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Abstract

A coloring of the vertices of a graph G is said to be distinguishing provided no nontrivial
automorphism of G preserves all of the vertex colors. The distinguishing number of G, D(G), is
the minimum number of colors in a distinguishing coloring of G. The distinguishing chromatic
number of G, χD(G), is the minimum number of colors in a distinguishing coloring of G that is
also a proper coloring.

Recently the notion of a distinguishing coloring was extended to that of a list distinguishing
coloring. Given an assignment L = {L(v)}v∈V (G) of lists of available colors to the vertices of G,
we say that G is (properly) L-distinguishable if there is a (proper) distinguishing coloring f of
G such that f(v) ∈ L(v) for all v. The list distinguishing number of G, D`(G), is the minimum
integer k such that G is L-distinguishable for any list assignment L with |L(v)| = k for all v.
Similarly, the list distinguishing chromatic number of G, denoted χD`

(G) is the minimum integer
k such that G is properly L-distinguishable for any list assignment L with |L(v)| = k for all v.

In this paper, we study these distinguishing parameters for trees, and in particular extend an
enumerative technique of Cheng to show that for any tree T , D`(T ) = D(T ), χD(T ) = χD`

(T ),
and χD(T ) ≤ D(T ) + 1.

Keywords: Distinguishing Coloring, List Distinguishing Coloring, Proper Distinguishing Col-
oring, Distinguishing Chromatic Number, List Distinguishing Chromatic Number

1 Introduction

A coloring of a graph G is a labeling φ : V (G)→ N; a k-coloring is a labeling φ : V (G)→ [k], where
[k] = {1, 2, . . . , k}. A coloring of the vertices of a graph G is distinguishing if no nontrivial automor-
phism of G preserves all of the vertex colors; such a coloring distinguishes G. In 1996 Albertson and
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Collins [1] introduced the distinguishing number D(G) of a graph G, defined to be the minimum
number of colors in a distinguishing coloring of G. Since its introduction, the distinguishing num-
ber and related parameters have received considerable attention in the literature (see for example
[4, 5, 12, 15, 16]). In 2006 Collins and Trenk [9] introduced the distinguishing chromatic number
χD(G) of a graph G, defined to be the minimum number of colors in a distinguishing coloring of
G that is also a proper coloring. Subsequent investigation of the distinguishing chromatic number
(for instance, [3, 8, 13, 17]) has focused on similarities and disparities between the distinguishing
chromatic number and one or both of the distinguishing number and the chromatic number.

One of the most studied variants of the chromatic number is the list chromatic number, intro-
duced independently by Vizing in 1976 [18] and Erdős, Rubin, and Taylor in 1979 [10]. Recently
Ferrara, Flesch, and Gethner [11] extended the notion of a distinguishing coloring to that of a list
distinguishing coloring. Given an assignment L = {L(v)}v∈V (G) of lists of available colors to the
vertices of G, we say that G is L-distinguishable if there is a distinguishing coloring f of G such
that f(v) ∈ L(v) for all v. The list distinguishing number of G, D`(G), is the minimum integer k
such that G is L-distinguishable for any list assignment L with |L(v)| = k for all v. The existence
of a graph G for which D(G) and D`(G) are not equal remains a major open question.

While not explicitly introduced in [11], it is natural to consider a list analogue of the distin-
guishing chromatic number. We say that G is properly L-distinguishable if there is a distinguishing
coloring f of G chosen from the lists such that f is also a proper coloring of G. The list distinguishing
chromatic number χD`(G) of G is the minimum integer k such that G is properly L-distinguishable
for any assignment L of lists with |L(v)| ≥ k for all v.

In this paper, we study these four distinguishing parameters for trees, showing that D`(T ) =
D(T ), χD(T ) = χD`(T ), and χD(T ) ≤ D(T ) + 1 for any tree T . In our proofs, we extend an
enumerative technique first introduced by Cheng to determine the distinguishing number of trees
[6]. The technique has subsequently been used to determine the distinguishing number of both
planar graphs [2] and interval graphs [7].

1.1 Preliminaries

A vertex v is in the center of a tree T if v minimizes maxu∈V (T ){dist(u, v)}. In the majority of the
paper, we will be considering rooted trees. A rooted tree is a tree with an identified vertex called the
root. Given vertices u and v in a rooted tree T with root r, v is the parent of u if v is the neighbor
of u in the unique u, r-path in T , and u in this case is a child of v. Two vertices with the same
parent are siblings. More generally, v is an ancestor of u if v lies anywhere in the unique u, r-path,
and in this case u is a descendant of v. Given a vertex v in a rooted tree T , we let Tv denote the
subtree of T rooted at v that is induced by v and all of its descendants. All automorphisms of a
rooted tree stabilize the root.

Two colorings φ1 and φ2 of rooted trees Tv1 and Tv2 are equivalent if there exists an isomorphism
π : V (Tv1) → V (Tv2) that maps v1 to v2 and that maps the coloring φ1 to φ2: that is, for every
vertex u ∈ V (Tv1), we have φ1(u) = φ2(π(u)).
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2 Distinguishing Colorings

The main result of this section is the following.

Theorem 1. If T is a tree, then D(T ) = D`(T ).

To prove Theorem 1, we shall prove D(T ′) = D`(T ′) for any rooted tree T ′; this suffices since
the following lemma provides a reduction from unrooted trees to rooted trees.

Lemma 2. For any tree T , there is a rooted tree T ′ with D(T ) = D(T ′) and D`(T ) = D`(T ′).

Proof. In [14], Jordan proved that the center of a tree T is either a single vertex or an edge, and in
either case the center of T is set-wise stabilized by all automorphisms. If the center of T is a single
vertex, then let T ′ be T rooted at the center and note that Aut(T ) = Aut(T ′).

If the center of T is the edge e, then let T ′ be obtained by subdividing e and rooting the resulting
tree at the unique vertex in T ′ − T , which is the center of T ′. In [6], Cheng showed that D(T ) =
D(T ′), and it is straightforward to show by a nearly identical argument that D`(T ) = D`(T ′) as
well.

The following observation describes a simple condition that is necessary and sufficient for a
coloring to distinguish a rooted tree.

Observation 3. Let T be a rooted tree. For a fixed x ∈ V (T ), partition the children of x into
classes C1, . . . , Ct so that two vertices u, v are in the same class if and only if Tu ∼= Tv. A coloring
φ distinguishes Tx if and only if

1. for all children v of x, the restriction of φ to Tv distinguishes Tv, and
2. given vertices u, v ∈ Cj for j ∈ [t], the restrictions of φ to Tu and Tv are inequivalent.

Following the notation from [6], we let D(G; k) denote the number of equivalence classes of
distinguishing k-colorings of a graph G. Cheng showed that D(Tx; k) can be computed recursively.

Lemma 4 (Cheng [6]). Let Tx be a tree with root x and partition the children of x into classes
C1, . . . , Ct so that two vertices u, v are in Cj if and only if Tu ∼= Tv. Select a representative uj for
each class Cj. The number of equivalence classes of distinguishing k-colorings of Tx is given by

D(Tx; k) = k

t∏
j=1

(
D(Tuj ; k)
|Cj |

)
.

For a list assignment L = {L(v)}v∈V (G), we let D(G;L) be the number of equivalence classes of
distinguishing L-colorings of G.

Theorem 5. If Tx is a rooted tree and L = {L(v)}v∈V (Tx) is a list assignment with |L(v)| = k for
all v ∈ V (Tx), then D(Tx;L) ≥ D(Tx; k). Equality holds if and only if D(Tx;L) = 0 or L(u) = L(v)
whenever u and v lie in the same orbit of Tx.
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Proof. Observe first that if D(Tx; k) = 0, then the conclusion holds trivially. For any vertex v ∈ T ,
let Lv denote the restriction of L to the vertices in Tv. We proceed by induction to show that
D(Tv;Lv) ≥ D(Tv; k) for each subtree Tv of Tx. If v is a leaf, then D(Tv, Lv) = D(Tv; k) = k.

Assume that v is not a leaf of Tx. Partition the children of v into classes C1, . . . , Ct as in Ob-
servation 3, and label the vertices in class Cj as vj,1, vj,2, . . . , vj,mj where mj = |Cj |. By induction,
D(Tvj,p ;Lvj,p) ≥ D(Tvj,p ; k) for all p ∈ [mj ]. Set dj = D(Tvj,1 ; k); it follows that dj = D(Tvj,p ; k) for
all p ∈ [mj ] since the subtrees in Tvj,p are isomorphic.

For p ∈ [mj ], let Sj,p be a set of representative colorings from each equivalence class of distin-
guishing Lvj,p-colorings of Tvj,p ; note that |Sj,p| = D(Tvj,p ;Lvj,p), and by induction, |Sj,p| ≥ dj .
Let Rj be the set of tuples (φj,1, φj,2, . . . , φj,mj ) ∈ Sj,1 × Sj,2 × · · · × Sj,mj such that φj,p and φj,q
are inequivalent when p 6= q. By Observation 3, an Lv-coloring φ distinguishes Tv if and only if,
for every class Cj , the tuple (φj,1, φj,2, . . . , φj,mj ) of colorings induced on Tvj,p is component-wise
equivalent to an element of Rj . Let rj be the number of equivalence classes in Rj , where two
tuples are equivalent if they are the same up to the order of the coordinates. A maximum set of
inequivalent Lv-colorings of Tv is formed by independently selecting one tuple (φj,1, φj,2, . . . , φj,mj )
from each equivalence class of Rj for each class Cj and selecting any color for v from L(v). Hence,
D(Tv;Lv) = k

∏t
j=1 rj .

We bound rj by selecting colorings (φj,1, φj,2, . . . , φj,mj ) for the subtrees Tvj,1 , . . . , Tvj,mj in order.
By induction, for p ∈ [mj ], there are at least dj−p+1 choices for φj,p in Sj,p that are inequivalent to
the previous selections for φj,1, . . . , φj,p−1. Thus, there are at least dj(dj − 1) · · · (dj −mj + 1) ways
to select mj inequivalent colorings (φj,1, φj,2, . . . , φj,mj ). Each equivalence class in Rj is counted at
most mj ! times, so

rj ≥
dj(dj − 1) · · · (dj −mj + 1)

mj !
=
(
dj
mj

)
=
(
D(Tvj,1 ; k)
|Cj |

)
.

Therefore by Lemma 4,

D(Tv;Lv) = k
t∏

j=1

rj ≥ k
t∏

j=1

(
D(Tvj,1 ; k)
|Cj |

)
= D(Tv; k).

If D(Tx;L) = 0, then it is clear that D(Tx;L) = D(Tx; k). Otherwise we show that equality
holds if and only if L(u) = L(v) when u and v lie in the same orbit of Tx. We prove this by
induction on the number of vertices in Tx. Let L be a list assignment such that D(Tx;L) > 0 and
D(Tx;L) = D(Tx; k). The result holds trivially if Tx has a single vertex.

Let C1, . . . , Ct be the partition of the children of x as above. Equality holds for Tx if and only
if rj =

(D(Tvj,1 ;k)

|Cj |

)
for all j ∈ [t]. Furthermore, rj =

(D(Tvj,1 ;k)

|Cj |

)
= dj(dj−1)···(dj−mj+1)

mj !
if and only

if |Sj,p| = dj for all p ∈ [mj ] and every coloring in Sj,p has an equivalent coloring in Sj,q for all
p, q ∈ [mj ]. By induction, |Sj,p| = dj if and only if L(y) = L(w) when y and w lie in the same orbit
of Tvj,p .

Consider a vertex y in Tvj,p . By permuting colors on the orbit O containing y, each color in L(y)
appears in O in a distinguishing L-coloring φj,p in Sj,p. The isomorphism σ : V (Tvj,p) → V (Tvj,q)
guaranteed by an equivalent pair (Tvj,p , φj,p) ∼= (Tvj,q , φj,q) satisfies φj,p(y) = φj,q(σ(y)) for all
y ∈ V (Tvj,p). Therefore, each color in L(y) also appears in the lists of the vertices in the orbit of
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σ(y) in Tvj,q , and consequently L(y) = L(σ(y)). Each vertex in the orbit of y in Tx that is not in
Tvj,p lies in the image of O under some such isomorphism σ. Thus, every vertex in the orbit of y in
Tx has the same list of colors as y. Consequently, if equality holds, then L(u) = L(v) whenever u
and v lie in the same orbit of Tx.

Conversely, if L(u) = L(v) whenever u and v lie in the same orbit of Tx, then L(y) = L(w) when
y and w lie in the same orbit of Tvj,p . Furthermore, each coloring Sj,p has an equivalent coloring in
Sj,q for all p, q ∈ [mj ].

Note that D(T ) is the minimum k so that D(T ; k) is positive. Similarly, D`(T ) is the minimum
k so that D(T ;L) is positive for every list assignment L with |L(v)| = k. By considering the list
assignment that gives the same k colors to every vertex, it is clear that D`(T ) is positive only if
D(T ) is. Thus, the following corollary is immediate from Theorem 5.

Corollary 6. If T is a rooted tree, then D(T ) = D`(T ).

Theorem 1 follows from Lemma 2 and Corollary 6.

3 List Distinguishing Chromatic Number

In this section, we prove that the distinguishing chromatic number of a tree is equal to the list
distinguishing chromatic number using a similar enumerative method.

Theorem 7. If T is a tree, then χD(T ) = χD`(T ).

For x ∈ V (T ), let Dχ(Tx; k) denote the number of equivalence classes of distinguishing proper
k-colorings of the rooted tree Tx. For i ∈ [k], let Dχ(Tx; k, i) denote the number of equivalence
classes of distinguishing proper k-colorings of Tx in which x gets color i. Note that Dχ(Tx; k, i) =
Dχ(Tx; k, 1) = 1

kDχ(Tx; k) for all i ∈ [k]. Hence Dχ(Tx; k) = kDχ(Tx; k, 1).

Similarly, let Dχ(Tx;L) denote the number of equivalence classes of distinguishing proper L-
colorings of the rooted tree Tx. For i ∈ L(x), let Dχ(Tx;L, i) be the number of equivalence classes
of distinguishing proper L-colorings of Tx in which x gets color i. Here, the value Dχ(Tx;L, i) may
change for different values of i ∈ L(x). Thus Dχ(Tx;L) =

∑
i∈L(x)Dχ(Tx;L, i).

As we discuss below, consideration of rooted trees is sufficient to demonstrate χD(T ) = χD`(T )
in most, but not all unrooted cases. The next result is analogous to Theorem 5.

Theorem 8. If Tx is a rooted tree and L = {L(v)}v∈V (Tx) is a list assignment with |L(v)| = k for
all v ∈ V (Tx), then Dχ(Tx;L, i) ≥ Dχ(Tx; k, 1) for all i ∈ L(x). Equality holds for all i ∈ L(x) if
and only if k ≥ 2 and all lists in L are identical.

Proof. Similar to the proof of Theorem 5, we show that Dχ(Tv;Lv, i) ≥ Dχ(Tv; k, 1) for all v ∈
V (Tx) and i ∈ L(v) inductively. If v is a leaf, then Dχ(Tv;Lv, i) = Dχ(Tv; k, 1) = 1.

Assume that v is not a leaf. Partition the children of v into equivalence classes C1, C2, . . . , Ct
by isomorphism classes of subtrees. Label the vertices in each class Cj as vj,1, vj,2, . . . , vj,mj where
mj = |Cj |. The following claim is analogous to Lemma 4.
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Claim 8.1. For i ∈ [k], Dχ(Tv; k, i) =
t∏

j=1

(
(k − 1)Dχ(Tvj,1 ; k, 1)

|Cj |

)
.

Proof. By Observation 3, a proper k-coloring φ such that φ(v) = i distinguishes Tv if and only if the
colorings φvj,p , obtained by restricting φ to the trees Tvj,p for vj,p ∈ Cj , are inequivalent distinguish-
ing proper k-colorings with φvj,p(vj,p) 6= i. Hence, there are (k− 1)Dχ(Tvj,1 ; k, 1) possible colorings
for Tvj,1 . Since Tvj,p ∼= Tvj,1 for all p ∈ [mj ], there are (k − 1)Dχ(Tvj,1 ; k, 1) possible colorings of
Tvj,p . We choose |Cj | of these colorings to place on the trees Tvj,p for vj,p ∈ Cj . Since Dχ(Tv; k, i)
counts colorings up to isomorphism, the selection of these colorings is independent of their order in
Cj . Also, the choices of these colorings are independent among the different isomorphism classes
{Cj}tj=1, so Dχ(Tv; k, i) is given by the product

∏t
j=1

((k−1)Dχ(Tvj,1 ;k,1)

|Cj |

)
, proving the claim.

Let dij = (k − 1)Dχ(Tvj,1 ; k, 1). By induction,∑
i′∈L(vj,p)\{i}

Dχ(Tvj,p ;Lvj,p , i
′) ≥ (k − 1)Dχ(Tvj,p ; k, 1) = dij .

We now consider the number of equivalence classes of distinguishing proper Lvj,p-colorings of
Tvj,p in which vj,p does not get color i. Let Sij,p be a set of representative colorings from each such
equivalence class. Let Rij be the set of tuples (φj,1, φj,2, . . . , φj,mj ) ∈ Sij,1 × Sij,2 × · · · × Sij,mj such
that φj,p and φj,q are inequivalent when p 6= q. By induction,

|Sij,p| =
∑

i′∈L(vj,p)\{i}

Dχ(Tvj,p ;Lvj,p , i
′) ≥ dij .

By Observation 3, a proper Lv-coloring distinguishes Tv if and only if, for every class Cj , the
colorings φj,p induced on Tvj,p form a tuple (φj,1, φj,2, . . . , φj,mj ) ∈ Rij . Let rij be the number of
equivalence classes in Rij , where two tuples are equivalent if they are the same up to the order of
the coordinates. Form a maximum set of inequivalent proper Lv-colorings φ in which v gets color
i by independently selecting one tuple (φj,1, φj,2, . . . , φj,mj ) from each equivalence class of Rij for
each class Cj . Hence, Dχ(Tv;Lv, i) =

∏t
j=1 r

i
j .

We bound rij by selecting colorings (φj,1, . . . , φj,mj ) for subtrees in order. For p ∈ [mj ], there are
at least dij−p+1 selections for φj,p from Sj,p that are inequivalent to the selections of φj,1, . . . , φj,p−1.
Thus, there are at least dij(d

i
j−1) · · · (dij−mj + 1) possible ways to select mj inequivalent colorings

φj,1, φj,2, . . . , φj,mj . Each equivalence class in Rij is counted at most mj ! times, so

rij ≥
dij(d

i
j − 1) · · · (dij −mj + 1)

mj !
=
(
dij
mj

)
=
(

(k − 1)Dχ(Tvj,1 ; k, 1)
|Cj |

)
.

Therefore, by Claim 8.1,

Dχ(Tv;L, i) =
t∏

j=1

rij ≥
t∏

j=1

(
(k − 1)Dχ(Tvj,1 ; k, 1)

|Cj |

)
= Dχ(Tv; k, 1).
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Consider the partition of the children of x as in Observation 3. Equality holds for all colors
in L(x) if and only if, given an arbitrary i ∈ L(x), rij =

((k−1)Dχ(Tvj,1 ;k,1)

|Cj |

)
for all for all j ∈ [t];

this holds if and only if |Sij,p| = dij = (k − 1)Dχ(Tvj,1 ; k; 1) for all p ∈ [mj ]. Noting that (k −
1)Dχ(Tvj,1 ; k; 1) = (k−1)Dχ(Tvj,p ; k; 1), equality holds if and only if Dχ(Tvj,p ; k; 1) = Dχ(Tvj,p ;L; i′)
for all i′ ∈ L(vj,p) \ {i}. Because there are multiple choices of i ∈ L(x), it follows that equality
holds for all colors in L(x) if and only if Dχ(Tvj,p ; k; 1) = Dχ(Tvj,p ;L; i′) for all i′ ∈ L(vj,p). Thus,

by induction, the lists are identical in Tvj,p . Furthermore, rij =
((k−1)Dχ(Tvj,1 ;k,1)

|Cj |

)
for all j ∈ [t] if

and only if color i appears in the list L(vj,p) for all p ∈ [mj ]. This is true for all i ∈ L(x), so x and
all of its children have the same list.

If Tx is a rooted tree, then χD(Tx) is the minimum k so that Dχ(Tx; k, 1) > 0, and χD`(Tx) is
the minimum k so that for every assignment L of lists of size k, there exists an i ∈ L(x) such that
Dχ(Tx;L, i) is positive. By considering the list assignment in which every vertex gets the list [k],
the following corollary is immediate from Theorem 8.

Corollary 9. If Tr is a rooted tree, then χD(Tr) = χD`(Tr).

The proof of Theorem 1 followed from the reduction from unrooted to rooted trees in Lemma
2 and the equality given in Corollary 6. For the distinguishing chromatic number and list distin-
guishing chromatic number, such a reduction works in most cases.

Lemma 10. If the center of T is a single vertex or χD(T ) ≥ 3, then χD(T ) = χD`(T ).

Proof. Case 1: The center of T is a vertex x. Since all automorphisms set-wise stabilize the center,
x is stabilized by all automorphisms of T . Rooting the tree at x does not change the automorphism
group, so a Tx-distinguishing proper coloring of V (T ) is also a T -distinguishing proper coloring. If
T ′ is T rooted at x, then χD(T ) = χD(T ′) = χD`(T

′) = χD`(T ).

Case 2: The center of T is an edge uv. Let T ′ be obtained by subdividing uv and rooting the
resulting tree at the unique vertex x in T ′ − T , which is the center of T ′. The automorphisms of
T ′ are given by the actions of automorphisms of T on V (T ) while stabilizing x.

By Corollary 9, χD(T ′) = χD`(T
′). Since any T -distinguishing proper k-coloring φ uses at least

3 colors, it is possible to extend φ to a T ′-distinguishing proper k-coloring by assigning x a color
that is not φ(u) or φ(v). Thus χD(T ′) ≤ χD(T ).

Since T ′ contains an edge, χD`(T
′) ≥ 2; let k = χD`(T

′). Consider a list assignment L on V (T ′)
in which every list has size k, and let LT be the restriction of L to V (T ). Let T ′v be the subtree
of T ′ rooted at v consisting of all descendants of v; clearly χD`(T

′
v) ≤ χD`(T

′). By Corollary 9,
χD(T ′v) = χD`(T

′
v), so there is a T ′v-distinguishing proper k-coloring and we may assume that v

receives color 1 in such a coloring. Thus, by Theorem 8, there is a T ′v-distinguishing proper Lv-
coloring in which v gets color i for each i ∈ L(v). Similarly, there is a T ′u-distinguishing proper Lu-
coloring in which u gets color j for each j ∈ L(u). Because all lists have size at least 2, it is possible
to choose colors i ∈ L(v) and j ∈ L(u) so that i 6= j. The combination of a distinguishing proper
Lv-coloring of T ′v in which v receives color i and a distinguishing proper Lu-coloring of T ′u in which
u receives color j produces a distinguishing proper LT -coloring of T . Since every list assignment
on V (T ) is the restriction of some list assignment on V (T ′), it follows that χD`(T ) ≤ χD`(T ′).
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By considering the list assignment in which every vertex gets the same list of length k, we see
that χD(T ) ≤ χD`(T ). Therefore

χD(T ) ≤ χD`(T ) ≤ χD`(T
′) = χD(T ′) ≤ χD(T ).

Lemma 11. If T is an unrooted tree with center {u, v} and χD(T ) = 2, then χD`(T ) = 2.

Proof. Let φ be a proper 2-coloring of T . Note that φ(u) 6= φ(v). Since T is connected, the color at
any vertex y ∈ V (T ) is specified by the parity of the distance from y to u: φ(y) = φ(u) if and only if
the distance from y to u is even. Hence, there are exactly two proper 2-colorings of T and they are
equivalent under a permutation of the colors. Since χD(T ) = 2, such a coloring must distinguish
T . The center of T is set-wise stabilized by all automorphisms of T , so the distance from any
vertex y ∈ V (T ) to {u, v} is preserved under all automorphisms of T . If u and v are point-wise
stabilized by a non-trivial automorphism σ, then every y ∈ V (T ) is mapped to another element
of the same distance to u. Therefore φ(y) = φ(σ(y)) and this 2-coloring does not distinguish T .
Thus, any non-trivial automorphism φ must swap u and v. The product of any two non-trivial
automorphisms point-wise stabilize u and v, and therefore the product is the identity. Hence, the
automorphism group of T is isomorphic to Z2 and any coloring φ where φ(u) 6= φ(v) distinguishes
T . Thus, χD`(T ) = 2 = χD(T ).

Theorem 7 follows immediately from Lemma 10 and Lemma 11.

4 Distinguishing Chromatic Number

In this section, we show that the distinguishing chromatic number and the distinguishing number
of a tree differ by at most one and the bound is sharp. We also describe when these parameters
are different.

Theorem 12. If Tx is a rooted tree, then χD(Tx) ≤ D(Tx) + 1.

Proof. Let φ : V (Tx)→ {1, . . . , k} be a distinguishing k-coloring of Tx. We create a distinguishing
proper (k + 1)-coloring φ′ : V (T ) → {1, . . . , k, ∗} starting at the root: let φ′(x) = φ(x). Proceed
recursively; after coloring a vertex v, consider a child u of v. If φ′(v) = φ(u), then let φ′(u) = ∗.
Otherwise, let φ′(u) = φ(u). Hence, a vertex u receives color ∗ if and only if its parent v has
φ(v) = φ(u) and the previous step assigned φ′(v) = φ(v). Therefore, φ′ is a proper coloring.
Also note that if x and y are siblings with φ′(x) = φ′(y), then φ(x) = φ(y). Since any nontrivial
automorphism of Tx interchanges subtrees rooted at siblings, any φ′-preserving automorphism is
also a φ-preserving automorphism. Therefore φ′ is distinguishing if φ is distinguishing.

It follows from Lemmas 2, 10, and 11 that χD(T ) ≤ D(T ) + 1 for unrooted trees as well.

We now characterize the trees for which χD(T ) = D(T ) + 1. Again we let T ′ be the rooted tree
obtained by rooting T at its center if the center is unique, or rooting at the vertex obtained by
subdividing the central edge of T .

Theorem 13. If T is a tree with D(T ) = k, then χD(T ) = k + 1 if and only if
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1. |V (T )| ≥ 2 and k = 1, or
2. there exists a vertex x ∈ V (T ) and a set S of children of x in T ′ so that the subtrees Tu and

Tv are isomorphic for all u, v ∈ S and (k − 1)Dχ(Tu; k, 1) < |S| for u ∈ S.

Proof. If D(T ) = 1 and T has more than one vertex, then clearly χD(T ) = 2. Thus we may assume
that D(T ) ≥ 2, and we only consider graphs satisfying χD(T ) ≥ 3. By Lemmas 2 and 10, it suffices
to consider the rooted tree T ′.

By Claim 8.1, the number of proper distinguishing k-colorings of the rooted tree T ′x is given by
kDχ(T ′x; k, 1) = k

∏t
j=1

((k−1)Dχ(T ′
vj

;k,1)

|Cj |

)
. There exists no proper distinguishing k-coloring of T ′ if

and only if this product is zero. This product is zero if and only if (k − 1)Dχ(T ′vj ; k, 1) < |Cj | for
some j. If (k − 1)Dχ(T ′vj ; k, 1) < |Cj | for some j, then letting S = Cj suffices. Conversely, if the
set S exists, then S ⊆ Cj for some j. If vj is an element of S, then (k− 1)Dχ(T ′vj ; k, 1) < S ≤ |Cj |,
and there is no proper distinguishing k-coloring of T ′.

We conclude this section by noting that Cheng’s algorithm for computing D(T ) can be adapted
to compute χD(T ) by replacing the counting method in Lemma 4 with Claim 8.1. This leads to a
polynomial time1 algorithm to determine if χD(T ) = D(T ) and if not, it can produce the certificate
(v, S) from Theorem 13.
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