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Background

Reconstruction Problem
Given a discrete structure, can we uniquely reconstruct it from the

list of its substructures of a fixed size?

Most famous example: graphs—Vertex and Edge Reconstruction

Conjectures (Kelly, Ulam 1957, Harary 1964)

Mossel–Ross ’18
What about “shotgun assembly?” (motivated by shotgun

sequencing of DNA)
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Random Pictures

Today: Let Pn be a random picture, i.e. an n×n grid with {0, 1} entries

chosen uniformly at random. Let D be the deck of its k× k subgrids.

Question
For what k = k(n) is Pn reconstructible from D with high

probability?
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Example

A 10× 10 picture

Deck of 9× 9 subgrids
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Main Theorem

Let R(n, k) be the event that Pn is reconstructible from its k-deck.

Narayanan-Y. ’23+
There exists kc(n) such that as n→ ∞,

Prob[R(n, k)] →

0 if k < kc(n)

1 if k > kc(n)

Moreover, kc(n) takes one of two values: ⌊
√
2 log2 n⌋, ⌈

√
2 log2 n⌉.
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Narayanan-Y. ’23+
There exists kc(n) such that as n→ ∞,

Prob[R(n, k)] →

0 if k < kc(n)

1 if k > kc(n)

Moreover, kc(n) takes one of two values: ⌊
√
2 log2 n⌋, ⌈

√
2 log2 n⌉.

Proof of the 0-Statement: If k < kc(n), then n22−k
2 → ∞ as n→ ∞.

Counting argument; bound the number of reconstructible pictures by

the number of k-decks.
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Main Theorem

Let R(n, k) be the event that Pn is reconstructible from its k-deck.

Narayanan-Y. ’23+
There exists kc(n) such that as n→ ∞,

Prob[R(n, k)] →

0 if k < kc(n)

1 if k > kc(n)

Moreover, kc(n) takes one of two values: ⌊
√
2 log2 n⌋, ⌈

√
2 log2 n⌉.

Proof of the 1-Statement: If k > kc(n), then n2k2−k
2+k → 0. Our goal

is to give an algorithm for reconstructing Pn from its deck and prove

that the probability of failure tends to 0.
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Reconstruction Algorithm

Step 0: Randomly order the deck D and begin with the first deck

element.
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Reconstruction Algorithm

Step 1: Extend downward to 3k rows by placing the first deck element

that fits.

3k

k
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Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the

corners

k

2k− 1 k

2k− 1
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Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the

corners then internally. Repeat to the right and left until n columns.

2k− 1
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Reconstruction Algorithm

Step 3: Extend upward one row at a time, then downward until n

rows.

2k− 1 2k− 1
2k− 1
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Analysis: Naive Extensions

Observe that for each naive extension,

Prob[mistake] ≤ n22−k
2+k

So by union bound,

Prob[there is a mistake in the first step] ≤ 3kn22−k
2+k

which tends to 0 by our assumption. However, we cannot afford to do

naive extensions for the entire grid. This is why we introduce the

corner and internal extensions.
6
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Analysis: Corner Extensions

Suppose we have correctly reconstructed S and are extending to the

right. Before placing a corner subgrid T, we check to see if it can be

extended to a (2k− 1)× (2k− 1) subgrid S′ using deck elements.

S

T

S′

2k− 1
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Analysis: Corner Extensions

Suppose we have correctly reconstructed S and are extending to the

right. Before placing a corner subgrid T, we check to see if it can be

extended to a (2k− 1)× (2k− 1) subgrid S′ using deck elements.

γ

e1 X X. . .

S

T

S′

2k− 1

A k-grid is bad if it is incorrect

with respect to Pn. We mark bad

k-grids, e.g. in the upper-right

corner.

An interface path is a path

separating the good and bad

entries.
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Analysis: Interface Paths

X
X

X
X
X
X

X
X
X
X

γ

We compute probabilities associated with the interface paths. For

example,

Prob[first step] ≤ n22−k
2+k

but

Prob[second step | first step] ≤ n22−k
2+1 + 2(4k2)(2−k+1)
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Digression
The technique of computing a first moment along a path/contour

originated with Peierls in a proof of phase coexistence for the Ising

model on Zd and is often used in percolation.

Images from Friedli-Velenik, Statistical Mechanics of Lattice Systems and Grimmett, Percolation
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Further Directions

• Demidovich–Panichkin–Zhukovskii use a variation of our

techniques to give 2-point concentration for dimensions d ≥ 2

and colors r ≥ 2

• Sharp threshold?

• DPZ also connects their results to reconstruction of uniform

r-colorings of G(n, 1/2) from k-decks (neighborhoods of radius

k), but there is a gap from
√
log2(n) to log2 n.

• More variants: non-square, p-biased, noisy, correlated...
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Thank you!


