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Proof.
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The Main Result

Theorem (Long, Milans, W. 2023+)
Let G be a connected chordal graph, then lpt(G) = O(log2 n).
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I Intuitively, our tools and techniques lose their effectiveness when the
host tree has many leaves.

I If the host tree is a path, it is an interval graph, which has an
longest path transversal of size one.

I The notion of leafage was introduced by Lin, Mckee and West to
measure how close a chordal graph is to being an interval graph.

I Let G be a chordal graph, then `(G) denotes the minimum number
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