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What is this talk about?

1. Macaulay posets.

2. Macaulay rings.

3. An equivalence between the two.

4. Maybe applications of the equivalence.



The basic idea of the two objects

Macaulay Posets

Macaulay posets are posets in which an analog of the
Kruskal-Katona Theorem holds.

Macaulay Rings

Macaulay rings are rings in which an analog of Macaulay’s
Theorem for lex ideals holds.



Objects in the Kruskal-Katona and Clements-Lindström
Theorems

These theorems concern the hypercube/Boolean lattice/power
set/grid.

Boolean Lattice
The set (for a fixed d ∈ N)

{(a1, . . . , dd) ∈ Nd
∣∣ ai ∈ {0, 1}} ∼= P({1, 2, . . . , d}).

Multiset lattices
Set of the form (for d ∈ N and ℓ1, . . . , ℓd ∈ N ∪ {∞})

{(a1, . . . , dd) ∈ Nd
∣∣ ai < ℓi}.



2D and 3D Boolean Lattices

(0, 1) (1, 1)

(0, 0) (1, 0)

(a) The 2D Boolean lattice. (b) The 3D Boolean lattice.



2D and 3D Multiset Lattices

(0, 3) (1, 3) (2, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(a) The 2D multiset lattice
with ℓ1 = 3 and ℓ2 = 4.

(b) The 3D multiset lattice with
ℓ1 = 2, ℓ3 = 4 and ℓ3 = 4.



Main Components in the Kruskal-Katona and
Clements-Lindström Theorems

Shadows
The lower shadow, ∆(x), of an element x is the set of elements
right before that element. The upper shadow,

∆

(x), of an
element x is the set of elements right after that element.

Initial Segment

Suppose that S is a finite set and O is a total order on S . For any
n ∈ N the initial segment O[n] is the set of the first n elements of
S under O.

Lexicographic Order

For any x , y ∈ Nd we say that x is less than y in lexicographic
order (x <L y) iff for some i ∈ {1, . . . , d − 1} we have
x1 = y1, . . . , xi = yi and xi+1 < yi+1.



Shadows

(0, 3) (1, 3) (2, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(a) ∆((1, 1)) = {(0, 1), (1, 0)}.

(0, 3) (1, 3) (2, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(b)

∆

((1, 1)) = {(1, 2), (2, 1)}.



Shadows of Sets

(0, 3) (1, 3) (2, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(a) ∆({(1, 1), (2, 0)}).

(0, 3) (1, 3) (2, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(b)

∆

({(0, 2), (1, 1)}).



Lexicographic Order

(a) Lexicographic Order in 2D. (b) Lexicographic Order in 3D.



Initial Segments

(0, 3) (1, 3) (2, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(a) L[4]. (b) L[15].



Levels and Ranks

Multiset lattices are ranked posets

Ranked Poset
A poset P is ranked if there exists a function r : P → N, such
that whenever we have a ∈ ∆(b) then r(a) + 1 = r(b).

Levels
For n ∈ N we define the n-th level

Lvln = {x ∈ P
∣∣ r(x) = n}.

All posets will be ranked and we will always talk about initial
segments inside levels.



Initial Segments and Levels

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5)

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(a) Lvl5.

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5)

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(b) L[3] in Lvl5.



The Clements and Lindström Theorem

Theorem (Clements-Lindström 1969)

Suppose that A ⊆ Lvln is inside a multiset lattice with
ℓ1 ≤ · · · ≤ ℓd . Then, where we write L[A] for the initial segment
of L of size |A|,
1. ∆(L[A]) is an initial segment of L.
2. ∆(A) is at least as big as ∆(L[A]).



Clements-Lindström in Action

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5)

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(a) A ⊆ Lvl5 and ∆(A).

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5)

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4)

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3)

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2)

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1)

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0)

(b) L[A] ⊆ Lvl5 and ∆(L[A]).



Macaulay Posets (Engel 1997)

For a ranked poset P be say that P is Macaulay if there exists a
total order O on P, such that for every n ∈ N and every A ⊆ Lvln
we have

1. ∆(O[A]) is an initial segment of O.

2. ∆(A) is at least as big as ∆(O[A]).

We say that (P,O) is Macaulay.

Theorem (Clements-Lindström)

Every multiset lattice is Macaulay, and we know a Macaulay
ordering.



Main Components in Macaulay’s Lex Ideal Theorems

Polynomial Ring

A field K and a polynomial ring R = K [x1, . . . , xd ].

Monomials
A monomial is an element in R that has the form xe11 · · · xedd .

Graded Ideal
An ideal I ⊆ R is graded if it can be written as

I =
∞⊕
n=0

In,

where each In is a subspace of the vector space spanned by the
monomials of degree n.



Polynomial Rings

Fields
Just think about K as R.

Polynomial Rings

R = K [x1, . . . , xd ] is the set of all polynomials with coefficients
from K . Elements like x1xd , x1 + xd , x1xd + x10000000001 x3d .

Ideals
Ideals are subsets of K [x1, . . . , xd ].

1. They have 0.

2. If f is in then −f is in.

3. If you add two things you still end up in the ideal.

4. If f is in the ideal and g ∈ K [x1, . . . , xd ] then fg is in the ideal.



Monomials Geometrically

...
...

...
...

(0, 3) (1, 3) (2, 3) (3, 3) . . .

(0, 2) (1, 2) (2, 2) (3, 2) . . .

(0, 1) (1, 1) (2, 1) (3, 1) . . .

(0, 0) (1, 0) (2, 0) (3, 0) . . .

(a) The 2D multiset lattice with
ℓ1 = ℓ2 = ∞.

...
...

...
...

x0
1x

3
2 x1

1x
3
2 x2

1x
3
2 x3

1x
3
2 . . .

x0
1x

2
2 x1

1x
2
2 x2

1x
2
2 x3

1x
2
2 . . .

x0
1x

1
2 x1

1x
1
2 x2

1x
1
2 x3

1x
1
2 . . .

x0
1x

0
2 x1

1x
0
2 x2

1x
0
2 x3

1x
0
2 . . .

(b) Monomials in R = K [x1, x2].



A Graded Ideal

...
...

...
...

...
...

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5) . . .

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4) . . .

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3) . . .

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) . . .

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) . . .

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) . . .

Figure: The ideal generated by x31 and x32 in K [x1, x2].



The graded ideal algebraically

You need to have I =
⊕∞

n=0 In, where I is generated by x31 and x32 .

I0 = SpanK (0)

I1 = SpanK (0)

I2 = SpanK (0)

I3 = SpanK (x
3
1 , x

3
2 )

I4 = SpanK (x
4
1 , x

3
1x2, x1x

3
2 , x

4
2 )

...

So, stuff like x31 + x32 and x31 + x42 is in the ideal, but NOT stuff like∑∞
i=3 x

i
1.



Hilbert Function

For a graded ideal I =
⊕∞

n=1 In ⊆ R = K [x1, . . . , xd ] we define the
Hilbert function of I to be HilbI : N → N such that

HilbI (n) = dimK In.

If R = K [x1, x2] and I = (x31 , x
3
2 ) then

HilbI (0) = 0

HilbI (1) = 0

HilbI (2) = 0

HilbI (3) = 2

HilbI (4) = 4

HilbI (n) = n + 1 for all n ≥ 5



Dual Orders and Initial Lex Segment Spaces

Dual Order
Suppose that S is a poset with a partial order O. The dual order
O∗ is defined such that for x , y ∈ S we have x <O∗ y iff y <O x .

Initial Lex Segment Space

For a graded ideal I =
⊕∞

n=0 In ⊆ R we define the initial lex
segment space of I to be

L∗[I ] =
∞⊕
n=0

SpanK (L∗[dimK In])



I and L∗[I ]

...
...

...
...

...
...

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5) . . .

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4) . . .

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3) . . .

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) . . .

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) . . .

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) . . .

(a) I = (x3
1 , x

3
2 ).

...
...

...
...

...
...

(0, 5) (1, 5) (2, 5) (3, 5) (4, 5) (5, 5) . . .

(0, 4) (1, 4) (2, 4) (3, 4) (4, 4) (5, 4) . . .

(0, 3) (1, 3) (2, 3) (3, 3) (4, 3) (5, 3) . . .

(0, 2) (1, 2) (2, 2) (3, 2) (4, 2) (5, 2) . . .

(0, 1) (1, 1) (2, 1) (3, 1) (4, 1) (5, 1) . . .

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0) (5, 0) . . .

(b) L∗[I ].



Macaulay’s Lex Ideal Theorem

Theorem (Macaulay 1927)

If I is a graded ideal in R = K [x1, . . . , xd ] then

1. HilbI = HilbL∗[I ].

2. L∗[I ] is a graded ideal.



What do we need to generalize Macaulay’s Theorem?

1. Different rings, not just K [x1, . . . , xd ].

2. Monomials.

3. Graded Ideals and Hilbert function.

4. A total order on the set of monomials.



Different Rings and Monomials

For a graded ideal H ⊆ R = K [x1, . . . , xd ] we are going to consider
the quotient

S = R/H.

A monomial of S is a nonzero element of the form xe11 · · · xedd +H,
and we say that it has degree e1 + · · ·+ ed .



Graded Ideals and Hilbert Functions

Graded Ideals in Quotients
An ideal I ⊆ S = R/H is graded if it can be written as

I =
∞⊕
n=0

In,

where each In is a subspace of the vector space spanned by the
monomials of degree n.

Hilbert Functions in Quotients
We define the Hilbert function of I to be HilbI : N → N such that

HilbI (n) = dimK In.



The Poset of Monomials MS (K 2023+)

Monomial Partial Order
For two monomials m1 and m2 of S we say that m1 ≤ m2 iff there
exists a monomial m such that m1m = m2.

The Poset of Monomials
The above relation is a partial order and we can talk about the
poset of monomials of the ring S , which will be denoted MS .

Ranks and Levels
The rank function of an element in MS is given by its degree.
Thus, we can talk about the levels of MS .



Some Posets of Monomials

(0, 3) (1, 3) (2, 3)

(0, 2) (1, 2) (2, 2)

(0, 1) (1, 1) (2, 1)

(0, 0) (1, 0) (2, 0)

(a) MS with K [x1,x2]

(x31 ,x
4
2 )
. (b) MS with K [x1,x2,x3]

(x21 ,x
3
2 ,x

4
3 )
.



Macaulay Rings (K 2023+)

Initial O Segment Space

Suppose that O is a total order on MS . For a graded ideal I ⊆ S
we define the initial O segment space of I to be

O∗[I ] =
∞⊕
n=0

SpanK (O∗[HilbI (n)])

Macaulay Ring

We say that S is Macaulay if there exists a total order O such that
for every graded ideal I ⊆ S we have:

1. O∗[I ] is an ideal.

2. HilbI = HilbO∗[I ].

We say that (S ,O) is Macaulay.



Macaulay’s Theorem Restated

Theorem (Macaulay 1927)

K [x1, . . . , xd ] ∼= K [x1, . . . , xd ]/(0) is Macaulay.



A Macaulay Correspondence Theorem

Monomial Order
A total order O on MS is a monomial order, if whenever we have
m1,m2,m ∈ MS with m1 < m2 then mm1 < mm2.

Theorem (K 2023+)

Suppose that:

1. O is a total order on MS .

2. Every level of MS is linearly independent.

3. There exists a monomial order on MS .

Then (S ,O) is Macaulay if and only if (MS ,O) is Macaulay.



Main Ingredients in the Proof of the Macaulay
Correspondence Theorem

Reducing from graded ideals to monomial ideals

Use the existence of a monomial order and level linear
independence to obtain an ideal M that is generated by monomials
and has the same Hilbert function.

Shadows and Multiplication

Upper shadows in MS correspond to multiplying by the variables.

Bezrukov’s Dual Lemma (Bezrukov 1994)

(P,O) is Macaulay if and only if (P∗,O∗) is Macaulay.



Sum of Ideals ⇐⇒ Tensor Product of Rings ⇐⇒ Cartesian
Product of Posets

Theorem (K 2023+)

Suppose that for all i ∈ [d ] we have Si = Ri/Hi for some graded
ideal Hi of Ri = K [xi ,1, . . . , xi ,ni ], and that S1 is level linearly
independent. Let

S =
K [x1,1, . . . , x1,n1 , . . . , xd ,1, . . . , xd ,nd ]

(H1 + H2 + · · ·+ Hd)
.

Then

1. S1 ⊗ · · · ⊗ Sd ∼= S .

2. MS1 × · · · × MSd
∼= MS .

3. MS is level linearly independent.

4. If there exist monomial orders for MS1 , . . . ,MSd then there is
a monomial order on MS .



Part 2

Get clever and apply this stuff.
But we can be done too :)



The Mermin-Murai Theorem on Colored Square Free Rings

Theorem (Mermin-Murai 2010)

Suppose that for all i ∈ [d ] we have Si = Ri/Hi with
Hi = (xi ,1, . . . , xi ,ni )

2 of Ri = K [xi ,1, . . . , xi ,ni ].

S =
K [x1,1, . . . , x1,n1 , . . . , xd ,1, . . . , xd ,nd ]

(H1 + H2 + · · ·+ Hd)
.

Then S is Macaulay.



Decomposing the rings of Mermin and Murai

Ri = K [xi ,1, xi ,2, xi ,3]

Hi = (xi ,1, xi ,2, xi ,3)
2 = (x2i ,1, x

2
i ,2, x

2
i ,3, xi ,1xi ,2, xi ,1xi ,3, xi ,2xi ,3)

Si = Ri/Hi

One leg per dimension−−−−−−−−−−−−−−→
A

Take the dual−−−−−−−−−→
A

Figure: The poset of monomials for one of the rings in the tensor product



Star Posets

A A
A A

Figure: Hasse graphs of some basic star posets.

Star Posets
A star poset is a product of basic star posets.

Theorem (Many authors contributed 1971-1997)

All star posets are Macaulay.



The contributions to the star Macaulay Theorem

1. Lindström 1971.

2. Leeb 1978.

3. Bezrukov 1988.

4. Frankl, Füredi and Kalai 1988.

5. Bollobás and Radcliffe 1990.

6. Bollobás and Leader 1990.

7. London 1994

8. Leck 1995.

9. Engel 1997.



A new proof of the Mermin-Murai Theorem

1. Star posets are Macaulay.

2. By Bezrukov’s Dual Lemma, duals of star posets are Macaulay.

3. Thus, the tensor product of the smaller rings in the
Mermin-Murai Theorem is Macaulay.

4. Therefore, all colored-square free rings are Macaulay.



Spider Posets

A

A

A

A

Figure: Hasse graphs of some spider posets.

Bezrukov-Elsässer poset

A Bezrukov-Elsässer poset is a poset of the form P × · · · × P,
where P is a spider.

Theorem (Bezrukov-Elsässer 2000)

All Bezrukov-Elsässer posets are Macaulay.



A Mermin-Murai Theorem for rings that are not square free

Bezrukov-Elsässer Rings

A basic Bezrukov-Elsässer ring has the form

S =
K [x1, . . . , xd ]

(xℓ1, . . . , x
ℓ
d) + (xixj

∣∣ i < j)
.

A Bezrukov-Elsässer ring has the form S ⊗ · · · ⊗ S .

Theorem (K 2023+)

All Bezrukov-Elsässer rings are Macaulay.



Proof

Do the same thing you did for stars.

S =
K [x1, x2, x3]

(x31 , x
3
2 , x

3
3 ) + (xixj

∣∣ i < j)
.

A

Take the dual−−−−−−−−−→

A

One leg per dimension−−−−−−−−−−−−−−→

Figure: Relationship between spider posets and Bezrukov-Elsässer rings
rings.



Tree Ring Classification

Tree Rings

We say that S is a tree ring if the Hasse graph of MS is a tree.

Theorem (K 2023+)

Suppose that:

1. S is a level linearly independent.

2. S is a tree ring.

3. MS is finite.

4. n ≥ maxa∈MS
r(a) + 3

Then the n-fold product S ⊗ · · · ⊗ S is Macaulay if and only if MS

is isomorphic to the poset of monomials of a basic
Bezrukov-Elsässer ring.



A Problem from Clements

Clements’s Problem
Take a Macaulay poset M and another poset P. When is
M × P Macaulay? Clements could answer this question when all
the elements in P are not comparable to each other.

The Bezrukov-Leck Problem, same as Clements’s Problem
Can we do better than Clements? Why don’t we try making P a
chain? It is still hard. They were able to solve the problem when
M has only two levels and the order is lexicographic.



The Mermin-Peeva and Shakin Theorem

Theorem
Suppose that R = K [x1, . . . , xd ] and let M be a ideal generated by
monomials. If R/M is Macaulay with the lexicographic order, then
R[xd+1]/(M) is Macaulay with the lexicographic order.

Corollary (K 2023+)

Let MS be the poset of monomials for the ring R/M above. If
MS is Macaulay with the lexicographic order, then MS × N is
Macaulay with the lexicographic order.

Proof.

R[xd+1]

(M)
∼= R

M
⊗ K [xd+1]

(0)
.



Let’s do one more class for fun.

Consider rings of the form S1 ⊗ · · · ⊗ Sd , where

Si =
K [xi ,1, xi ,2]

(xℓii ,1, x
ℓi
i ,2, xi ,1xi ,2, x

ℓi−1
i ,1 − xℓi−1

i ,2 )
.

What does the poset of monomials of Si look like?



Discrete Even Tori

A A A A



The Karakhanyan-Riordan Theorem

1. Karakhanyan in 1982 solved the vertex isoperimetric problem
for products of discrete tori.

2. Riordan in 1998 solved the same problem as Karakhanyan.

3. Bollobás and Leader 1990 solved the problem for some
products.

Corollary

All products of discrete even tori are Macaulay.

Corollary (K 2023+)

S1 ⊗ · · · ⊗ Sd is Macaulay, where

Si =
K [xi ,1, xi ,2]

(xℓii ,1, x
ℓi
i ,2, xi ,1xi ,2, x

ℓi−1
i ,1 − xℓi−1

i ,2 )
.

This is the first class of Macaulay rings that are not quotients by a
monomial or toric ideal.



There is more stuff, but I got tired at this point

Thank you!
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