023+)$

 $S_1 \otimes \cdots \otimes S_d$ is Macaulay, where

$$
S_i = \frac{K[x_{i,1}, x_{i,2}]}{(x_{i,1}^{\ell_i}, x_{i,2}^{\ell_i}, x_{i,1}x_{i,2}, x_{i,1}^{\ell_i-1} - x_{i,2}^{\ell_i-1})}.
$$

This is the first class of Macaulay rings that are not quotients by a monomial or toric ideal.4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

There is more stuff, but I got tired at this point

Thank you!

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @