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I Background

Reconstruction Problem

Given a discrete structure, can we uniquely reconstruct it from the
list of its substructures of a fixed size?

Most famous example: graphs—Vertex and Edge Reconstruction
Conjectures (Kelly, Ulam 1957, Harary 1964)

What about “shotgun assembly?” (motivated by shotgun
sequencing of DNA)



I Random Pictures

Today: Let P, be a random picture, i.e. an n x n grid with {0, 1} entries

chosen uniformly at random. Let D be the deck of its k x k subgrids.

For what k = R(n) is P, reconstructible from D with high
probability?
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I Main Theorem

Let R(n, R) be the event that P, is reconstructible from its k-deck.

Narayanan-Y. '23+

There exists kc(n) such that as n — oo,

0 if k< Rke(n)
Prob[R(n, R)] —

1 ifk > ke(n)

Moreover, kc(n) takes one of two values: |/2log, n], [/2log, n].
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There exists R.(n) such that as n — oo,
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Prob[R(n, R)] —
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Proof of the 0-Statement: If k < kc(n), then n22=F 5 00 as n — oo.
Counting argument; bound the number of reconstructible pictures by

the number of k-decks.



I Main Theorem

Let R(n, R) be the event that P, is reconstructible from its k-deck.

Narayanan-Y. '23+

There exists R.(n) such that as n — oo,

0 if k< Re(n)
Prob[R(n, R)] —
1 if k> Re(n)

Moreover, kc(n) takes one of two values: |/2log, n|, [/2log, n].

Proof of the 1-Statement: If k > k¢(n), then n?k2=F'+k — 0. Our goal
is to give an algorithm for reconstructing P, from its deck and prove

that the probability of failure tends to 0.



I Reconstruction Algorithm

Step 0: Randomly order the deck D and begin with the first deck

element.



I Reconstruction Algorithm

Step 1: Extend downward to 3k rows by placing the first deck element
that fits.




I Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the

corners




I Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the

corners then internally. Repeat to the right and left until n columns.

2k —1




Reconstruction Algorithm

Step 3: Extend upward one row at a time, then downward until n

rOwWs.
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I Analysis: Naive Extensions

Observe that for each naive extension,
Prob[mistake] < n22 K +k
So by union bound,
Prob[there is a mistake in the first step] < 3kn22=K+*

which tends to 0 by our assumption. However, we cannot afford to do
naive extensions for the entire grid. This is why we introduce the

corner and internal extensions.
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right. Before placing a corner subgrid T, we check to see if it can be

extended to a (2R — 1) x (2k — 1) subgrid S" using deck elements.




I Analysis: Corner Extensions

Suppose we have correctly reconstructed S and are extending to the
right. Before placing a corner subgrid T, we check to see if it can be

extended to a (2k — 1) x (2R — 1) subgrid S’ using deck elements.

A R-grid is bad if it is incorrect
with respect to P,. We mark bad
k-grids, e.g. in the upper-right

corner.

An interface path is a path

separating the good and bad

entries.




I Analysis: Interface Paths

We compute probabilities associated with the interface paths. For
example,

Prob|first step] < n?2~F+*

but

Prob[second step | first step] < n22~ %+ + 2(4k2)(27 )



I Digression

The technique of computing a first moment along a path/contour
originated with Peierls in a proof of phase coexistence for the Ising

model on Z¢ and is often used in percolation.

e NG el 3
&= Joo
o8 |
=
3! v
e L
= irn
5 5
l l 5 5-1
SO -
I Jo o ofole b =51
fele.
L)@
105
GHE.' ﬂ fey] Sil
4 l*l L =

Images from Friedli-Velenik, Statistical Mechanics of Lattice Systems and Grimmett, Percolation
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techniques to give 2-point concentration for dimensions d > 2
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I Further Directions

- Demidovich-Panichkin-Zhukovskii use a variation of our
techniques to give 2-point concentration for dimensions d > 2
and colorsr > 2

- Sharp threshold?

- DPZ also connects their results to reconstruction of uniform
r-colorings of G(n,1/2) from k-decks (neighborhoods of radius

k), but there is a gap from 4/log,(n) to log, n.

- More variants: non-square, p-biased, noisy, correlated...



Thank you!



