Longest Path Transversals in Chordal Graphs

Michael Wigal
joint work with James Long and Kevin Milans

AMS Fall Central Sectional Meeting 2023

October 7, 2023

Gallai's Question

- In a connected graph, longest paths pairwise intersect (Folklore)

Gallai's Question

- In a connected graph, longest paths pairwise intersect (Folklore)
- Is there a single vertex contained in every longest path of a connected graph? (Gallai 1968)

Gallai's Question

- In a connected graph, longest paths pairwise intersect (Folklore)
- Is there a single vertex contained in every longest path of a connected graph? (Gallai 1968)
- Counterexample given by Walther in 1969.

Gallai's Question

- In a connected graph, longest paths pairwise intersect (Folklore)
- Is there a single vertex contained in every longest path of a connected graph? (Gallai 1968)
- Counterexample given by Walther in 1969.
- Smaller counterexamples later given by Walther and Voss (1974) and Zamfirescu (1976)

Gallai's Question

- In a connected graph, longest paths pairwise intersect (Folklore)
- Is there a single vertex contained in every longest path of a connected graph? (Gallai 1968)
- Counterexample given by Walther in 1969.
- Smaller counterexamples later given by Walther and Voss (1974) and Zamfirescu (1976)
- One such is the Petersen fragment:

Gallai's Question

- There has been a line of work for characterizing which graph families Gallai's question holds.

Gallai's Question

- There has been a line of work for characterizing which graph families Gallai's question holds.
- Cactus Graphs (Klavžar and Petkovšek 1990)

Gallai's Question

- There has been a line of work for characterizing which graph families Gallai's question holds.
- Cactus Graphs (Klavžar and Petkovšek 1990)
- Split Graphs (Klavžar and Petkovšek 1990)

Gallai's Question

- There has been a line of work for characterizing which graph families Gallai's question holds.
- Cactus Graphs (Klavžar and Petkovšek 1990)
- Split Graphs (Klavžar and Petkovšek 1990)
- Circular Arc Graphs (Balister et al. 2004, Joos 2014)

Gallai's Question

- There has been a line of work for characterizing which graph families Gallai's question holds.
- Cactus Graphs (Klavžar and Petkovšek 1990)
- Split Graphs (Klavžar and Petkovšek 1990)
- Circular Arc Graphs (Balister et al. 2004, Joos 2014)
- Series-Parallel Graphs (Chen et al. 2017)

Gallai's Question

- There has been a line of work for characterizing which graph families Gallai's question holds.
- Cactus Graphs (Klavžar and Petkovšek 1990)
- Split Graphs (Klavžar and Petkovšek 1990)
- Circular Arc Graphs (Balister et al. 2004, Joos 2014)
- Series-Parallel Graphs (Chen et al. 2017)
- Bipartite Permutation Graphs (Cerioli et al. 2020)

Longest Path Transversals

- A set of vertices is a longest path transversal if every longest path must intersect it.

Longest Path Transversals

- A set of vertices is a longest path transversal if every longest path must intersect it.
- For a graph G, we let $\operatorname{lpt}(G)$ denote the size of a minimum longest path transversal.

Longest Path Transversals

- A set of vertices is a longest path transversal if every longest path must intersect it.
- For a graph G, we let $\operatorname{lpt}(G)$ denote the size of a minimum longest path transversal.
- Gallai's question rephrased: In a connected graph G, is $\operatorname{lpt}(G)=1$?

Longest Path Transversals

- A set of vertices is a longest path transversal if every longest path must intersect it.
- For a graph G, we let $\operatorname{lpt}(G)$ denote the size of a minimum longest path transversal.
- Gallai's question rephrased: In a connected graph G, is $\operatorname{lpt}(G)=1$?
- For connected n-vertex graph $G, \operatorname{lpt}(G) \leq 8 n^{3 / 4}$. (Long, Milans, and Munaro 2021)

Longest Path Transversals

- A set of vertices is a longest path transversal if every longest path must intersect it.
- For a graph G, we let $\operatorname{lpt}(G)$ denote the size of a minimum longest path transversal.
- Gallai's question rephrased: In a connected graph G, is $\operatorname{lpt}(G)=1$?
- For connected n-vertex graph $G, \operatorname{lpt}(G) \leq 8 n^{3 / 4}$. (Long, Milans, and Munaro 2021)
- For a connected n-vertex graph $G, \operatorname{Ipt}(G) \leq 5 n^{2 / 3}$. (Kierstead and Ren 2023)

Longest Path Transversals

- A set of vertices is a longest path transversal if every longest path must intersect it.
- For a graph G, we let $\operatorname{lpt}(G)$ denote the size of a minimum longest path transversal.
- Gallai's question rephrased: In a connected graph G, is $\operatorname{lpt}(G)=1$?
- For connected n-vertex graph $G, \operatorname{lpt}(G) \leq 8 n^{3 / 4}$. (Long, Milans, and Munaro 2021)
- For a connected n-vertex graph $G, \operatorname{Ipt}(G) \leq 5 n^{2 / 3}$. (Kierstead and Ren 2023)
- Does there exist constant C, such that for all connected G, $\operatorname{lpt}(G) \leq C$? (Walther 1969)

Interval Graphs

- Let \mathcal{F} be a family of sets.

Interval Graphs

- Let \mathcal{F} be a family of sets.
- The intersection graph on \mathcal{F} is the graph with vertex set \mathcal{F}, and there is an edge between two set if and only if they intersect.

Interval Graphs

- Let \mathcal{F} be a family of sets.
- The intersection graph on \mathcal{F} is the graph with vertex set \mathcal{F}, and there is an edge between two set if and only if they intersect.
- If \mathcal{F} is a set of intervals on \mathbb{R}, its intersection graph is an interval graph.

Interval Graphs

- Let \mathcal{F} be a family of sets.
- The intersection graph on \mathcal{F} is the graph with vertex set \mathcal{F}, and there is an edge between two set if and only if they intersect.
- If \mathcal{F} is a set of intervals on \mathbb{R}, its intersection graph is an interval graph.
- If G is a connected interval graph, then $\operatorname{lpt}(G)=1$. (Balister, Györi, Lehel, and Schelp 2004)

Interval Graphs

- Let \mathcal{F} be a family of sets.
- The intersection graph on \mathcal{F} is the graph with vertex set \mathcal{F}, and there is an edge between two set if and only if they intersect.
- If \mathcal{F} is a set of intervals on \mathbb{R}, its intersection graph is an interval graph.
- If G is a connected interval graph, then $\operatorname{Ipt}(G)=1$. (Balister, Györi, Lehel, and Schelp 2004)
- Balister, Györi, Lehel, and Schelp then asked if the larger family of chordal graphs have the Gallai property.

Chordal Graphs

- A chord of a cycle C is an edge not in C, with both endpoints in $V(C)$.

Chordal Graphs

- A chord of a cycle C is an edge not in C, with both endpoints in $V(C)$.
- A graph G is chordal if every cycle of length at least four has a chord.

Chordal Graphs

- A chord of a cycle C is an edge not in C, with both endpoints in $V(C)$.
- A graph G is chordal if every cycle of length at least four has a chord.
- A graph G is chordal if and only if it is the intersection graph of subtrees of a tree T (Gavril 1974).

Chordal Graphs

- A chord of a cycle C is an edge not in C, with both endpoints in $V(C)$.
- A graph G is chordal if every cycle of length at least four has a chord.
- A graph G is chordal if and only if it is the intersection graph of subtrees of a tree T (Gavril 1974).
- Chordal graphs are a direct generalization of interval graphs.

Chordal Graphs

- A chord of a cycle C is an edge not in C, with both endpoints in $V(C)$.
- A graph G is chordal if every cycle of length at least four has a chord.
- A graph G is chordal if and only if it is the intersection graph of subtrees of a tree T (Gavril 1974).
- Chordal graphs are a direct generalization of interval graphs.
- If G is a connected n-vertex chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2}(n)\right) .($ Long, Milans, W. 2023+ $)$.

Chordal Graphs

- A chord of a cycle C is an edge not in C, with both endpoints in $V(C)$.
- A graph G is chordal if every cycle of length at least four has a chord.
- A graph G is chordal if and only if it is the intersection graph of subtrees of a tree T (Gavril 1974).
- Chordal graphs are a direct generalization of interval graphs.
- If G is a connected n-vertex chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2}(n)\right)$. (Long, Milans, W. 2023+).
- We achieved this bound by exploiting the tree-like structure of chordal graphs.

Prior Work

- Treewidth is a fundamental graph parameter, denoted $t w(G)$.

Prior Work

- Treewidth is a fundamental graph parameter, denoted $t w(G)$.
- Given a graph G, let $\omega(G)$ denote the size of the largest clique.

Prior Work

- Treewidth is a fundamental graph parameter, denoted $t w(G)$.
- Given a graph G, let $\omega(G)$ denote the size of the largest clique.
- $\operatorname{tw}(G)=\min \{\omega(H)-1: G \subseteq H$ and H is chordal $\}$.

Prior Work

- Treewidth is a fundamental graph parameter, denoted $t w(G)$.
- Given a graph G, let $\omega(G)$ denote the size of the largest clique.
- $t w(G)=\min \{\omega(H)-1: G \subseteq H$ and H is chordal $\}$.
- A bramble is a set of connected subgraphs that pairwise intersect or are joined by an edge.

Prior Work

- Treewidth is a fundamental graph parameter, denoted $t w(G)$.
- Given a graph G, let $\omega(G)$ denote the size of the largest clique.
- $t w(G)=\min \{\omega(H)-1: G \subseteq H$ and H is chordal $\}$.
- A bramble is a set of connected subgraphs that pairwise intersect or are joined by an edge.
- Transversals of brambles form a "combinatorial dual" to the treewidth parameter.

Prior Work

- Treewidth is a fundamental graph parameter, denoted $t w(G)$.
- Given a graph G, let $\omega(G)$ denote the size of the largest clique.
- $\operatorname{tw}(G)=\min \{\omega(H)-1: G \subseteq H$ and H is chordal $\}$.
- A bramble is a set of connected subgraphs that pairwise intersect or are joined by an edge.
- Transversals of brambles form a "combinatorial dual" to the treewidth parameter.
- Longest paths are a bramble in a connected graph.

Prior Work

- Treewidth is a fundamental graph parameter, denoted $t w(G)$.
- Given a graph G, let $\omega(G)$ denote the size of the largest clique.
- $\operatorname{tw}(G)=\min \{\omega(H)-1: G \subseteq H$ and H is chordal $\}$.
- A bramble is a set of connected subgraphs that pairwise intersect or are joined by an edge.
- Transversals of brambles form a "combinatorial dual" to the treewidth parameter.
- Longest paths are a bramble in a connected graph.
- For a connected graph $G, \operatorname{lpt}(G) \leq t w(G)+1$ (Rautenbach and Sereni 2014)

Prior Work

- In a chordal graph $G, t w(G)=\omega(G)-1$.

Prior Work

- In a chordal graph $G, t w(G)=\omega(G)-1$.
- In a connected chordal graph $G, \operatorname{lpt}(G) \leq \omega(G)$. (Rautenbach and Sereni 2014)

Prior Work

- In a chordal graph $G, t w(G)=\omega(G)-1$.
- In a connected chordal graph $G, \operatorname{lpt}(G) \leq \omega(G)$. (Rautenbach and Sereni 2014)
- In a connected chordal graph $G, \operatorname{lpt}(G) \leq 4\lceil\omega(G) / 5\rceil$. (Harvey and Payne 2023)

Prior Work

- In a chordal graph $G, t w(G)=\omega(G)-1$.
- In a connected chordal graph $G, \operatorname{lpt}(G) \leq \omega(G)$. (Rautenbach and Sereni 2014)
- In a connected chordal graph $G, \operatorname{lpt}(G) \leq 4\lceil\omega(G) / 5\rceil$. (Harvey and Payne 2023)
- If G is a connected n-vertex chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2}(n)\right)$. (Long, Milans, W. 2023+)

Prior Work

- In a chordal graph $G, t w(G)=\omega(G)-1$.
- In a connected chordal graph $G, \operatorname{lpt}(G) \leq \omega(G)$. (Rautenbach and Sereni 2014)
- In a connected chordal graph $G, \operatorname{lpt}(G) \leq 4\lceil\omega(G) / 5\rceil$. (Harvey and Payne 2023)
- If G is a connected n-vertex chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2}(n)\right)$. (Long, Milans, W. 2023+)

A Key Tool: The Helly Property

- A family of sets \mathcal{F} has the Helly property, such that if every set in \mathcal{F} pairwise intersect, there is an element belonging to every set of \mathcal{F}.

A Key Tool: The Helly Property

- A family of sets \mathcal{F} has the Helly property, such that if every set in \mathcal{F} pairwise intersect, there is an element belonging to every set of \mathcal{F}.

Theorem (Folklore?)
If T is a $\operatorname{tree}, \operatorname{lpt}(T)=1$.

A Key Tool: The Helly Property

- A family of sets \mathcal{F} has the Helly property, such that if every set in \mathcal{F} pairwise intersect, there is an element belonging to every set of \mathcal{F}.

Theorem (Folklore?)
 If T is a $\operatorname{tree}, \operatorname{lpt}(T)=1$.

Proof.

It is well known that the substrees of a tree have the Helly property.

A Key Tool: The Helly Property

- A family of sets \mathcal{F} has the Helly property, such that if every set in \mathcal{F} pairwise intersect, there is an element belonging to every set of \mathcal{F}.

Theorem (Folklore?)

If T is a $\operatorname{tree}, \operatorname{lpt}(T)=1$.

Proof.

It is well known that the substrees of a tree have the Helly property. Longest paths of a tree are also subtrees.

A Key Tool: The Helly Property

- A family of sets \mathcal{F} has the Helly property, such that if every set in \mathcal{F} pairwise intersect, there is an element belonging to every set of \mathcal{F}.

Theorem (Folklore?)

If T is a $\operatorname{tree}, \operatorname{lpt}(T)=1$.

Proof.

It is well known that the substrees of a tree have the Helly property.
Longest paths of a tree are also subtrees.
Longest paths pairwise intersect in connected graphs.

A Key Tool: The Helly Property

- A family of sets \mathcal{F} has the Helly property, such that if every set in \mathcal{F} pairwise intersect, there is an element belonging to every set of \mathcal{F}.

Theorem (Folklore?)

If T is a $\operatorname{tree}, \operatorname{lpt}(T)=1$.

Proof.

It is well known that the substrees of a tree have the Helly property.
Longest paths of a tree are also subtrees.
Longest paths pairwise intersect in connected graphs.
By the Helly property, $\operatorname{lpt}(T)=1$.

A Key Tool: The Helly Property

- A family of sets \mathcal{F} has the Helly property, such that if every set in \mathcal{F} pairwise intersect, there is an element belonging to every set of \mathcal{F}.

Theorem (Folklore?)

If T is a tree, $\operatorname{lpt}(T)=1$.

Proof.

It is well known that the substrees of a tree have the Helly property.
Longest paths of a tree are also subtrees.
Longest paths pairwise intersect in connected graphs.
By the Helly property, $\operatorname{lpt}(T)=1$.

- Subtrees having the Helly property often translates to nice properties for chordal graphs.

A Key Tool: Tree Representations of Chordal Graphs

- A graph is chordal if and only if it is the intersection graph of subsets of a tree T (Gavril 1974)

A Key Tool: Tree Representations of Chordal Graphs

- A graph is chordal if and only if it is the intersection graph of subsets of a tree T (Gavril 1974)
- We call such a tree T a host tree.

A Key Tool: Tree Representations of Chordal Graphs

- A graph is chordal if and only if it is the intersection graph of subsets of a tree T (Gavril 1974)
- We call such a tree T a host tree.
- A host tree T along with a collection of subtrees \mathcal{F}, is a tree representation of G if its intersection graph is isomorphic to G.

A Key Tool: Tree Representations of Chordal Graphs

- A graph is chordal if and only if it is the intersection graph of subsets of a tree T (Gavril 1974)
- We call such a tree T a host tree.
- A host tree T along with a collection of subtrees \mathcal{F}, is a tree representation of G if its intersection graph is isomorphic to G.
- The vertices of the tree T correspond to cliques in G.

A Key Tool: Tree Representations of Chordal Graphs

- A graph is chordal if and only if it is the intersection graph of subsets of a tree T (Gavril 1974)
- We call such a tree T a host tree.
- A host tree T along with a collection of subtrees \mathcal{F}, is a tree representation of G if its intersection graph is isomorphic to G.
- The vertices of the tree T correspond to cliques in G.
- If G has a tree representation where T is a path, G is an interval graph.

A Key Tool: Tree Representations of Chordal Graphs

- A graph is chordal if and only if it is the intersection graph of subsets of a tree T (Gavril 1974)
- We call such a tree T a host tree.
- A host tree T along with a collection of subtrees \mathcal{F}, is a tree representation of G if its intersection graph is isomorphic to G.
- The vertices of the tree T correspond to cliques in G.
- If G has a tree representation where T is a path, G is an interval graph.

Lemma (Jordan 1869)

Let T be a tree, then there exists a vertex $z \in V(T)$ such that each component of $T-z$ has at most $|V(T)| / 2$ vertices.

The Main Result

The Main Result

Theorem (Long, Milans, W. 2023+)
Let G be a connected chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2} n\right)$.

The Main Result

Theorem (Long, Milans, W. 2023+)
Let G be a connected chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2} n\right)$.

- An informal proof overview.

The Main Result

Theorem (Long, Milans, W. 2023+)
Let G be a connected chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2} n\right)$.

- An informal proof overview.
- Let T be the (minimal) host tree of G.

The Main Result

Theorem (Long, Milans, W. 2023+)

Let G be a connected chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2} n\right)$.

- An informal proof overview.
- Let T be the (minimal) host tree of G.
- Find a small set of at most four vertices A that "guard" a large portion of the tree.

The Main Result

Theorem (Long, Milans, W. 2023+)

Let G be a connected chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2} n\right)$.

- An informal proof overview.
- Let T be the (minimal) host tree of G.
- Find a small set of at most four vertices A that "guard" a large portion of the tree.
- There are two cases for longest paths that A miss, depending on how their endpoints behave.

The Main Result

Theorem (Long, Milans, W. 2023+)

Let G be a connected chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2} n\right)$.

- An informal proof overview.
- Let T be the (minimal) host tree of G.
- Find a small set of at most four vertices A that "guard" a large portion of the tree.
- There are two cases for longest paths that A miss, depending on how their endpoints behave.
- We recurse on subtrees of size at most $|V(T)| / 2$.

The Main Result

Theorem (Long, Milans, W. 2023+)

Let G be a connected chordal graph, then $\operatorname{lpt}(G)=O\left(\log ^{2} n\right)$.

- An informal proof overview.
- Let T be the (minimal) host tree of G.
- Find a small set of at most four vertices A that "guard" a large portion of the tree.
- There are two cases for longest paths that A miss, depending on how their endpoints behave.
- We recurse on subtrees of size at most $|V(T)| / 2$.
- As chordal graphs have at most n maximal cliques, i.e. $|V(T)| \leq n$, this obtains a transversal of size $O\left(\log ^{2} n\right)$.

The Other Main Result

The Other Main Result

- Let $\operatorname{lct}(G)$ denote the size of a minimum longest cycle transversal for a graph G.

The Other Main Result

- Let $\operatorname{lct}(G)$ denote the size of a minimum longest cycle transversal for a graph G.

Theorem (Long, Milans, W. 2023+)
Let G be a 2-connected chordal graph, then $\operatorname{Ict}(G)=O(\log n)$.

The Other Main Result

- Let $\operatorname{lct}(G)$ denote the size of a minimum longest cycle transversal for a graph G.

Theorem (Long, Milans, W. 2023+)
Let G be a 2-connected chordal graph, then $\operatorname{Ict}(G)=O(\log n)$.

- This result falls out of the previous theorem.

The Other Main Result

- Let $\operatorname{lct}(G)$ denote the size of a minimum longest cycle transversal for a graph G.

Theorem (Long, Milans, W. 2023+)
Let G be a 2-connected chordal graph, then $\operatorname{Ict}(G)=O(\log n)$.

- This result falls out of the previous theorem.
- Cycles have more structure then paths, so we can avoid the two tailed recursion.

The Other Main Result

- Let $\operatorname{lct}(G)$ denote the size of a minimum longest cycle transversal for a graph G.

Theorem (Long, Milans, W. 2023+)
Let G be a 2-connected chordal graph, then $\operatorname{Ict}(G)=O(\log n)$.

- This result falls out of the previous theorem.
- Cycles have more structure then paths, so we can avoid the two tailed recursion.
- This saves a log factor from the size guarantee of the transversal.

The Other Other Main Result

The Other Other Main Result

- Intuitively, our tools and techniques lose their effectiveness when the host tree has many leaves.

The Other Other Main Result

- Intuitively, our tools and techniques lose their effectiveness when the host tree has many leaves.
- If the host tree is a path, it is an interval graph, which has an longest path transversal of size one.

The Other Other Main Result

- Intuitively, our tools and techniques lose their effectiveness when the host tree has many leaves.
- If the host tree is a path, it is an interval graph, which has an longest path transversal of size one.
- The notion of leafage was introduced by Lin, Mckee and West to measure how close a chordal graph is to being an interval graph.

The Other Other Main Result

- Intuitively, our tools and techniques lose their effectiveness when the host tree has many leaves.
- If the host tree is a path, it is an interval graph, which has an longest path transversal of size one.
- The notion of leafage was introduced by Lin, Mckee and West to measure how close a chordal graph is to being an interval graph.
- Let G be a chordal graph, then $\ell(G)$ denotes the minimum number of leaves in a tree representation of G.

The Other Other Main Result

- Intuitively, our tools and techniques lose their effectiveness when the host tree has many leaves.
- If the host tree is a path, it is an interval graph, which has an longest path transversal of size one.
- The notion of leafage was introduced by Lin, Mckee and West to measure how close a chordal graph is to being an interval graph.
- Let G be a chordal graph, then $\ell(G)$ denotes the minimum number of leaves in a tree representation of G.

Theorem (Long, Milans, W. 2023+)

Let G be a connected chordal graph, then $\operatorname{lpt}(G) \leq \ell(G)$.

Some Open Questions

Some Open Questions

Question (${ }^{(3)}$)

Let G be a connected chordal graph, does $\operatorname{lpt}(G) \leq C$ for some constant C?

Some Open Questions

Question (${ }^{(3)}$)

Let G be a connected chordal graph, does $\operatorname{lpt}(G) \leq C$ for some constant C?

Question (${ }^{\text {(2) }}$)

Let G be a connected chordal graph, does $\operatorname{lpt}(G) \leq 1$?

Some Open Questions

Question (${ }^{\text {(3) }}$)

Let G be a connected chordal graph, does $\operatorname{lpt}(G) \leq C$ for some constant C?

Question (${ }^{\text {a }}$)

Let G be a connected chordal graph, does $\operatorname{lpt}(G) \leq 1$?

Question (i)

Let G a connected graph, does $\operatorname{lpt}(G) \leq C$ for some constant C ?

Some Other Open Questions

Some Other Open Questions

Question (Zamfirescu)

What is the largest k such that any k longest paths of a connected graph have a vertex in common?

Some Other Open Questions

Question (Zamfirescu)

What is the largest k such that any k longest paths of a connected graph have a vertex in common?

- $2 \leq k \leq 6$ (Skupień 1994)

Some Other Open Questions

Question (Zamfirescu)

What is the largest k such that any k longest paths of a connected graph have a vertex in common?

- $2 \leq k \leq 6$ (Skupień 1994)

Conjecture (Hippchen)

If G is a k-connected graph, then two longest paths in G share at least k vertices.

Some Other Open Questions

Question (Zamfirescu)

What is the largest k such that any k longest paths of a connected graph have a vertex in common?

- $2 \leq k \leq 6$ (Skupień 1994)

Conjecture (Hippchen)

If G is a k-connected graph, then two longest paths in G share at least k vertices.

- True for $k \leq 5$. (Cho, Choi, Park 2022)

Some Other Open Questions

Question (Zamfirescu)

What is the largest k such that any k longest paths of a connected graph have a vertex in common?

- $2 \leq k \leq 6$ (Skupień 1994)

Conjecture (Hippchen)

If G is a k-connected graph, then two longest paths in G share at least k vertices.

- True for $k \leq 5$. (Cho, Choi, Park 2022)

Conjecture (Smith)

In a k-connected graph, $k \geq 2$, every two longest cycles in G share at least k vertices.

Some Other Open Questions

Question (Zamfirescu)

What is the largest k such that any k longest paths of a connected graph have a vertex in common?

- $2 \leq k \leq 6$ (Skupień 1994)

Conjecture (Hippchen)

If G is a k-connected graph, then two longest paths in G share at least k vertices.

- True for $k \leq 5$. (Cho, Choi, Park 2022)

Conjecture (Smith)

In a k-connected graph, $k \geq 2$, every two longest cycles in G share at least k vertices.

Conclusion

Conclusion

- Thank you!

