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Abstract

In this paper, we investigate the anti-Ramsey (more precisely, anti-van der Waerden) properties of
arithmetic progressions. For positive integers n and k, the expression aw([n], k) denotes the smallest
number of colors with which the integers {1, . . . , n} can be colored and still guarantee there is a rainbow
arithmetic progression of length k. We establish that aw([n], 3) = Θ(log n) and aw([n], k) = n1−o(1) for
k ≥ 4.

For positive integers n and k, the expression aw(Zn, k) denotes the smallest number of colors with
which elements of the cyclic group of order n can be colored and still guarantee there is a rainbow arith-
metic progression of length k. In this setting, arithmetic progressions can “wrap around,” and aw(Zn, 3)
behaves quite differently from aw([n], 3), depending on the divisibility of n. In fact, aw(Z2m , 3) = 3
for any positive integer m. However, for k ≥ 4, the behavior is similar to the previous case, that is,
aw(Zn, k) = n1−o(1).
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1 Introduction

Let G be an additive (abelian) group such as the integers or the integers modulo n, and let S be a finite
nonempty subset of G. A k-term arithmetic progression (k-AP) in S is a set of distinct elements of the form

a, a+ d, a+ 2d, . . . , a+ (k − 1)d

where d ≥ 1 and k ≥ 2. An r-coloring of S is a function c : S → [r], where [r] := {1, . . . , r}. We say such a
coloring is exact if c is surjective. An arithmetic progression is called rainbow if the image of the progression
under the r-coloring is injective. Formally, given c : S → [r] we say a k-term arithmetic progression is
rainbow if {c(a+ id) : i = 0, 1, . . . , k − 1} has k distinct values.

The anti-van der Waerden number aw(S, k) is the smallest r such that every exact r-coloring of S contains
a rainbow k-term arithmetic progression. Note that this tautologically defines aw(S, k) = |S|+ 1 whenever
|S| < k, and this definition retains the property that there is a coloring with aw(S, k) − 1 colors that has
no rainbow k-AP. Since aw(S, 2) = 2 for all S, we assume henceforth that k ≥ 3. A preliminary study of
the anti-van der Waerden number was done by Uherka in [13] and it should be noted the notation there
is slightly different, with AW (k, n) used to denote our aw([n], k). Other results have been obtained on
colorings of the integers by Jungić, et al. [8] and on balanced colorings with no rainbow 3-AP by Axenovich
and Fon-Der-Flaass [1] and Axenovich and Martin [2].

First, we consider the set S = [n]. The value of aw([n], 3) is logarithmic in n:
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Theorem 1.1. For every integer n ≥ 9,

dlog3 ne+ 2 ≤ aw([n], 3) ≤ dlog2 ne+ 1.

Moreover, aw([n], 3) = dlog3 ne+ 2 for n ∈ {3, 4, 5, 6, 7} and aw([8], 3) = 5.

Theorem 1.1 is Proven by Lemmas 2.3 and 2.6 (for n ≥ 9), and Remark 2.1 gives exact values of aw([n], 3)
that justify the second statement. We conjecture that the lower bound is, essentially, correct:

Conjecture 1.2. There exists a constant C such that aw([n], 3) ≤ dlog3 ne+ C for all n ≥ 3.

The behavior of aw([n], k) is, however, different for k ≥ 4. Instead of logarithmic, it is almost linear:

Theorem 1.3. For k ≥ 4,

ne−O(
√
logn) < aw([n], k) ≤ ne− log log logn−ω(1).

Theorem 1.3 is established by Lemma 2.8 and Corollary 2.14.
Finally, we consider arithmetic progressions in the cyclic group Zn.

Remark 1.4. For positive integers n and k, aw(Zn, k) ≤ aw([n], k), because every AP in [n] corresponds to
an AP in Zn.

However, because progressions in Zn may “wrap around,” there are additional APs in Zn, some of which
may be rainbow. Thus it is possible that a rainbow k-AP is required with a coloring of Zn with aw([n], k)−1
colors, so strict inequality is possible. As we see in Theorem 1.5, there is an infinite sequence of values of n
for which aw(Zn, 3) = 3.

Theorem 1.5.

1. For all positive integers m, aw(Z2m , 3) = 3.

2. For an integer n ≥ 2 having every prime factor less than 100,

aw(Zn, 3) = 2 + f2 + f3 + 2f4. (1)

Here f4 denotes the number of odd prime factors of n in the set Q4 := {17, 31, 41, 43, 73, 89, 97}. The
quantity f3 is the number of odd prime factors of n in Q3, where Q3 is the set of all odd primes less
than 100 and not in Q4. Both f3 and f4 are counted according to multiplicity. Finally, f2 = 0 if n odd
and f2 = 1 if n is even.

Theorem 1.5 is established by Lemma 3.2 and Corollary 3.15.
For k ≥ 4, the bounds we obtain for aw(Zn, k) are the same as those for aw([n], k):

Theorem 1.6. For k ≥ 4,

ne−O(
√
logn) < aw(Zn, k) ≤ ne− log log logn−ω(1).

Theorem 1.6 is established by Theorem 1.1, Remark 1.4, and Lemma 3.20.
The structure of the paper is as follows: Section 2 presents results pertaining to aw([n], k), with Theorem

1.1 proved in Section 2.1 and Theorem 1.3 proved in Section 2.2. Results pertaining to aw(Zn, k) appear
in Section 3, with Theorem 1.5 proved in Section 3.1 and Theorem 1.6 proved in Section 3.2. Section 4
describes the methods and algorithms used to compute values of aw([n], k) and aw(Zn, k), while Section 5
contains conjectures and open questions for future research.

In the remainder of this section we establish a basic but necessary observation that aw(S, ·) is monotone
in k.

Observation 1.7. Let G be an additive (abelian) group such as the integers or the integers modulo n, let S
be a finite nonempty subset of G, and let k ≥ 3 be an integer. Then aw(S, k) ≤ aw(S, k + 1).

2



Observation 1.7 follows immediately from Proposition 1.8 below and was noted noted by Uherka in [13]
for the function aw([n], ·).

Proposition 1.8. Let G be an additive (abelian) group such as the integers or the integers modulo n, let S
be a finite nonempty subset of G, and let k ≥ 3 be an integer. If there is an exact r-coloring of S that has
no rainbow k-AP then aw(S, k) ≥ r + 1.

Proof. Let c be an exact r-coloring of S with color set {1, . . . , r} that has no rainbow k-AP. We proceed by
constructing an exact (r − 1)-coloring of S with no rainbow k-AP. For x ∈ S, define

ĉ(x) =

{
c(x) if c(x) ∈ {1, . . . , r − 2},
r − 1 if c(x) ∈ {r − 1, r}.

Note that ĉ is an exact (r− 1)-coloring of S. Let K be a k-AP in S. Since there is no rainbow k-AP under c
there exists j, ` ∈ K such that c(j) = c(`). It then follows that ĉ(j) = ĉ(`). Hence K is not rainbow under the
coloring ĉ. By the generality of K, ĉ is an exact (r − 1)-coloring of S that has no rainbow k-AP. Repeating
this construction we obtain an exact (r − i)-coloring of S with no rainbow k-AP for i ∈ {1, 2, . . . , r − 1}.
Therefore aw(S, k) ≥ r + 1.

2 aw([n], k)

In this section we establish properties of aw([n], k). Sections 2.1 and 2.2 establish our main results for
aw([n], 3) and aw([n], k), k ≥ 4, respectively. Sections 2.3 and 2.4 contain additional results valid for all k
and specific to k = 3, respectively. Given an r-coloring c of [n], the ith color class is Ci := {x ∈ S : c(x) = i}.

In Table 1 we give our calculated values of aw([n], k) for k ≥ 3. We have a larger list of known values
in the case of k = 3 that is included in Remark 2.1 below; in Table 1 we include only the values aw([n], 3)
for which we have a value for aw([n], 4) so that we may compare them. We also restrict n, k ≥ 3, and have
stopped with k =

⌈
n
2

⌉
+ 1, because aw([n], k) = n if and only if k ≥

⌈
n
2

⌉
+ 1 (Proposition 2.16 below).

The growth rates when k = 3 and when k ≥ 4 appear to be different based on data given in Table 1.
The upper bound of dlog2 ne+ 1 given in Proposition 2.6 for k = 3 and the lower bound of n1−o(1) in 2.8 for
k ≥ 4 confirm that the growth rates are indeed radically different.

2.1 Main results for aw([n], 3)

Before we address Theorem 1.1, we show a summary of the computed data in this case in Remark 2.1 below.

Remark 2.1. The exact values of aw([n], 3) are known from computer computations (described in Section 4)
for n ≤ 58, and are recorded here.

1. aw([n], 3) = 2 for n ∈ {1}.

2. aw([n], 3) = 3 for n ∈ {2, 3}.

3. aw([n], 3) = 4 for n ∈ {4, . . . , 7} ∪ {9}.

4. aw([n], 3) = 5 for n ∈ {8} ∪ {10, . . . , 21} ∪ {27}.

5. aw([n], 3) = 6 for n ∈ {22, . . . , 26} ∪ {28, . . . , 58}.

Now we turn to the proof of Theorem 1.1.
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n \ k 3 4 5 6 7 8 9 10 11 12 13 14

3 3
4 4
5 4 5
6 4 6
7 4 6 7
8 5 6 8
9 4 7 8 9
10 5 8 9 10
11 5 8 9 10 11
12 5 8 10 11 12
13 5 8 11 11 12 13
14 5 8 11 12 13 14
15 5 9 11 13 14 14 15
16 5 9 12 13 15 15 16
17 5 9 13 13 15 16 16 17
18 5 10 14 14 16 17 17 18
19 5 10 14 15 17 17 18 18 19
20 5 10 14 16 17 18 19 19 20
21 5 11 14 16 17 19 20 20 20 21
22 6 12 14 17 18 20 21 21 21 22
23 6 12 14 17 19 20 21 22 22 22 23
24 6 12 15 18 20 20 22 23 23 23 24
25 6 12 15 19 21 21 23 23 24 24 24 25

Table 1: Values of aw([n], k) for 3 ≤ k ≤ n+3
2 .

2.1.1 Theorem 1.1: Proof of lower bound

Proposition 2.2. Let n be a positive integer and let s ∈ {−2,−1, 0, 1, 2}. Then aw([3n−s], 3) ≥ aw([n], 3)+1
provided n ≥ s.

Proof. Let r = aw([n], 3) and s ∈ {0, 1, 2}. We construct an exact r-coloring of [3n−s] that does not contain
a rainbow 3-AP. By definition there exists an exact (r − 1)-coloring, denoted c, of [n] such that there is no
rainbow 3-AP in [n]. Color [3n−s] in the following manner: If i+s is divisible by 3, then ĉ(i) = c((i+s)/3),
otherwise ĉ(i) = r. Consider a 3-AP, K, in [3n− s]. Then either the three terms in K+ s are all divisible by
3 or at least two of the terms in K + s are not divisible by 3. If all terms in K + s are divisible by 3, then K
is not rainbow under ĉ, since there is no rainbow 3-AP under c. If two terms of K + s are not divisible by 3
then those two terms are both colored r and K is not rainbow. Hence aw([3n−s], 3) ≥ r+1 for s ∈ {0, 1, 2}.

For s ∈ {−2,−1}, use the same coloring as for s = 0.

Using Proposition 2.2, we establish the lower bound in Theorem 1.1.

Lemma 2.3. Let n be a positive integer. Then aw([n], 3) ≥ dlog3 ne+ 2.

Proof. The proof is by induction. The cases n = 1, 2, 3 are true by inspection. Suppose n > 3 and that
aw([m], 3) ≥ dlog3me+ 2 for all m satisfying 1 ≤ m < n. We show that aw([n], 3) ≥ dlog3 ne+ 2. First, we
write n = 3m− s, where s ∈ {0, 1, 2} and 2 ≤ m < n. Then by Proposition 2.2,

aw([n], 3) = aw([3m− s], 3) ≥ aw([m], 3) + 1 ≥ dlog3me+ 2 + 1 = dlog3(3m)e+ 2 ≥ dlog3 ne+ 2.

Example 2.4. Induction and the proof of Proposition 2.2 produce the following exact (m + 1)-coloring of
[3m] that does not have a rainbow 3-AP: For x ∈ [3m] with the prime factorization x = 2e23e35e5 · · · pep ,
c(x) = m+ 1− e3. This attains the value in Lemma 2.3.
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2.1.2 Theorem 1.1: Proof of upper bound

Proposition 2.5. For n ≥ 2, there exists m ≤ bn2 c such that aw([n], 3) ≤ aw ([m], 3) + 1.

Proof. We may assume that n ≥ 3, since the case n = 2 follows by inspection. Let r = aw([n], 3). Then
there exists an (r− 1)-coloring, namely c, of [n] that has no rainbow 3-AP. Let t be the length of a shortest
consecutive integer sequence in [n] that contains all r−1 colors, say the interval is {s+ 1, s+ 2, . . . , s+ t} for
some s. Define ĉ to be an (r − 1)-coloring of [t] = {1, 2, . . . , t} so that ĉ(j) := c(s+ j) for 1 ≤ j ≤ t. Notice
that ĉ(1) and ĉ(t) cannot be the same color and each must be the only element of its color class, or else we
could find a smaller t. Let ĉ(1) = a and define bi to be the smallest element of [t] such that [bi] has i+1 colors
for 1 ≤ i ≤ r − 2. Note that if bi is odd, i.e., bi = 2x+ 1, then {1, x+ 1, 2x+ 1} is a rainbow 3-AP. So the
set of even numbers of [t] are colored with exactly r− 2 colors with no rainbow 3-AP. Define m = b t2c ≤ b

n
2 c

and consider the coloring c̃ of [m] induced by the coloring ĉ of the even integers in [t]. The coloring c̃ uses
at least r − 2 colors and has with no rainbow 3-AP, so aw([n], 3)− 1 = (r − 2) + 1 ≤ aw ([m], 3).

Using Proposition 2.5, we establish the upper bound in Theorem 1.1.

Lemma 2.6. For n ≥ 9, aw([n], 3) ≤ dlog2 ne+ 1

Proof. The proof is by strong induction on n. We consider 9 ≤ n ≤ 17 as the base case, and the result is
established for these values by computation (see Remark 2.1).

As the induction hypothesis, assume aw([m], 3) ≤ dlog2me+ 1 for 9 ≤ m ≤ n, and suppose that n ≥ 17.
Then 9 ≤ bn+1

2 c ≤ n, and by Proposition 2.5, there exists an m ≤ bn+1
2 c such that

aw([n+ 1], 3) ≤ aw ([m] , 3) + 1.

So, by the induction hypothesis,

aw([n+ 1], 3) ≤ dlog2me+ 2

≤
⌈

log2

⌊
n+ 1

2

⌋⌉
+ 2

≤
⌈

log2

(
n+ 1

2

)⌉
+ 2

= dlog2(n+ 1)e+ 1.

This completes the proof of Theorem 1.1.

2.2 Main results for aw([n], k), k ≥ 4

In this section we specialize to the case k ≥ 4, focusing on lower and upper bounds that give aw([n], k) =
n1−o(1). Lemma 2.8 gives the lower bound and Corollary 2.14 gives the upper bound.

Let sz(n, k) denote the largest size of a set S ⊆ [n] such that S contains no k-AP (similar notation was
introduced in [5] in honor of Szemerédi [12]). Determining bounds on sz(n, k) is a fundamental problem in
the study of arithmetic progressions. Behrend [3], Gowers [6], and others [9, 10] have established various
bounds on sz(n, k). Proposition 2.7 provides a strong link between sz(n, k) and our anti-van der Waerden
numbers, allowing us to use known results on sz(n, k) to bound aw(n, k).

Proposition 2.7. For all n > k ≥ 3,

sz(n, bk/2c) + 1 ≤ aw([n], k)− 1 ≤ sz(n, k).

Proof. If c is an exact r-coloring of [n] that contains no rainbow k-AP, then selecting one element of each
color class creates a set S that contains no k-AP; therefore aw([n], k)− 1 ≤ sz(n, k). If S is a set in [n] that
contains no bk/2c-AP, then color [n] by giving each element in S a distinct color and the elements of [n] \ S
a new color. If a k-AP {a1, a2, . . . , ak} is rainbow in this coloring, then exactly one such ai is in [n] \ S.
But this implies that the entries aj where j 6≡ i (mod 2) form an AP in S with at least bk/2c terms, a
contradiction.
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2.2.1 Theorem 1.3: Proof of lower bound

Lemma 2.6 and Behrend’s results (stated in Theorem 2.10 and Proposition 2.11 below) show that the upper
bound in Proposition 2.7 is not useful for k = 3. Observe that when k ∈ {4, 5}, the lower bound in
Proposition 2.7 is trivial but is, in fact useful in the case of k ≥ 6. We provide a similar lower bound for
k ∈ {4, 5} in Lemma 2.8 by carefully studying Behrend’s original construction [3] of a relatively large set
S ⊂ [n] that contains no 3-AP, thus giving a lower bound on sz(n, 3).

Let {a1, a2, a3, a4} be a 4-AP. A set A ⊂ {a1, a2, a3, a4} of size |A| = 3 is called a punctured 4-AP. If
such a punctured 4-AP A is not a 3-AP, then it is of the form A = {a1, a2, a4} or A = {a1, a3, a4}. We
prove that Behrend’s construction in fact contains no punctured 4-AP (Proposition 2.9 below). This leads
to Lemma 2.8 below.

Lemma 2.8. There exists an absolute constant b > 0 such that for all n, k ≥ 4,

aw([n], k) > ne−b
√
logn = n1−o(1).

The proof of Lemma 2.8 follows from Proposition 2.9, Theorem 2.10, Proposition 2.11 and Proposi-
tion 2.12, which follow.

Proposition 2.9. Suppose S ⊆ [n] does not contain any punctured 4-APs. Then aw([n], k) > |S|+ 1 for all
n ≥ k ≥ 4.

Proof. Color each member of S a distinct color, and color each integer in [n] \ S with a new color called
zero. If there is a rainbow 4-AP in this coloring, then at most one of the elements in this 4-AP is colored
zero. Thus there must be a punctured 4-AP in the other colors, but S contains no punctured 4-AP.

There is a bijection between vectors x = (x1, . . . , xm)> ∈ Zm where xi ∈ {0, 1, . . . , 2d− 2} for all i ∈ [m]
and elements of {0, 1, . . . , (2d− 1)m − 1}, by viewing x as a (2d− 1)-ary representation of an integer:

x = (x1, . . . , xm)> ←→ ax =

m∑
i=1

xi(2d− 1)i−1.

Moreover, observe that if x,y ∈ Zm with xi, yi ∈ {0, . . . , d − 1}, i = 1, . . . ,m, are associated with ax, ay ∈
{0, 1, . . . , (2d− 1)m − 1} by this bijection, then x + y has xi + yi ∈ {0, . . . , 2d− 1} and x + y is associated
with ax+y = ax + ay ∈ {0, 1, . . . , (2d− 1)m − 1}.

Recall that for a vector x ∈ Rm, ||x||2 =
∑m

i=1 x
2
i . Let m, `, d be positive integers and define X`(m, d) to

be the set of vectors x = (x1, . . . , xm)> such that

1. xi ∈ {0, . . . , d− 1} for all i ∈ {1, . . . ,m}, and

2. ||x||2 = `.

The set S`(m, d) of integers associated with the vectors in X`(m, d) via the map x → ax forms a subset of
integers in {0, 1, . . . , (2d−1)m−1}. Behrend [3] used the pigeonhole principle to prove the following lemma;
here we state the version from [4].

Theorem 2.10. [3, 4] There exist absolute constants b, b′ > 0 such that for all n and positive integers
m = m(n), ` = `(n), and d = d(n) such that S`(m, d) ⊆ [n] and

|S`(m, d)| ≥ b′n

2
√

8 log2 n(log n)1/4
≥ ne−b

√
logn.

The important property of S`(m, d) is that it avoids non-trivial arithmetic progressions. We include
Behrend’s simple proof of this fact for completeness.

Proposition 2.11. [3] The set S`(m, d) contains no 3-AP.
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(a) Proposition 2.11.
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(b) Proposition 2.12.

Figure 1: Proofs of Propositions 2.11 and 2.12.

Proof. Suppose {ax1
, ax2

, ax3
} is a 3-AP in S`(m, d). Let x1,x2,x3 be the associated vectors in X`(m, d).

Since ax1
+ ax3

= 2ax2
, we also have that x1 + x3 = 2x2. However, by the triangle inequality, we have that

2
√
` = 2||x2|| = ||x1 + x3|| ≤ ||x1||+ ||x3|| = 2

√
`,

and equality can only hold if 0, x1, x3 and 2x2 are collinear. However, since ||x1|| = ||x3||, this would imply
x1 = x3 and thus ax1

= ax3
, a contradiction.

Proposition 2.12. The set S`(m, d) contains no punctured 4-AP.

Proof. Let {ax1
, ax2

, ax3
, ax4
} be a 4-AP. Since S`(m, d) contains no 3-AP, it must be that one of ax2

or ax3

is not in S`(m, d). Assume by symmetry that ax2 /∈ S`(m, d) and ax1 , ax3 , ax4 ∈ S`(m, d). Let x1,x2,x3,x4

be the associated vectors where x1,x3,x4 ∈ X`(m, d).
Since ax1

+ax3
= 2ax2

, we have x1 +x3 = 2x2. However, as in the proof of Proposition 2.11, this implies
that ||x2|| <

√
`. Since ax2

+ ax4
= 2ax3

, we have x2 + x4 = 2x3. However, this implies that

2
√
` = 2||x3|| = ||x2 + x4|| ≤ ||x2||+ ||x4|| < 2

√
`,

a contradiction.

Lemma 2.8 now follows by combining Propositions 2.9 and 2.12. It may be possible that the bound in

Lemma 2.8 could be improved by using the construction of Elkin [4, 7] that avoids 3-APs using bn(logn)1/4

2
√

8 log2 n
ele-

ments for some constant b > 0. An immediate use of the coloring in Lemma 2.8 with such a set demonstrates

aw([n], k) > bn(logn)1/4

2
√

8 log2 n
for all k ≥ 6. Further use of constructions of Rankin [10] or Laba and Lacey [9] of

large sets that avoid k-APs could slightly improve the asymptotics of aw([n], k), but these bounds are all of
the form n1−o(1).

2.2.2 Theorem 1.3: Proof of upper bound

A theorem of Gowers, stated here as Theorem 2.13, provides an upper bound for aw([n], k). However, n
must be very large compared to k for this upper bound to be significantly different than the naive upper
bound of n itself.

Theorem 2.13. [6, Theorem 1.3] For every positive integer k there is a constant b = b(k) > 0 such that

every subset of [n] of size at least n(log2 log2 n)−b contains a k-AP. Moreover, b can be taken to be 2−2
k+9

.

Corollary 2.14. Let n and k be positive integers. Then there exists a constant b such that aw([n], k) ≤⌈
n(log2 log2 n)−b

⌉
. That is, for a fixed positive integer k, the function aw([n], k) of n is o( n

log logn ).

Proof. Consider an exact t-coloring of [n], where t :=
⌈
n(log2 log2 n)−b

⌉
and b = 2−2

k+9

. Since the coloring
is exact, there exists a set A ⊆ [n] of t differently colored integers. By Theorem 2.13, A contains a k-AP.
Therefore aw([n], k) ≤ t.
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Note that the upper bound in Corollary 2.14 can be expressed as ne− log log logn−ω(1). Then combining
this upper bound on aw([n], k) and the lower bound from Lemma 2.8, we have that for k ≥ 4

ne−b
√
logn < aw([n], k) ≤ ne− log log logn−ω(1).

This completes the proof of Theorem 1.3.

2.3 Additional results for aw([n], k) valid for all k

In this section we present some additional elementary results for aw([n], k). The next proposition describes
a relationship between aw([n], k) and aw([n− 1], k).

Proposition 2.15. Let n and k be positive integers. Then aw([n], k) ≤ aw([n− 1], k) + 1.

Proof. Let r = aw([n], k). Note that if n < k our result follows from the definition. Suppose n ≥ k. Then
there is some exact (r − 1)-coloring of [n] that has no rainbow k-AP, and without loss of generality n is
colored r − 1. Consider this coloring restricted to [n− 1]. Then we have two cases:

1. This is an exact (r − 1)-coloring of [n− 1].

2. The only integer in [n] with the color r − 1 is n, so this is an exact (r − 2)-coloring of [n− 1].

Note that since [n] had no rainbow k-AP in both of our cases we still do not have a rainbow k-AP. So
by Proposition 1.8 we have aw([n− 1], k) ≥ r − 1 = aw([n], k)− 1 and the result follows.

In the next proposition we characterize the values of k for which aw([n], k) = n.

Proposition 2.16. Let n and k be positive integers with k ≤ n. Then aw([n], k) = n if and only if
k ≥

⌈
n
2

⌉
+ 1.

Proof. Suppose k ≥
⌈
n
2

⌉
+ 1. We show that aw([n], k) > n− 1. Color

⌈
n
2

⌉
and

⌈
n
2

⌉
+ 1 with the same color

and all the remaining integers with unique colors. This is an exact (n− 1)-coloring. Since k ≥
⌈
n
2

⌉
+ 1, the

integers in any k-AP must be consecutive integers, and the values
⌈
n
2

⌉
and

⌈
n
2

⌉
+ 1 must be contained in

any k-AP. Hence no k-AP is rainbow.
For the converse, suppose aw([n], k) = n. Color [n] with n − 1 colors such that there is no rainbow

k-AP. Therefore exactly one color class has size two and the rest have size one. Denote the color class of
size two as C = {n1, n2}, n1 < n2. Then every k-AP contains both n1 and n2, or else we would have
a rainbow k-AP. Suppose that k ≤

⌈
n
2

⌉
. Then {1, 2, . . . , k} and {n − k + 1, n − k + 2, . . . , n} are k-APs.

Note that {1, 2, . . . , k} ⊆ {1, 2, . . . ,
⌈
n
2

⌉
} and {n − k + 1, n − k + 2, . . . , n} ⊆ {

⌊
n
2

⌋
+ 1, . . . , n}. Then

n1, n2 ∈ {1, 2, . . . ,
⌈
n
2

⌉
}∩ {

⌊
n
2

⌋
+ 1, . . . , n}. This intersection is empty or contains one element depending on

whether n is even or odd. In both cases, this contradicts the fact that n1 6= n2 and n1, n2 ∈ {1, 2, . . . ,
⌈
n
2

⌉
}∩

{
⌊
n
2

⌋
+ 1, . . . , n}. Therefore k ≥

⌈
n
2

⌉
+ 1.

The following upper bound was proved by Uherka [13].

Proposition 2.17. [13] Let n, k, n1, and n2 be positive integers such that k ≤ n1 ≤ n2 ≤ n and n1+n2 = n.
Then aw([n], k) ≤ aw([n1], k) + aw([n2], k)− 1.

2.4 Additional results for aw([n], 3)

In this section we establish additional bounds on aw([n], 3) in Lemma 2.18 and Corollary 2.19, and use
Corollary 2.19 together with Remark 2.1 and Proposition 2.2 and Lemma 2.3 to compute (at least) 93
additional exact values for aw([n], 3).

Lemma 2.18. Let c be an exact r-coloring of [n] that does not have a rainbow 3-AP. For i ∈ [r], define
bi ∈ [n] to be the least x such that the induced coloring on [x] has exactly i colors. Then for all i ∈ [r − 1],
bi+1 ≥ 2bi. Furthermore, for any 1 ≤ i ≤ j ≤ r, we have bj ≥ 2j−ibi.
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Proof. Observe that b1 = 1. Suppose that bi+1 < 2bi for some i ∈ [r − 1]. Then {2bi − bi+1, bi, bi+1} is a
rainbow 3-AP. The last statement follows by induction, since bi ≤ 2−1bi+1 ≤ 2−2bi+2 ≤ · · · ≤ 2−(j−i)bj .

Corollary 2.19. Let m, n, and ` be positive integers. If m < n < 2`(m+1), then aw([n], 3) ≤ aw([m], 3)+`.

Proof. Suppose not. Then there exists m, ` ≥ 1 and n with m < n < 2`(m+ 1) such that there is a coloring
c on [n] using exactly r = aw([m], 3) + ` colors that does not have a rainbow 3-AP. For i ∈ [r], let bi ∈ [n]
be the least x such that the induced coloring on [x] has exactly i colors. Since r − ` = aw([m], 3), we must
have br−` ≥ m+ 1, since otherwise the induced coloring on [m] contains at least aw([m], 3) colors, which is
impossible. Thus by Lemma 2.18, n ≥ br ≥ 2`br−` ≥ 2`(m+ 1), which contradicts our assumption on n.

Corollary 2.20. aw([n], 3) = 7 for 64 ≤ n ≤ 80.

Proof. Since aw([m], 3) = 6 for 22 ≤ m ≤ 26, and 3 ·22−2 = 64 and 3 ·26+2 = 80, we see that aw([n], 3) ≥ 7,
by Proposition 2.2. Since 27 < 64 ≤ n ≤ 80 < 112 = 4 · 28, we have aw([n], 3) ≤ aw([27], 3) + 2 = 5 + 2 = 7
by Corollary 2.19 and Remark 2.1.

Corollary 2.21. aw([n], 3) = 7 for 82 ≤ n ≤ 111.

Proof. Since 27 < 82 ≤ n ≤ 111 < 112 = 4 · 28, we have aw([n], 3) ≤ aw([27], 3) + 2 = 5 + 2 = 7 by
Corollary 2.19 and Remark 2.1. Also, since 34 = 81 < n ≤ 111 ≤ 243 = 35, we have 4 < log3 n ≤ 5, so that
aw([n], 3) ≥ dlog3 ne+ 2 = 5 + 2 = 7 by Lemma 2.3.

Corollary 2.22. aw([n], 3) = 8 for 190 ≤ n ≤ 235.

Proof. Since aw([m], 3) = 7 for 64 ≤ m ≤ 80, and 3 · 64 − 2 = 190 and 3 · 80 + 2 = 242, we see that
aw([n], 3) ≥ 8 for 190 ≤ n ≤ 242, by Proposition 2.2. For 58 < n < 236 = 22 · (58 + 1), we see that
aw([n], 3) ≤ aw([58], 3) + 2 = 6 + 2 = 8, by Corollary 2.19 and Remark 2.1.

Finally we combine the upper and lower bounds.

Proposition 2.23. If 3u < n < 2·3u+2, then u+3 ≤ aw([n], 3) ≤ aw([3u], 3)+1. If 2·3u+1 < n < 4·3u+4,
then u+ 3 ≤ aw([n], 3) ≤ aw([3u], 3) + 2.

Proof. The lower bounds follow immediately from Lemma 2.3, and the first upper bound follows immediately
from Corollary 2.19. For the second, apply Corollary 2.19 when m = 2 · 3u + 1 to obtain aw([n], 3) ≤
aw([m], 3) + 1 and since 3u < m < 2 · 3u + 2, aw([m], 3) < aw([3u], 3) + 2.

3 aw(Zn, k)
In this section we establish properties of aw(Zn, k). Sections 3.1 and 3.2 establish our main results for
aw(Zn, 3) and aw(Zn, k), k ≥ 4, respectively. Section 3.3 contains additional results.

Please note that for x ∈ Z, we will also use x to denote the equivalence class {x + in : i ∈ Z} in Zn.
Because arithmetic progressions may “wrap around” in the group Zn, we call attention to the fact that
we consider only k-APs that include k distinct members of Zn. Naturally, one of our first questions about
aw(Zn, k) concerns its relationship with aw([n], k). Lemma 3.2 below and Lemma 2.3 show that aw(Zn, k)
need not be asymptotic to aw([n], k) for k = 3 and n = 2m. However, we do have the simple bound
aw(Zn, k) ≤ aw([n], k) (already stated in Remark 1.4).
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0 1 2 3 4 5 6 7 8 9

0–9 3 3 3 4 3 3 4
10–19 4 3 4 3 4 4 3 4 5 3
20–29 4 4 4 3 4 4 4 5 4 3
30–39 5 4 3 4 5 4 5 3 4 4
40–49 4 4 5 4 4 5 4 3 4 4
50–59 5 5 4 3 6 4 4 4 4 3
60–69 5 3 5 5 3 4 5 3 5 4
70–79 5 3 5 4 4 5 4 4 5 3
80–89 4 6 5 3 5 5 5 4 4 4
90–99 6 4 4 5 4 4 4 4 5 5

Table 2: Computed values of aw(Zn, 3) for n = 3, . . . , 99 (the row label gives the range of n and the column
heading is the ones digit within this range).

3.1 Main results for aw(Zn, 3)

When we turn to the special case k = 3, many values of aw(Zn, 3) can be computed, and new phenomena
appear. Our main results in this case are described by Theorem 1.5, which we establish here.

Currently available computational data is given in Table 2; the row label displays the range of n for
which the values of aw(Zn, 3) are reported in that row, and the column heading is the ones digit within this
range. This data led to the discovery of several results.

Definition 3.1. When dealing with a coloring c of Zst, the ith residue class modulo s is Ri := {j ∈ Zst : j ≡ i
(mod s)} and the ith residue palette modulo s is Pi := {c(`) : ` ∈ Ri}. For a positive integer t, we call the
elements of the two residue classes, R0 and R1, modulo 2 in Z2t the even numbers and the odd numbers,
respectively.

3.1.1 Proof of Theorem 1.5, aw(Z2m , 3)

As we see from the computed values in Table 2, aw(Zn, 3) does not have an increasing lower bound, and
in fact aw(Zn, 3) = 3 whenever n is a power of 2, as proved in Lemma 3.2 below, which is the first part of
Theorem 1.5.

Lemma 3.2. For all positive integers m, aw(Z2m , 3) = 3.

Proof. We prove this by induction on m ≥ 1 and observe that aw(Z2, 3) = 3 by definition and aw(Z2m , 3) ≥ 3
trivially. Let m > 1 and let c be a coloring of Z2m with no rainbow 3-AP. We will show that the number of
colors in c is at most 2.

Let A and B denote the residue palettes of the even and odd numbers. Since the even numbers and the
odd numbers each form a copy of Z2m−1 within Z2m , the fact that aw(Z2m−1 , 3) = 3 implies that |A| ≤ 2
and |B| ≤ 2. If A ⊆ B or B ⊆ A, then at most two colors are used by c and the result follows.

So suppose a ∈ A \B and b ∈ B \A. There exist elements `a, `b ∈ Z2m such that c(`a) = a and c(`b) = b.
Observe that `a is even and `b is odd, so for d := `b − `a, d is an odd number. Since gcd(d, 2m) = 1, d is a
generator of Z2m as an additive group. Thus, every element in Z2m is describable as an element `a + gd for
some g ∈ {0, . . . , 2m − 1}.

We will prove that

c(`a + gd) =

{
a if g is even,

b if g is odd,

by induction on g ≥ 0. Observe that c(`a) = a and c(`a + d) = c(`b) = b, so this holds for g ∈ {0, 1}. Let
g > 1 and consider the 3-AP K := {`a + (g − 2)d, `a + (g − 1)d, `a + gd}, which is not rainbow.

If g is even, then c(`a + (g − 2)d) = a and c(`a + (g − 1)d) = b by the induction hypothesis. Thus, since
the 3-AP, K, is not rainbow, c(`a + gd) ∈ {a, b}. But since b /∈ A, we have c(`a + gd) = a. If g is odd, then
c(`a + (g − 2)d) = b and c(`a + (g − 1)d) = a. Thus, since the 3-AP, K, is not rainbow, c(`a + gd) ∈ {a, b}.
But since a /∈ B, we have c(`a + gd) = b. Thus, all elements of Z2m are colored with either a or b, so only
two colors were used. Hence aw(Z2m , 3) = 3.
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3.1.2 Proof of Theorem 1.5, general aw(Zn, 3)

Next we present a series of results that lead to lower and upper bounds on aw(Zn, 3) in terms of the prime
factorization of n. In many cases these bounds agree, and so aw(Zn, 3) is determined for arbitrarily large n
such that all prime factors are less than 100. Many odd primes p have aw(Zp, 3) = 3 (see Table 2 above).
However, there are several examples of odd primes p for which aw(Zp, 3) = 4. We show in Example 3.3
below an explicit exact coloring that establishes aw(Z17, 3) ≥ 4.

Example 3.3. Coloring the elements of Z17 in order as

3 1 1 2 1 2 2 2 1 1 2 2 2 1 2 1 1

is an exact 3-coloring that does not contain a rainbow 3-AP. Computations establish that equality holds and
so aw(Z17, 3) = 4 (see Table 2 above).

Proposition 3.4. For s odd, s ≥ 3, and t ≥ 2, aw(Zst, 3) ≥ aw(Zt, 3) + 1.

Proof. We exhibit a coloring ĉ of Zst with aw(Zt, 3) colors and no rainbow 3-AP, thus establishing that
aw(Zst, 3) ≥ aw(Zt, 3) + 1. Let r := aw(Zt, 3). There exists a coloring c of Zt using r − 1 colors that has
no rainbow 3-AP. Consider the residue classes and residue palettes modulo s. Use the coloring c to color
R0 = {0, s, 2s, . . . , (t− 1)s} by defining ĉ(is) := c(i), and for all of the remaining elements ` of Zst, ĉ(`) = r.
We show that there is no rainbow 3-AP in Zst. Consider any 3-AP in Zst. If at most one of the terms is
in R0, then at least two of the terms are not in R0 and so are the same color, implying the 3-AP is not
rainbow. If all three terms are in R0, then again the 3-AP is not rainbow, because a rainbow 3-AP in R0

would necessarily arise from a (nonexistent) rainbow 3-AP in the coloring c of Zt. If two of the terms are in
R0, we show that the third term must also be in R0. This is immediate if a+d ∈ R0. Suppose a, a+2d ∈ R0,
so 2d ≡ 0 (mod s). Since 2 and s are relatively prime, d ≡ 0 (mod s) and a + d ∈ R0. Therefore, we have
found an r-coloring of Zst with no rainbow 3-AP, so aw(Zst, 3) ≥ r + 1 = aw(Zt, 3) + 1.

The next result gives our main recursive upper bound for aw(Zn, 3).

Proposition 3.5. Suppose s is odd, and either t is odd or t = 2m. Then

aw(Zst, 3) ≤ aw(Zs, 3) + aw(Zt, 3)− 2.

Proposition 3.5 is established by Propositions 3.8 (t odd) and 3.11 (t = 2m) below, after the proofs of
necessary lemmas, but we first point out an immediate corollary to Proposition 3.5 together with Proposi-
tion 3.4.

Corollary 3.6. Suppose p is an odd prime such that aw(Zp, 3) = 3. Then aw(Zpm , 3) = m+ 2.

Examples of primes p to which Corollary 3.6 applies include 3, 5, 7, 11, 13, and 19; additional primes may
be found in Table 2. Next we prove a technical lemma used in the proof of Proposition 3.8 and elsewhere.

Proposition 3.7. Let s be an odd positive integer. Suppose c is a coloring of Zst that does not have a
rainbow 3-AP. Let R0, R1, . . . , Rs−1 be the residue classes modulo s in Zst with associated residue palettes
Pi. Let m be an index such that |Pm| ≥ |Pi| for all i. Then |Pi \ Pm| ≤ 1 for all i.

Proof. For arbitrary nonnegative integers h and j, we show that |Ph+j \Ph| ≥ 2 implies Ph = Ph+2j . Assume
|Ph+j \ Ph| ≥ 2. Suppose first that Ph+2j \ Ph is not empty and z ∈ Ph+2j \ Ph. Since |Ph+j \ Ph| ≥ 2,
we can pick some y ∈ Ph+j \ Ph other than z. Let `y, `z ∈ Zst with `y ∈ Rh+j , `z ∈ Rh+2j and c(`y) = y,
c(`z) = z. Define `x := 2`y − `z ∈ Rh, so x := c(`x) is a color in Ph. By the choice of y, y 6= z; z 6= x since
z ∈ Ph+2h \ Ph and x ∈ Ph; x 6= y since y ∈ Ph+j \ Ph and x ∈ Ph. Thus `x, `y, `z is a rainbow 3-AP, a
contradiction. Therefore we conclude that Ph+2j ⊆ Ph. With this condition, we consider the case Ph \Ph+2j

is not empty. Let x ∈ Ph \ Ph+2j . Similarly, it is possible to pick y ∈ Ph+j \ Ph. Let `x, `y ∈ Zst with
`x ∈ Rh, `y ∈ Rh+j , and c(`x) = x, c(`y) = y. Thus `z := 2`y − `x ∈ Rh+2j and so z := c(`z) is a color in
Ph+2j . Again, x 6= y by the choice of y; x 6= z since x ∈ Ph \Ph+2j and z ∈ Ph+2h; y 6= z since y ∈ Ph+j \Ph

and z ∈ Ph+2j ⊆ Ph. Since we again have a contradiction, Ph = Ph+2j .
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Next we show that |Ph+j \Ph| ≥ 2 implies |Ph \Ph+j | ≤ 1. Suppose |Ph+j \Ph| ≥ 2 and |Ph \Ph+j | ≥ 2,
and then obtain a contradiction. By the result just established, Ph = Ph+2j . Since |Ph+2j \ Ph+j | =
|Ph \ Ph+j | ≥ 2, Ph+j = Ph+3j . Therefore Ph = Ph+qj whenever q is even and Ph+j = Ph+qj whenever q is
odd. Since s is odd, the order d of j in Zs is also an odd number. That means Ph = Ph+dj = Ph+j , which is
a contradiction.

Finally, since |Pm| is chosen to be maximum, |Pm \ Pj | ≥ 2 whenever |Pj \ Pm| ≥ 2, which is impossible.
Hence |Pj \ Pm| ≤ 1.

Proposition 3.8. Suppose s and t are both odd. Then aw(Zst, 3) ≤ aw(Zs, 3) + aw(Zt, 3)− 2.

Proof. Let c be a coloring of Zst that does not have a rainbow 3-AP. Consider the residue classes and residue
palettes modulo s and without loss of generality assume |P0| ≥ |Pi| for all i. We claim that∣∣∣∣∣

s−1⋃
i=0

Pi

∣∣∣∣∣ ≤ (aw(Zs, 3)− 1) + (aw(Zt, 3)− 1)− 1. (2)

The proof is by contradiction. Assume that (2) is false, i.e., assume∣∣∣∣∣
s−1⋃
i=0

Pi

∣∣∣∣∣ ≥ (aw(Zs, 3)− 1) + (aw(Zt, 3)− 1) (3)

and define a coloring ĉ of Zs = {0, 1, . . . , s− 1} in the following way: Let α be a color not in
⋃s−1

i=1 (Pi \ P0)
and define

ĉ(i) =

{
α if Pi ⊆ P0,

the element of Pi \ P0 if Pi 6⊆ P0.

Note that Proposition 3.7 implies that the required element in Pi\P0 is unique, so this coloring is well-defined.
Since c does not have a rainbow 3-AP, we know |P0| ≤ aw(Zt, 3)− 1 so

∣∣∣∣∣
s−1⋃
i=1

(Pi \ P0)

∣∣∣∣∣ ≥
∣∣∣∣∣
s−1⋃
i=0

Pi

∣∣∣∣∣− (aw(Zt, 3)−1) ≥ (aw(Zs, 3)−1)+(aw(Zt, 3)−1)− (aw(Zt, 3)−1) = aw(Zs, 3)−1.

Note that every color that is not in P0, together with α, is used in ĉ, so ĉ uses at least aw(Zs, 3) colors. Thus
a rainbow 3-AP exists in ĉ.

We show that a rainbow 3-AP in ĉ implies a rainbow 3-AP in c, providing a contradiction and establishing
that (2) is true. Let x, y, z be a rainbow 3-AP in Zs using coloring ĉ, with y = x+d (mod s) and z = x+ 2d
(mod s). Since x, y, z is rainbow, ĉ(u) 6= ĉ(v) for all distinct u, v ∈ {x, y, z}, and so at most one u ∈ {x, y, z}
has ĉ(u) = α. Note that by definition ĉ(u) ∈ Pu or ĉ(u) = α for u ∈ {x, y, z}.

Case 1: ĉ(z) 6= α and ĉ(y) 6= α. Then we can find g2 and g3 such that c(g2s+y) = ĉ(y) and c(g3s+z) = ĉ(z).
Define d′ := (g3s+ z)− (g2s+ y). Then

(g3s+ z)− d′ = (g2s+ y) ≡ y (mod s)

(g3s+ z)− 2d′ = 2g2s+ 2y − g3s− z ≡ 2y − z ≡ 2(x+ d)− (x+ 2d) ≡ x (mod s).

With ` := (g3s+z)−2d′, consider the 3-AP {`, (g3s+z)−d′, (g3s+z)}. We show that this 3-AP is rainbow:
Note that ĉ(y) /∈ P0 and ĉ(z) /∈ P0. If ĉ(x) = α, then Px ⊆ P0, so ` ∈ Rx implies c(`) 6= ĉ(y) = c(g2s+ y)
and c(`) 6= ĉ(z) = c(g3s+ z). If ĉ(x) 6= α, then ĉ(x) is the unique element of Px \P0 and ĉ(x) 6= ĉ(y), ĉ(z),
so ` ∈ Rx implies c(`) 6= ĉ(y) and c(`) 6= ĉ(z). Thus c has a rainbow 3-AP, contradicting our assumption
(3). The case where both ĉ(x) 6= α and ĉ(y) 6= α is symmetric to Case 1. So only Case 2 remains.

Case 2: ĉ(y) = α. Then ĉ(x) ∈ Px\P0 and ĉ(z) ∈ Pz\P0, so we can find g1 and g3 such that c(g1s+x) = ĉ(x)
and c(g3s + z) = ĉ(z), and define e := (g3s + z) − (g1s + x). Since st is odd, 2 is invertible in Zst and
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there exists d′ such that 2d′ ≡ e (mod st), and hence 2d′ ≡ e (mod s). Also, e ≡ z − x ≡ 2d (mod s).
Thus 2d ≡ 2d′ (mod s) and so d ≡ d′ (mod s) since s is odd. Then

(g1s+ x) + 2d′ ≡ (g1s+ x) + ((g3s+ z)− (g1s+ x)) = g3s+ z ≡ z (mod s)

(g1s+ x) + d′ ≡ x+ d ≡ y (mod s).

With ` := (g1s+x) + d′, the 3-AP {(g1s+x), `, (g1s+x) + 2d′} is rainbow, because ` ∈ Ry and Py ⊆ P0,
so c(`) 6= ĉ(x) = c(g1s+ x) and c(`) 6= ĉ(z) = c(g3s+ z).

In all cases, c has a rainbow 3-AP, contradicting our assumption (3).

Next we prove two technical propositions used in the proof of Proposition 3.11, Propositions 3.9 and 3.10.

Proposition 3.9. Let m and s be positive integers with s odd. Suppose c is a coloring of Z2ms using at
least r := aw(Zs, 3)+1 colors that does not have a rainbow 3-AP. Let R0, R1, . . . , Rs−1 be the residue classes
modulo s in Z2ms with associated residue palettes Pi. Then 1 ≤ |Pi| ≤ 2 for i = 0, . . . , s− 1, and all palettes
Pi of size two share a common color.

Proof. Since Pi is nonempty, 1 ≤ |Pi|. Observe that the coloring c of Ri induces a coloring on Z2m that uses
only the colors in Pi and cannot contain a rainbow 3-AP. Thus |Pi| ≤ 2 by Theorem 3.2, establishing the
first statement.

By Proposition 3.7, each pair of residue palettes of size two must intersect. Suppose the palettes of size
two do not all intersect in a common color. Then there are exactly three colors α, β, γ that are used by all
the palettes of size two, and there are exactly three distinct palettes of size two, each consisting of two of
these three colors. We show this configuration leads to a contradiction.

Create a coloring ĉ of Zs by the following method:

ĉ(i) =

 c(i) if |Pi| = 1,
β if Pi = {α, β},

the unique element of Pi \ {γ} if |Pi| = 2 and γ ∈ Pi.

Observe that ĉ uses r colors if there exists i such that Pi = {γ} and r− 1 = aw(Zs, 3) colors otherwise, so in
either case ĉ must have a rainbow 3-AP. Suppose that {x, y, z} is a rainbow 3-AP for the coloring ĉ of Zs.
Since ĉ(x), ĉ(y), and ĉ(z) are distinct colors, at least one of the palettes Px, Py, Pz contains only one color.
Consider the sizes of Px, Py, and Pz.

Case 1: |Pz| = 1. Observe that ĉ(i) is always an element in Pi by our definition of ĉ(i). Pick n1 ∈ Rx

and n2 ∈ Ry such that c(n1) = ĉ(x) and c(n2) = ĉ(y). Thus n3 := 2n2 − n1 is an element in Rz and so
c(n3) = ĉ(z). Since ĉ(x), ĉ(y), ĉ(z) are all distinct, {n1, n2, n3} is a rainbow 3-AP. The case |Px| = 1 is
symmetric.

Case 2: |Px| = |Pz| = 2 and |Py| = 1. Since ĉ(x) 6= ĉ(z), it must be that {ĉ(x), ĉ(z)} = {α, β}. Without
loss of generality, we assume that ĉ(x) = β and ĉ(z) = α. By the definition of ĉ, Pz = {α, γ}. Then Px

is one of {α, β} or {β, γ}. If ĉ(y) 6∈ Px ∪ Pz, then any 3-AP {n1, n2, n3} where n1 ∈ Rx and c(n1) = β,
n2 ∈ Ry, and n3 ∈ Rz is a rainbow 3-AP in the original coloring. Thus, ĉ(y) ∈ Px ∪ Pz ⊆ {α, β, γ}, but
ĉ(y) /∈ {α, β} = {ĉ(x), ĉ(z)}, so ĉ(y) = γ. Note that this implies ĉ uses all r colors.

Since this is the final case, and all previous cases led to contradictions, every rainbow 3-AP in Zs given
by the coloring ĉ must be of the form {x, y, z} where {ĉ(x), ĉ(z)} = {α, β} and ĉ(y) = γ. Create a new

coloring c′ of Zs where c′(i) =

{
c(i) if ĉ(i) 6= γ,

β if ĉ(i) = γ.

Now, every 3-AP that was previously non-rainbow in ĉ remains non-rainbow in c′ and the rainbow 3-APs
(which necessarily used the colors α, β, and γ) are no longer rainbow. Thus, this coloring c′ does not
have a rainbow 3-AP, but c′ uses r − 1 = aw(Zs, 3) colors, a contradiction.

The above cases show that having no common color among the palettes of size two leads to a contradiction.
Therefore, all of the residue palettes of size two share a common color.
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Proposition 3.10. Suppose c is a coloring of Z2t (t ≥ 1) that does not have a rainbow 3-AP. Let A and
B denote the residue palettes modulo 2 in Z2t associated with the even and odd numbers, respectively. Then
|A \B| ≤ 1 and |B \A| ≤ 1.

Proof. It suffices to show that |A \B| ≤ 1 for every such coloring c because if |B \A| ≥ 2, then the coloring
defined by the rotation c′(x) := c(x+ 1) has the roles of A and B reversed. Suppose not, so there exist two
colors α, γ that appear only in A. Let n1 = 2m1 and n3 = 2m3 be even elements such that c(n1) = α and
c(n3) = γ. We can select m1 and m3 such that 0 ≤ m1 < m3 < t. Performing arithmetic in the integers,
we can choose m3 −m1 to be minimum with respect to the fact that the set of colors {c(2m1), c(2m3)} is
{α, γ}. Let n2 = m1 +m3 and observe that {n1, n2, n3} is a 3-AP and hence is not rainbow. Therefore, n2
must have the color α or γ and thus is even. However, this implies that n2 = 2m2 and m1 < m2 < m3,
while one of the sets of colors {c(2m1), c(2m2)} or {c(2m2), c(2m3)} is {α, γ}, so one of the pairs (m1,m2),
(m2,m3) violates our extremal choice.

Proposition 3.11. Let m and s be positive integers with s odd. Then

aw(Z2ms, 3) ≤ aw(Zs, 3) + 1.

Proof. The result is immediate for s = 1 because aw(S, 3) = |S| + 1 for |S| < 3, so assume s ≥ 3. We
proceed by induction on m. Suppose c is an exact r-coloring of Z2ms with r = aw(Zs, 3) + 1 that does not
have a rainbow 3-AP. Let A and B denote the residue palettes of the even and odd numbers, respectively.
By Proposition 3.10, |A \ B| ≤ 1 and |B \ A| ≤ 1, so |B| ≥ r − 1 and |A| ≥ r − 1. The base case m = 1
is then immediate, because the coloring of the even numbers of Z2s induces a coloring of Zs, so a rainbow
3-AP necessarily exists, producing a contradiction.

Now consider m > 1. As usual Ri, i = 0, . . . , s − 1, are the residue classes modulo s of Z2ms and
Pi, i = 0, . . . , s − 1, are the residue palettes. For 0 ≤ i ≤ s − 1, let Ai = Pi ∩ A be the colors appearing
on the even numbers in Ri, and let Bi = Pi ∩ B be the colors appearing on the odd numbers in Ri. Thus,
Pi = Ai ∪ Bi, A =

⋃s−1
i=0 Ai, and B =

⋃s−1
i=0 Bi. We claim that |A| = |B| = r − 1. To see this, observe

that the even elements induce a coloring of Z2m−1s, so if |A| = r, then a rainbow 3-AP necessarily exists,
since r ≥ aw(Z2m−1s, 3) by the induction hypothesis. Thus |A| ≤ r − 1, and so |A| = r − 1. The proof that
|B| = r − 1 is analogous.

Since |A| = |B| = r− 1, there exist colors α, β such that A \B = {α} and B \A = {β}. Assume α ∈ Au

and β ∈ Bv. Let j = v− u, hence β ∈ Bu+j = Bv. Since there is no rainbow 3-AP, u+ 2j must have a color
in palette A, α ∈ Au+2j , which then implies β ∈ Bu+3j = Bv+2j . Iterating this process gives that α ∈ Au+2`j

and β ∈ Bv+2`j for all ` ≥ 0. Since s is odd, we have that for all q ≥ 0, Au+qj is of the form Au+2`j for
some ` and similarly, every Bu+qj = Bv+(q−1)j is of the form Bv+2`j for some `. Therefore, Pu+qj = {α, β}
for all q ≥ 0. By Proposition 3.9, there is a common color for palettes of size two, and thus one of α or β
is this common color. Without loss of generality, assume that α is the common color for all palettes. This
implies that |Bi| = 1 for all 0 ≤ i ≤ s− 1. Hence, defining ĉ(i) to be the unique color in Bi defines an exact
(r − 1)-coloring of Zs that avoids rainbow 3-APs. However, r − 1 = aw(Zs, 3), a contradiction.

Proposition 3.5 is now established from Proposition 3.8 and Proposition 3.11.

Definition 3.12. Let n ≥ 3 be a a fixed integer. Define f2 to be 0 if n is odd and 1 if n is even. For a ≥ 3,
define fa to be the number of odd prime factors p (counted according to multiplicity) having aw(Zp, 3) = a.
Define mv to be the maximum value of aw(Zp, 3) over all odd prime factors p of n (or 0 if n has no odd
prime factors).

Lemma 3.13 below follows from Lemma 3.2, Propositions 3.4 and Proposition 3.5 by induction.

Lemma 3.13. For any integer n ≥ 3,

2 + f2 +

mv∑
a=3

fa ≤ aw(Zn, 3) ≤ 2 + f2 +

mv∑
a=3

(a− 2)fa.
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If aw(Zpt, 3) ≥ aw(Zt, 3) + aw(Zp, 3)− 2 for every odd prime p and t ≥ 3 (see Conjecture 5.5), then for
any n, aw(Zn, 3) can be computed from the values of aw(Zp, 3) for primes p, because the second inequality
in Lemma 3.13 becomes an equality. Proposition 3.14 and Proposition 3.16 below establish this property
for certain odd numbers using a special type of coloring, allowing computation of aw(Zn, 3) from values for
primes whenever all prime factors of n are less than 100 (see Corollary 3.15 below). A coloring c of Zn is a
singleton extremal coloring if c is an exact (aw(Zn, 3) − 1)-coloring of Zn with no rainbow 3-AP such that
some color is used exactly once.

Proposition 3.14. Suppose s is odd and Zs has a singleton extremal coloring. Then for t ≥ 3,

aw(Zst, 3) ≥ aw(Zt, 3) + aw(Zs, 3)− 2.

Proof. Let cs be a singleton extremal coloring of Zs. Note that we can shift cs so that cs(0) is the color that
is used exactly once. Choose a coloring ct of Zt using aw(Zt, 3)− 1 colors not used by cs that does not have
a rainbow 3-AP. Let R0, R1, . . . , Rs−1 be the residue classes modulo s in Zst. Define a coloring ĉ of Zst as
follows: For i = 1, . . . , s − 1 and ` ∈ Ri, ĉ(`) := cs(i), and for 0 ≤ j ≤ t − 1, ĉ(js) := ct(j). Notice that we
now have an exact aw(Zs, 3)−2+aw(Zt, 3)−1 coloring of Zst because we have removed color cs(0). Clearly,
if a 3-AP is within some residue class it is not rainbow. Because s is odd, d 6≡ 0 (mod s) implies 2d 6≡ 0
(mod s) and 2d 6≡ d (mod s), so a 3-AP that is not entirely within one residue class has elements in three
different residue classes. But a rainbow 3-AP with elements in three different residue classes would imply a
rainbow 3-AP in cs, which does not exist. So we have found a coloring of Zst using aw(Zt, 3) + aw(Zs, 3)− 3
colors that does not have a rainbow 3-AP. Thus aw(Zst, 3) ≥ aw(Zt, 3) + aw(Zs, 3)− 2.

Corollary 3.15. If for every odd prime factor p of n ≥ 3, aw(Zp, 3) = 3 or Zp has a singleton extremal
coloring, then we can determine aw(Zn, 3) from the values of aw(Zp, 3) for the prime factors p:

aw(Zn, 3) = 2 + f2 +

mv(n)∑
a=3

(a− 2)fa. (4)

Although the conditions on Corollary 3.15 seem restrictive, it happens that all of the values of aw(Zp, 3)
we can compute, for p a prime, result from a singleton coloring of Zp as we see in Proposition 3.16. In
Question 5.6, we ask if this is the case for all primes.

Proposition 3.16. For all primes p < 100, aw(Zp, 3) = 3 if p /∈ Q4 := {17, 31, 41, 43, 73, 89, 97} and
aw(Zp, 3) = 4 if p ∈ Q4. Furthermore, for every prime p < 100, Zp has a singleton extremal coloring.

p Singleton extremal coloring of 01 · · · (p−1)

17 31121222112221211
31 3112122212222221122222212221211
41 31121122111222221212112121222221112211211
43 3111111212111222122111111221222111212111111
73 3112122211222222121222222222222212221122212222222222222121222222112221211
89 311111111111121211121111112212221112122111111111111221211122212211111121112121111111111111
97 3111121211211222121222121121222111211222222112211112211222222112111222121121222121222112112121111

Table 3: Singleton extremal coloring of Zp for primes p < 100 with aw(Zp, 3) = 4.

Proof. The statement that for any prime p < 100, aw(Zp, 3) = 3 if p /∈ Q4 and aw(Zn, 3) = 4 if p ∈ Q4 has
been verified computationally (see Table 2). If aw(Zp, 3) = 3, then c(0) = 1, c(i) = 2 for i > 0 is a singleton
extremal coloring of Zp. For each p ∈ Q4, a singleton extremal coloring of Zp is given in Table 3.

If every prime factor p of n is less than 100, then (4) applies and can be simplified to Equation (1) in
Theorem 1.5.
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Example 3.17. Let n = 14, 582, 937, 583, 067, 568. Since n = 24 · 3 · 112 · 13 · 172 · 533 · 672,
aw(Zn, 3) = 3 + 9 + 2 · 2 = 16 by applying (1) (see Table 2 for the values of aw(Zp, 3)).

Remark 3.18. If for every prime factor p of n, Zp has a singleton extremal coloring, then the constructive
proof of Lemma 3.14 gives a singleton extremal coloring of Zn.

3.2 Main results for aw(Zn, k), k ≥ 4

In this section, we specialize to the case where k ≥ 4 and prove Theorem 1.6. Corollary3.19 below, which
follows from Corollary 2.14 and Remark 1.4, gives us ne− log log logn−ω(1) as an upper bound for aw(Zn, k).

Corollary 3.19. For every fixed positive integer k, aw(Zn, k) = o
(

n
log logn

)
.

Our lower bound for aw(Zn, k) when n > 12 is presented in Lemma 3.20.

Lemma 3.20. There exists an absolute constant b > 0 such that for all c > 3, n
c ≥ 4 and k ≥ 4,

aw(Zn, k) >
(n
c

)
e−b
√

log(n/c) = ne−b
√

log(n/c)−log c = n1−o(1).

Lemma 3.20 is proven using the Behrend construction from Section 2.2 and Proposition 3.21 below.
The Behrend construction in the integers {1, . . . ,m} has no punctured 4-AP and size me−b

√
logm for some

absolute constant b.

Proposition 3.21. Let c > 3 be a real number, and let
[
n
c

]
denote the first bnc c consecutive residues in Zn.

Suppose S ⊆
[
n
c

]
does not contain any punctured 4-APs. Then aw(Zn, k) > |S|+ 1 for all k ≥ 4.

Proof. Color each member of S a distinct color, and color each member of Zn \ S with a new color called
zero. Note that because c > 3, each i ∈ Zn with n

c ≤ i < n will be colored zero. If K = {a1, a2, a3, a4}
is a rainbow 4-AP in Zn, then at most one element of K is not in S. Without a loss of generality, assume
a3, a4 ∈ S. Then there exists d ∈ Z such that d ≡ a4 − a3 (mod n) and |d| ≤ n

c .
Suppose a2 ∈ S. Because |d| ≤ n

c <
n
2 , we must have that a2, a3, a4 is a 3-AP in

[
n
c

]
. This contradicts

the fact that S contains no punctured 4-APs, so we must have a2 6∈ S and a1 ∈ S. However, since

2|d| ≤ 2n
c < (c−1)n

c , we must have that a1, a3, a4 is a punctured 4-AP in
[
n
c

]
. This is a contradiction, so

a1 6∈ S.
This means that K could not have been rainbow, so we have a (|S|+ 1)-coloring of Zn with no rainbow

4-APs.

Altogether, our bounds for aw(Zn, k), k ≥ 4 are

ne−b
√

log(n/c)−log c < aw(Zn, k) ≤ ne− log log logn−ω(1).

This completes the proof of Theorem 1.6.

3.3 Additional results for aw(Zn, k)

In this section, we present computed data for aw(Zn, k), k ≥ 4, establish the value of aw(Zn, k) for k = n,
n − 1, and n − 2, and present some examples that show some additional results fail to extend from [n] to
Zn. Table 4 below lists the computed values of aw(Zn, k) for k = 4, . . . , n in the row labeled n.

Next we examine aw(Zn, k) for k close to n.

Proposition 3.22. For positive n and k we have aw(Zn, k) = n if and only if k = n.

Proof. If k = n the result is obvious. Now suppose that k < n and consider an exact (n− 1)-coloring of Zn.
Then there are two numbers with the same color and all other numbers are colored distinctly. Suppose x
and y are the the two numbers with the same color. Then {x+ 1, ..., x+ k} is a k-AP that does not contain
x, and so is rainbow. Therefore aw(Zn, k) ≤ n− 1.
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n \ k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

4 4
5 4 5
6 5 5 6
7 4 5 6 7
8 6 6 7 7 8
9 5 6 8 8 8 9
10 6 8 8 8 9 9 10
11 5 6 7 8 9 9 10 11
12 8 9 10 10 11 11 11 11 12
13 5 7 8 9 10 10 11 11 12 13
14 6 8 10 12 12 12 12 12 13 13 14
15 8 11 12 12 12 13 14 14 14 14 14 15
16 8 10 10 11 14 14 14 14 15 15 15 15 16
17 6 8 10 11 12 12 13 14 14 15 15 15 16 17
18 8 10 13 14 14 16 16 16 17 17 17 17 17 17 18
19 6 9 10 12 12 14 14 15 16 16 16 17 17 17 18 19

Table 4: Computed Values of aw(Zn, k) for k ≥ 4.

Corollary 3.23. For positive n, aw(Zn, n− 1) = n− 1.

A pattern can be observed in the values of aw(Zn, n− 2), and this is established in Proposition 3.24.

Proposition 3.24. For positive n ≥ 5, if n is prime then aw(Zn, n− 2) = n− 2; otherwise aw(Zn, n− 2) =
n− 1.

Proof. We trivially have a lower bound of n−2 for aw(Zn, n−2). First we assume n is prime. We claim that
for any two distinct elements x and y there is an (n− 2)-AP that misses x and y. To see this, simply form
the n-AP with a = x and d = (y−x), this will cover all of Zn and now removing the first two terms leaves us
with an (n− 2)-AP that does not contain x or y. So suppose we have an exact (n− 2)-coloring. Then either
there is one color that occurs three times or two colors that each occur twice, and in either case all other
colors occur exactly once. In either case we can choose two numbers to avoid and then the remaining n− 2
numbers are rainbow, but as just noted above the remaining n − 2 numbers are an arithmetic progression.
Therefore every (n− 2)-coloring contains a rainbow progression.

When n is not a prime, let p be the smallest prime divisor of n and consider the (n − 2)-coloring
formed by coloring 0, p and 2p monochromatically, with the remaining numbers all given distinct colors.
This is an (n − 2)-coloring (since 2p < n by assumption that n ≥ 5). We claim this coloring has no
rainbow (n − 2)-AP (along with the upper bound of n − 1, this claim establishes the result). Suppose
that K = {a, a + d, ..., a + (n − 3)d} is a rainbow (n − 2)-AP, so all the elements of K are distinct and K
necessarily misses two of 0, p, 2p. Since Zn cannot have a proper subgroup of order n− 2, extending K to a
n-AP necessarily produces all elements of Zn and thus {a + (n − 2)d, a + (n − 1)d} ⊆ {0, p, 2p}. But then
we have that p divides d = ((a + (n − 1)d) − (a + (n − 2)d)), showing that this arithmetic progression can
have at most n

p < n− 2 terms, which is a contradiction.

Proposition 3.22 shows that the “if” direction of Theorem 2.16 (k ≥ dn2 e+ 1 implies aw([n], k) = n) does
not extend to Zn. Example 3.25 below shows that the extension of Proposition 2.15 to Zn, which would
assert that aw(Zn, k) ≤ aw(Zn−1, k) + 1, is not true in general. There are counterexamples in both the cases
k = 3 and k ≥ 4.

Example 3.25. According to our computed data (see Table 2 in Section 3.1), aw(Z30, 3) = 5 and aw(Z29, 3) =
3. Furthermore, aw(Z8, 4) = 6 and aw(Z7, 4) = 4 (see Table 4 in Section 3.2).

Example 3.26 below shows that Theorem 2.17, which bounds the anti-van der Waerden number of a sum
in terms of the anti-van der Waerden numbers of the summands, does not extend to Zn.
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Example 3.26. According to our computed data (see Table 4 in Section 3.2),

aw(Z12, 4) = 8 > 4 + 4− 1 = aw(Z5, 4) + aw(Z7, 4)− 1.

There are also examples for k = 3, such as aw(Z54, 3) = 6 > 3 + 3− 1 = aw(Z47, 3) + aw(Z7, 3)− 1.

4 Computation

Many of the results we have proved in this paper were first conjectured from examination of data. In this
section, we briefly discuss an efficient algorithm to find an exact r-coloring of [n] or Zn that avoids a rainbow
k-AP, if such a coloring exists. For the sake of brevity, we will focus on the case of coloring [n] since this
case has a few extra properties that the Zn case does not. Specifically, we have [m] ⊆ [n] for all m ≤ n while
Zn contains a copy of Zm if and only if m divides n.

Fix k, n, and r and assume that all values of aw([m], k) have been computed for k ≤ m < n. Let
c : [n] → [r] ∪ {∗} be a function called a partial r-coloring, where every position i has color c(i) ∈ [r] or
c(i) = ∗ and i is uncolored. By starting with all positions uncolored, we recursively attempt to extend a
partial r-coloring c where the positions in [i] are colored to an exact r-coloring c′ that avoids rainbow k-APs.
We branch at each recursive call for all possible choices of color for c(i+ 1) such that no k-AP within [i+ 1]
is colored with k distinct colors. To guarantee that no chosen color creates a rainbow k-AP, we maintain a
list of sets D(j) ⊆ [r] that contain all of the possible colors for the position j. Specifically, assigning c(j) to
be any color in [r] \D(j) will immediately create a rainbow k-AP. Whenever a color is assigned to a position
i, we consider a k-AP, X, whose second-to-last element is i. If the set c(X) = {c(i′) : i′ ∈ X − maxX}
contains k − 1 distinct colors, we say that X is an almost-rainbow k-AP and the color for maxX must be
one of these k − 1 colors. Therefore, we can update D(maxX) to be D(maxX) ∩ c(X). For simplicity, we
update D(i) to be {c(i)} when i is assigned the color c(i).

We can also make a few small adjustments to greatly reduce the search space. First, we assume that
the coloring c is lexicographically-minimum: for two colors a, b ∈ [r] with a < b, we assume that the first
position with color a appears before the first position with color b. Second, the domains D(j) contain the
possible colors for the positions that remain uncolored. If

⋃
j∈[n]D(j) 6= [r], then c cannot extend to an

exact r-coloring. Finally, if the first i positions are all colored with the color 1, then for any extension of c to
an exact r-coloring of [n], the last n− i+ 2 positions form an exact r-coloring. Thus, if aw([n− i+ 1], k) ≤ r,
then it is impossible to extend c to an exact r-coloring of [n] without creating a rainbow k-AP.

Our recursive algorithm is given as Algorithm 1 and is initialized by Algorithm 2. Similar algorithms are
implemented for the case of r-coloring Zn. All source code and data are available online1 including computed
values of aw([n], k) and aw(Zn, k), extremal colorings, and reports of computation time.

5 Conjectures and open questions

We conclude by summarizing some open questions and conjectures.
Uherka [13] observed that aw([n], 3) is not a monotone function in n, as there are values of n where

aw([n], 3) = aw([n− 1], 3)− 1. Does this happen infinitely often? Are larger drops possible?

Conjecture 5.1. For positive integers n and k, aw([n], k) ≥ aw([n− 1], k)− 1.

Conjecture 1.2 states that the lower bound aw([n], 3) ≥ dlog3 ne + 2 is correct to within an additive
constant. We further conjecture that the lower bound in Lemma 2.3 is in fact the exact value when n is a
power of three. It is true for the computed data available (see Remark 2.1).

Conjecture 5.2. Let m be a nonnegative integer. Then aw([3m], 3) = m+ 2.

Question 5.3. Is it true that aw([3n], 3) = aw([n], 3) + 1 for all positive integers n?

1All source code and data can be found at http://www.math.iastate.edu/dstolee/r/rainbowaps.htm
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Algorithm 1 FindColorings(k, r, n, aw, c,D, i) – Find exact D-colorings on [n] that avoid rainbow k-APs
and extend the coloring c on [i− 1]. Assume aw([m], k) is known for all m < n.

if i ≡ n then
output c
return

else if ∪j∈[n]D(j) 6= [r] then
return // This coloring cannot extend to an exact r-coloring!

else if i > 2 and ∀j < i, c(j) ≡ 1 and aw([n− i+ 2], k) ≤ r then
return // An exact r-coloring extending c induces an exact r-coloring on {i− 1, . . . , n}.

end if
M ← max{c(j) : j < i} ∪ {0}
// Attempt all colors in the domain D(i) that are at most M + 1.
for all a ∈ D(i) ∩ [M + 1] do
c(i)← a, D(i)← {a}
// Update all domains D′(t) when almost-rainbow k-APs exist.
D′ ← D
for all d ∈ {1, . . . , bi/(k − 2)c} do
A← ∅
for all ` ∈ {0, . . . , k − 2} do
t← i− ` · d
A← A ∪ {c(t)}

end for
if |A| ≡ k − 1 then
t← i+ d
D′(t)← D′(t) ∩A

end if
end for
call FindColorings(k, r, n, aw, c,D′, i+ 1)

end for

Algorithm 2 FindColoring(k, r, n, aw) – Find exact r-colorings on [n] that avoid rainbow k-APs.

for all i ∈ [n] do
c(i)← ∗
D(i)← [r]

end for
call FindColorings(k, r, n, aw, c,D, 1)
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Recall that a singleton extremal coloring of S is an exact coloring of S that avoids rainbow k-APs and
uses exactly aw(S, k)− 1 colors. Singleton extremal colorings exist for all of our computed examples where
S = Zn and k = 3, as we have seen by the computer computations described in Section 4 for every value of
n ≤ 58. Is this always the case?

Conjecture 5.4. For k = 3, there exists a singleton extremal coloring of [n] and of Zn.

Proposition 3.14 gives an effective lower bound on aw([n], 3) for n composite with certain odd factors.
If Conjecture 5.4 holds for Zn, then the condition for Proposition 3.14 applies to all factors, implying the
following conjecture.

Conjecture 5.5. For p an odd prime and t ≥ 3, aw(Zpt, 3) ≥ aw(Zt, 3) + aw(Zp, 3)− 2.

If this conjecture holds, then computing aw(Zn, 3) depends only on the values of aw(Zp, 3) for the prime
factors p of n. Since 3 ≤ aw(Zp, 3) ≤ 4 for all primes p < 100, we consider which primes allow aw(Zp, 3) = 3.

Question 5.6. Are there infinitely many primes p such that aw(Zp, 3) = 3?

Question 5.7. Is aw(Zp, 3) > 3 for all p prime, p ≡ 1 (mod 8)?

Question 5.8. Does there exist a prime p such that aw(Zp, 3) ≥ 5?

One suggested approach to finding primes p for which aw(Zp, 3) = 3 is to search for primes p such that
the multiplicative group Z×p is generated by 2. In that case, a singleton extremal coloring of Zp would have
only two colors. However, the existence of an infinite family of such primes is still open.

Conjecture 5.9 (Artin’s Conjecture). [11, p. 217] There are infinitely many primes p such that 2 is a
generator of the multiplicative group Z×p .

If Artin’s Conjecture holds, we suspect it would give us an infinite family of Zp such that aw(Zp, 3) = 3.
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