Reconstructing Random Pictures

Corrine Yap
Georgia Tech
Joint work with Bhargav Narayanan
AMS Central Sectional
October 7-8, 2023

Background

Reconstruction Problem

Given a discrete structure, can we uniquely reconstruct it from the list of its substructures of a fixed size?

Most famous example: graphs-Vertex and Edge Reconstruction
Conjectures (Kelly, Ulam 1957, Harary 1964)

Macsel-Pacc 18

What about "shotgun assembly?" (motivated by shotgun
sequencing of DNA)

Background

Reconstruction Problem

Given a discrete structure, can we uniquely reconstruct it from the list of its substructures of a fixed size?

Most famous example: graphs-Vertex and Edge Reconstruction
Conjectures (Kelly, Ulam 1957, Harary 1964)

Mosse-Ross '18

What about "shotgun assembly?" (motivated by shotgun
sequencing of DNA)

Background

Reconstruction Problem

Given a discrete structure, can we uniquely reconstruct it from the list of its substructures of a fixed size?

Most famous example: graphs-Vertex and Edge Reconstruction
Conjectures (Kelly, Ulam 1957, Harary 1964)

```
Mossel-Ross '18
What about "shotgun assembly?" (motivated by shotgun
sequencing of DNA)
```


Random Pictures

Today: Let P_{n} be a random picture, i.e. an $n \times n$ grid with $\{0,1\}$ entries chosen uniformly at random. Let \mathcal{D} be the deck of its $k \times k$ subgrids.

Question

For what $k=k(n)$ is P_{n} reconstructible from \mathcal{D} with high
probability?

Example

Deck of 9×9 subgrids

Deck of 4×4 subgrids

Deck of 4×4 subgrids

Deck of 4×4 subgrids

Deck of 4×4 subgrids

Deck of 4×4 subgrids

Deck of 4×4 subgrids

Main Theorem

Let $R(n, k)$ be the event that P_{n} is reconstructible from its k-deck.

Narayanan-Y. '23+

There exists $k_{c}(n)$ such that as $n \rightarrow \infty$,

$$
\operatorname{Prob}[R(n, k)] \rightarrow \begin{cases}0 & \text { if } k<k_{c}(n) \\ 1 & \text { if } k>k_{c}(n)\end{cases}
$$

Moreover, $k_{c}(n)$ takes one of two values: $\left\lfloor\sqrt{2 \log _{2} n}\right\rfloor,\left\lceil\sqrt{2 \log _{2} n}\right\rceil$.

Main Theorem

Let $R(n, k)$ be the event that P_{n} is reconstructible from its k-deck.

Narayanan-Y. '23+

There exists $k_{c}(n)$ such that as $n \rightarrow \infty$,

$$
\operatorname{Prob}[R(n, k)] \rightarrow \begin{cases}0 & \text { if } k<k_{c}(n) \\ 1 & \text { if } k>k_{c}(n)\end{cases}
$$

Moreover, $k_{c}(n)$ takes one of two values: $\left\lfloor\sqrt{2 \log _{2} n}\right\rfloor,\left\lceil\sqrt{2 \log _{2} n}\right\rceil$.
Proof of the 0-Statement: If $k<k_{c}(n)$, then $n^{2} 2^{-k^{2}} \rightarrow \infty$ as $n \rightarrow \infty$.
Counting argument; bound the number of reconstructible pictures by the number of k-decks.

Main Theorem

Let $R(n, k)$ be the event that P_{n} is reconstructible from its k-deck.

Narayanan-Y. '23+

There exists $k_{c}(n)$ such that as $n \rightarrow \infty$,

$$
\operatorname{Prob}[R(n, k)] \rightarrow \begin{cases}0 & \text { if } k<k_{c}(n) \\ 1 & \text { if } k>k_{c}(n)\end{cases}
$$

Moreover, $k_{c}(n)$ takes one of two values: $\left\lfloor\sqrt{2 \log _{2} n}\right\rfloor,\left\lceil\sqrt{2 \log _{2} n}\right\rceil$.

Proof of the 1 -Statement: If $k>k_{c}(n)$, then $n^{2} k 2^{-k^{2}+k} \rightarrow 0$. Our goal is to give an algorithm for reconstructing P_{n} from its deck and prove that the probability of failure tends to 0 .

Reconstruction Algorithm

Step 0: Randomly order the deck \mathcal{D} and begin with the first deck element.

Reconstruction Algorithm

Step 1: Extend downward to $3 k$ rows by placing the first deck element that fits.

Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the corners

Reconstruction Algorithm

Step 2: Extend to the right one column at a time, first at each of the corners then internally. Repeat to the right and left until n columns.

Reconstruction Algorithm

Step 3: Extend upward one row at a time, then downward until n rows.

Observe that for each naive extension,

$$
\operatorname{Prob}[\text { mistake }] \leq n^{2} 2^{-k^{2}+k}
$$

So by union bound,

which tends to 0 by our assumption. However, we cannot afford to do naive exiensions ror the entiregrid. This is why we iniroduce the

Analysis: Naive Extensions

Observe that for each naive extension,

$$
\operatorname{Prob}[\text { mistake }] \leq n^{2} 2^{-k^{2}+k}
$$

So by union bound,
Prob[there is a mistake in the first step] $\leq 3 k n^{2} 2^{-k^{2}+k}$
which tends to 0 by our assumption. However, we cannot afford to do naive extensions for the entire grid. This is why we introduce the corner and internal extensions.

Analysis: Corner Extensions

Suppose we have correctly reconstructed S and are extending to the right. Before placing a corner subgrid T, we check to see if it can be extended to a $(2 k-1) \times(2 k-1)$ subgrid S^{\prime} using deck elements.

Analysis: Corner Extensions

Suppose we have correctly reconstructed S and are extending to the right. Before placing a corner subgrid T, we check to see if it can be extended to a $(2 k-1) \times(2 k-1)$ subgrid S^{\prime} using deck elements.

A k-grid is bad if it is incorrect with respect to P_{n}. We mark bad k-grids, e.g. in the upper-right corner.

An interface path is a path separating the good and bad entries.

Analysis: Interface Paths

We compute probabilities associated with the interface paths. For example,

$$
\operatorname{Prob}[f i r s t \text { step }] \leq n^{2} 2^{-k^{2}+k}
$$

but
Prob[second step | first step] $\leq n^{2} 2^{-k^{2}+1}+2\left(4 k^{2}\right)\left(2^{-k+1}\right)$

Digression

The technique of computing a first moment along a path/contour originated with Peierls in a proof of phase coexistence for the Ising model on \mathbb{Z}^{d} and is often used in percolation.

Images from Friedli-Velenik, Statistical Mechanics of Lattice Systems and Grimmett, Percolation

Further Directions

- Demidovich-Panichkin-Zhukovskii use a variation of our techniques to give 2-point concentration for dimensions $d \geq 2$ and colors $r \geq 2$

Sharp threshold?
DPZ also connects their results to reconstruction of uniform r-colorings of $G(n .1 / 2)$ from k-decks (neighhorhoods of radius $k)$, but there is a gap from $\sqrt{\log _{2}(n)}$ to $\log _{2} n$. More variants: non-square, p-biased, noisy, correlated...

Further Directions

- Demidovich-Panichkin-Zhukovskii use a variation of our techniques to give 2-point concentration for dimensions $d \geq 2$ and colors $r \geq 2$
- Sharp threshold?

DPZ also connects their results to reconstruction of uniform r-colorings of $G(n, 1 / 2)$ from k-decks (neighborhoods of radius $k)$, but there is a gap from $\sqrt{\log _{2}(n)}$ to $\log _{2} n$. More variants: non-square, p-biased, noisy, correlated...

Further Directions

- Demidovich-Panichkin-Zhukovskii use a variation of our techniques to give 2-point concentration for dimensions $d \geq 2$ and colors $r \geq 2$
- Sharp threshold?
- DPZ also connects their results to reconstruction of uniform r-colorings of $G(n, 1 / 2)$ from k-decks (neighborhoods of radius k), but there is a gap from $\sqrt{\log _{2}(n)}$ to $\log _{2} n$. More variants: non-square, p-biased, noisy, correlated...

Further Directions

- Demidovich-Panichkin-Zhukovskii use a variation of our techniques to give 2-point concentration for dimensions $d \geq 2$ and colors $r \geq 2$
- Sharp threshold?
- DPZ also connects their results to reconstruction of uniform r-colorings of $G(n, 1 / 2)$ from k-decks (neighborhoods of radius k), but there is a gap from $\sqrt{\log _{2}(n)}$ to $\log _{2} n$.
- More variants: non-square, p-biased, noisy, correlated...

Thank you!

