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> In a connected graph, longest paths pairwise intersect (Folklore)

» Is there a single vertex contained in every longest path of a
connected graph? (Gallai 1968)

» Counterexample given by Walther in 1969.

» Smaller counterexamples later given by Walther and Voss (1974)
and Zamfirescu (1976)

» One such is the Petersen fragment:
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There has been a line of work for characterizing which graph families
Gallai's question holds.

Cactus Graphs (Klavzar and Petkovsek 1990)

Split Graphs (Klavzar and Petkovsek 1990)

Circular Arc Graphs (Balister et al. 2004, Joos 2014)
Series-Parallel Graphs (Chen et al. 2017)

Bipartite Permutation Graphs (Cerioli et al. 2020)
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> A set of vertices is a longest path transversal if every longest path
must intersect it.

» For a graph G, we let Ipt(G) denote the size of a minimum longest
path transversal.

> Gallai's question rephrased: In a connected graph G, is Ipt(G) = 17
> For connected n-vertex graph G, Ipt(G) < 8n**. (Long, Milans,
and Munaro 2021)

> For a connected n-vertex graph G, Ipt(G) < 5n?/3. (Kierstead and
Ren 2023)

» Does there exist constant C, such that for all connected G,
Ipt(G) < C? (Walther 1969)
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» Let F be a family of sets.

» The intersection graph on F is the graph with vertex set F, and
there is an edge between two set if and only if they intersect.

» If F is a set of intervals on R, its intersection graph is an interval
graph.

> If G is a connected interval graph, then Ipt(G) = 1. (Balister, Gyéri,
Lehel, and Schelp 2004)

» Balister, Gyori, Lehel, and Schelp then asked if the larger family of
chordal graphs have the Gallai property.
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» A chord of a cycle C is an edge not in C, with both endpoints in
V(C).

» A graph G is chordal if every cycle of length at least four has a
chord.

» A graph G is chordal if and only if it is the intersection graph of
subtrees of a tree T (Gavril 1974).

» Chordal graphs are a direct generalization of interval graphs.
» If G is a connected n-vertex chordal graph, then
Ipt(G) = O(log?(n)). (Long, Milans, W. 2023+).
» We achieved this bound by exploiting the tree-like structure of
chordal graphs.
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Transversals of brambles form a “combinatorial dual” to the
treewidth parameter.

» Longest paths are a bramble in a connected graph.

> For a connected graph G, Ipt(G) < tw(G) + 1 (Rautenbach and
Sereni 2014)
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A Key Tool: The Helly Property

> A family of sets F has the Helly property, such that if every set in F
pairwise intersect, there is an element belonging to every set of F.

Theorem (Folklore?)
If T is a tree, Ipt(T) = 1.

Proof.

It is well known that the substrees of a tree have the Helly property.
Longest paths of a tree are also subtrees.

Longest paths pairwise intersect in connected graphs.

By the Helly property, Ipt(T) = 1. O

> Subtrees having the Helly property often translates to nice properties
for chordal graphs.
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A Key Tool: Tree Representations of Chordal Graphs

» A graph is chordal if and only if it is the intersection graph of
subsets of a tree T (Gavril 1974)

» We call such a tree T a host tree.

» A host tree T along with a collection of subtrees F, is a tree
representation of G if its intersection graph is isomorphic to G.

» The vertices of the tree T correspond to cliques in G.

» If G has a tree representation where T is a path, G is an interval
graph.

Lemma (Jordan 1869)

Let T be a tree, then there exists a vertex z € V/(T) such that each
component of T — z has at most |V/(T)|/2 vertices.
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Theorem (Long, Milans, W. 2023+)
Let G be a connected chordal graph, then Ipt(G) = O(log? n).
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An informal proof overview.
Let T be the (minimal) host tree of G.

Find a small set of at most four vertices A that “guard” a large
portion of the tree.

There are two cases for longest paths that A miss, depending on
how their endpoints behave.

We recurse on subtrees of size at most |V/(T)]|/2.

As chordal graphs have at most n maximal cliques, i.e. |V(T)| < n,
this obtains a transversal of size O(log n).
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» Let Ict(G) denote the size of a minimum longest cycle transversal
for a graph G.

Theorem (Long, Milans, W. 2023+)
Let G be a 2-connected chordal graph, then Ict(G) = O(log n).

» This result falls out of the previous theorem.

» Cycles have more structure then paths, so we can avoid the two
tailed recursion.

» This saves a log factor from the size guarantee of the transversal.
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» Intuitively, our tools and techniques lose their effectiveness when the
host tree has many leaves.

» If the host tree is a path, it is an interval graph, which has an
longest path transversal of size one.

» The notion of leafage was introduced by Lin, Mckee and West to
measure how close a chordal graph is to being an interval graph.

» Let G be a chordal graph, then ¢(G) denotes the minimum number
of leaves in a tree representation of G.

Theorem (Long, Milans, W. 2023+)
Let G be a connected chordal graph, then Ipt(G) < ¢(G).
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» Thank you!



