
A log-space algorithm for reachability in planar acyclic digraphs

with few sources∗

Derrick Stolee Chris Bourke N. V. Vinodchandran

University of Nebraska–Lincoln
Lincoln, NE 68588-0115

{dstolee,cbourke,vinod}@cse.unl.edu

February 26, 2010

Abstract

Designing algorithms that use logarithmic space for graph reachability problems is funda-
mental to complexity theory. It is well known that for general directed graphs this problem is
equivalent to the NL vs L problem. This paper focuses on the reachability problem over planar
graphs where the complexity is unknown. Showing that the planar reachability problem is NL-
complete would show that nondeterministic log-space computations can be made unambiguous.
On the other hand, very little is known about classes of planar graphs that admit log-space al-
gorithms. We present a new ‘source-based’ structural decomposition method for planar DAGs.
Based on this decomposition, we show that reachability for planar DAGs with m sources can be
decided deterministically in O(m + log n) space. This leads to a log-space algorithm for reacha-
bility in planar DAGs with O(log n) sources. Our result drastically improves the class of planar
graphs for which we know how to decide reachability in deterministic log-space. Specifically, the
class extends from planar DAGs with at most two sources to at most O(log n) sources.

∗This work was supported by the NSF grants CCF-0430991 and CCF-0830730.

1



1 Introduction

Graph reachability problems are central to complexity theory. The reachability problem of decid-
ing whether there exists a path from a node u to a node v in a directed graph is complete for
nondeterministic log-space (NL). In a break-through result, Reingold showed that the reachability
problem over undirected graphs is complete for deterministic log-space (L) [Rei08]. Various ver-
sions of the reachability problem characterize various complexity classes within NL [Ete97, Rei08,
BLMS98, Bar89]. Because of its central role in complexity theory, designing algorithms that use
logarithmic space for graph reachability problems is a fundamental question.

Planarity has proven to be a very important restriction when dealing with graph problems,
both theoretically and algorithmically. Algorithmically, because of certain fundamental struc-
tural theorems such as the Lipton-Tarjan planar separator theorem [LT79], many computational
problems over planar graphs admit algorithms with better running time or parallelism. However,
from a space-complexity viewpoint progress has started to emerge only recently [AM04,DKLM07,
DLN+09]. In particular, the space complexity of the reachability problem over planar graphs cur-
rently is far from being completely settled. It is known to be hard (under projection reductions) for
deterministic log-space [Ete97], but not known to be complete for NL. Recently, it was shown that
this problem can be solved in unambiguous logarithmic space (the class UL) [BTV09]. Hence if
reachability for planar graphs is complete for NL then all of nondeterministic log-space computations
can be made unambiguous (that is NL = UL). While this is very likely, proving NL = UL will be a
major result in complexity theory. On the other hand, very little is known about classes of planar
graphs that admit log-space algorithms. Jacoby et al. show that various reachability and optimiza-
tion questions for series-parallel graphs admit deterministic log-space algorithms [JLR06, JT07].
Series-parallel graphs are a very restricted subclass of planar directed acyclic graphs (DAGs). In
particular, such graphs have a single source and a single sink (single source single sink DAGs are
sometimes called st-graphs in the literature). Recently, Allender, Barrington, Chakraborty, Datta,
and Roy [ABC+09] extended Jacoby et al.’s result to show that the reachability problem for planar
DAGs with single source and multiple sinks can be decided in log-space. Using a reduction, the au-
thors were able to slightly improve this upper bound to planar DAGs with two sources and multiple
sinks. This remains the current best class of planar DAGs that admit deterministic logarithmic
space algorithms. The present paper makes progress in this direction.

As our main result, we design a deterministic algorithm for reachability in planar DAGs that
takes O(m+log n) space, where m is the number of sources in the input graph. Thus, if the number
of sources in the input graph is O(log n), we get a deterministic log-space algorithm for reachability
in planar DAGs.

Theorem 1 (Main Theorem). The reachability problem for planar directed acyclic graphs with
m = m(n) sources is decidable in O(m + log n) space deterministically.

Corollary 2. The reachability problem for planar directed acyclic graphs with O(log n) sources is
in L.

Our technique begins in Section 2 by building on Allender et. al.’s technique of decomposing the
graph, forming a forest in the case of multiple sources. This leads to new classifications of edges
using the topological properties of the embedding, defined in Section 3. With these topological
properties, a game called the Coin Crawl Game is described in Section 4 as a high-level description
of the reachability algorithm. It starts as a non-deterministic log-space algorithm that can be

2



made deterministic using space linear in the number of sources. The remaining sections describe
the algorithm and prove its correctness.

Until specified otherwise, let G be a directed graph on n vertices. Two vertices u, v are specified
and the goal of Reach is to compute reachability from u to v in G. By the previous results mentioned
earlier, it can be verified in log-space that u and v are in the same connected component of the
underlying undirected graph, G is planar, and G has m sources. We delay the recognition of G
having no directed cycles until Section 7. Until then, assume that G is acyclic.

Some special notation for edges is given for ease of the arguments. A directed edge e = xy
has x as its tail and y as its head. Superscripts will be used to distinguish the endpoints of e. If
the superscript is a number, it will be e1 = x or e2 = y. If the superscript is a letter, the letter
corresponds to the endpoint closest to the object that letter represents. For instance, if an edge e
spans two connected components A and B, then eA is the endpoint in the A component and eB is
the endpoint in the B component. The meaning should be obvious from context.

2 Forest Decomposition

Since G is acyclic, any reverse walk along incoming edges ends at a source. An arbitrary choice of
a single incoming edge at each vertex forms a forest F with every tree rooted at the sources. These
edges are called tree edges. We may assume u is a source, since incoming edges cannot contribute
to a u− v path in G. Also, do not select an incoming edge for v and leave it isolated in F . Hence,
F has m + 2 connected components, each a tree rooted at u, v, s1, . . . , sm. These trees are called
source trees, denoted Tx, where x is the root. In figures, each source tree will be shown as a circle
with the root labeled in the center. This leads to the visualization that the trees are placed in the
plane with the tree edges directed radially away from the source with the leaves on the edge of the
circle.

There are some structural relations among vertices in this forest that can be computed in log-
space. The source tree containing any vertex a can be found by following the chosen incoming
edges until a source is reached. Denote this procedure s(a), where a is in Ts(a). The vertices along
this walk are called ancestors of a.

If two vertices a, b are in the same source tree, their least common ancestor can be found. Define
LCA(a, b) to be the vertex x in Ts(a) so that x is an ancestor of both a and b and maximizes the
number of tree edges between x and s(a).

Using the combinatorial embedding of a source

�

�

�

��
���

��������

��������

�������������������������

�

Figure 1: Example of IsClockwise(a, b, c).

tree Ts, a cyclic ordering of the vertices can be
computed. For three vertices a, b, c in Ts, let the
boolean function IsClockwise(a, b, c) determine if the
triplet a, b, c obeys this cyclic ordering in the clock-
wise direction, as shown in Figure 1. Let w =
LCA(a, c). If w is not an ancestor of b, then im-
mediately IsClockwise(a, b, c) is False. Otherwise,
let x, y, z be the vertices in the ancestor paths of
a, b, c respectively so that (w, x), (w, y), (w, z) are
all tree edges. Note that x 6= z by the definition
of LCA(a, c). Now, if x, y, z appear in a clockwise
order in the combinatorial embedding of w, then IsClockwise(a, b, c) = True. This includes the case

3



when y = x or y = z.
Any two vertices a, b in the same source tree Ts define two important substructures. First is the

tree path from a to b, the unique undirected path given by following tree edges from a to LCA(a, b)
and then to b. Second, if ab is an edge not chosen to be in the tree, then a tree cycle is defined by
combining the tree path from a to b with ab. This tree cycle partitions the plane into two regions,
and the number of vertices and sources in each region is countable in log-space. If the count for
one of these regions is zero, then it is said that this tree cycle partitions those vertices trivially.

This leads to a method for describing the edges of G. The following edge types partition E(G):

- Tree edges are the chosen incoming edges used to define the forest F .
- Launch edges are edges between different source trees. The remaining edge types require both

endpoints in the same source tree.
- Local edges are edges so that the tree cycle partitions the vertices trivially.
- Jump edges are edges so that the tree cycle partitions the vertices non-trivially, but partitions

the vertices u, v, s1, . . . , sm trivially.
- Loop edges are edges so that the tree cycle partitions the sources non-trivially.

�

Tree edges

Local edge

Jump edge

(a) Tree, Local, and Jump
edges.

�

� �

�

����������� ���������

(b) Launch and Loop edges.

Figure 2: The five edge types in a planar DAG in the forest decomposition.

Examples of these edge types are shown in Figure 2. A path that uses only tree and local edges
is called a local path. A path that also uses jump edges is called a jump path.

The edge types tree, local, and jump are identical to the edge types defined for a Single-source
Multiple-sink Planar DAG (SMPD) as in Allender et. al. [ABC+09]. They showed that reachability
using jump paths was decidable in log-space. Given a vertex x in a tree Ts, two vertices we denote
TreeLeft(x) and TreeRight(x) can be found in log-space. These represent how far jump paths from
x can travel in the counter-clockwise and clockwise directions, respectively. For completeness, we
briefly review this algorithm and prove an important property of these vertices as Lemma 3.

By considering different subsets of edge types, we can solve reachability in steps. First, reach-
ability using local paths can be decided by using the subgraph formed by tree and local edges
and noting that all sinks are on the same face. Adding a sink that all of these sinks can reach
does not change x, y reachability, but forms a Single-source Single-sink Planar DAG (SSPD), which
has reachability in L [ABC+09]. Given x, vertices LocalRight(x) and LocalLeft(x) can be found
as the most clockwise and counter-clockwise vertices reachable from x via local paths. These
give the initialization of vertices r, `, defining an explored region given by each vertex z so that

4



IsClockwise(`, z, r) holds. Now, jump edges may have tail in this region, but head outside. In this
case, take the jump edge yz where z is closest to the explored region of all jump edges. Expand the
explored region by setting r = LocalRight(z) or ` = LocalLeft(z), depending on which direction yz
leaves the explored region. When this process stabilizes and has no jump edges leaving the explored
region, define TreeRight(x) = r and TreeLeft(x) = `.

Lemma 3. Consider r, ` during any iteration of the SMPD algorithm. If an edge e = yz has
IsClockwise(`, y, r) = True and IsClockwise(`, z, r) = False, then y is reachable from x.

Proof. The hypothesis supposed that y is in the explored region, but z is not. Since G is planar,
e cannot cross the tree paths from the source to r or `. There also exist paths from x to r and `
that e cannot cross. Hence, y is not in the closed curve given by these paths (or else z would be in
the explored region). This implies that y is a descendant of the path from x to r or the path from
x to `, and thus is reachable from x. When r and ` are updated using such a jump edge, the new
values are reachable from x using jump paths.

Denote by H the contracted graph of G: the multigraph formed by contracting each source tree
Ts into the root vertex s. This graph may have multiedges and loops. The planar embedding of G
induces a planar embedding of H. In the next section, the edges of H are classified by the induced
planar embedding. This is a key insight to controlling the launch and loop edges in the reachability
algorithm.

3 Topological Equivalence

Consider two edges e1, e2 with common endpoints in the con-

Figure 3: Equivalent edge
pairs in a planar multigraph.

tracted graph H. These edges form a simple closed curve in the
planar embedding and hence partition the vertices of H into two
disjoint subsets (ignoring the endpoints). This partition is trivial
if one set is empty. If the partition is trivial, we say e1 and e2

are topologically equivalent. This defines an equivalence relation
among the edges of H. Let [e] denote the equivalence class repre-
sented by the edge e. Examples of such equivalent pairs are shown
in Figure 3.

The contracted graph H can be reduced using these equiva-
lences. First, loops in H form their own simple closed curves. If a
loop forms a curve that partitions the vertices trivially, this loop
is trivial and is removed from H. Remove all edges except a single
representative from each class. This requirement of a single representative of each equivalence class
renews the definition of the contracted graph H.

The concept of topological equivalence holds for any planar multigraph. The following theorem
shows that the maximum number of equivalence classes for an n-vertex multigraph is the same as
the maximum number of edges in an n-vertex simple graph.
Theorem 4. Let X = (V,E) be a planar multigraph. If there are n vertices, there are at most
3n− 6 topological equivalence classes of edges.

Proof. We can assume that X has a single representative of each topological equivalence class by
removing edges if necessary. We can also assume that X has a maximal number of equivalence

5



classes among all planar supergraphs of X, by adding edges whenever possible. Form a graph Y by
subdividing each edge of X. Y is a simple planar graph, so Euler’s formula holds [Wes01]. That is,
for nY the number of vertices, eY the number of edges, and fY the number of faces in the simple
planar graph Y , nY − eY + fY = 2. Since nY = nX + eX , eY = 2eX and fY = fX , we have

2 = (nX + eX)− (2eX) + (fX) = nX − eX + fX .

Each face in X has at least three edges on its border. The only way it can have fewer is if a
two multiedges with the same endpoints bounded this face. But, if they are not topologically
equivalent, this face contains a vertex. This contradicts maximality, since edges could be placed
from this interior vertex to the endpoints of the multiedges.

Since each edge is incident to two faces and each face is incident to at least three edges,
2eX ≥ 3fX , which gives nX = eX − fX + 2 ≥ 1

3eX + 2. Therefore, eX ≤ 3nX − 6.

These topological equivalence classes are represented

� �

��

�� ������

���
���

Figure 4: The closed curve for e1, e2.

by launch and loop edges in the graph G. Equivalence can
be decided in log-space. For the rest of the paper, consider
loop edges to be of launch type as they are treated the
same in the algorithms. Let e1, e2 be launch edges with
endpoints in the trees Ta and Tb. A simple closed curve
is formed by combining these edges with the tree path
from ea

1 to ea
2 in Ta and the tree path from eb

2 to eb
1 in

Tb. Such a curve is shown in Figure 4. The edges e1, e2 are
topologically equivalent if and only if this curve partitions
the sources u, v, s1, . . . , sm trivially.

4 Coin-Crawl Game

In order to provide insight to the algorithm described in Section 5, the overall strategy can be
condensed into the solution of a game called the Coin Crawl game. Consider the contracted graph
H and its planar embedding from the previous section. This will act as the board for the game.
The vertices of H are represented by disjoint unit circles in the plane, and edges incident to a
vertex are distributed evenly around the corresponding circle. The game piece is a coin that can
be placed on these unit circles. The coin has an arrow on its face, which will always point to an
edge incident to the current vertex. This edge is called the current edge. The game starts with the
coin on position Tu. The goal is to reach v through a set of possible moves.

The player’s first move rotates the coin so the arrow points at an edge leaving Tu, call it the
starting edge, es. Then, the coin moves to the tree Ti across es and the arrow points again to es.

Now, the player can select to rotate the coin Left or Right or select to Cross the current edge.
The rotations turn the coin until it points to the next edge in the counter-clockwise (clockwise,
respectively) direction from the current edge. The Cross move places the coin on the vertex at
the opposite end of the current edge and points the arrow back at this edge. An oracle provides
confirmation that these moves are legal, depending on its knowledge of connectivity in G.

A non-deterministic player guesses each move non-deterministically. The player admits failure
if the oracle prevents a move, but the player achieves success if the coin reaches v. If there is a
successful series of moves, this player will find it.

6



However, a few promises allow a deterministic player to achieve success as well. First, it is
promised that reversing the direction of the coin will not be necessary. That is, if the coin was
rotated Right, then a Left move is useless. Moreover, if the coin just crossed an edge, crossing again
will not help. This leads to a state machine M describing the possible move sequences as given in
Figure 5. Note that M inputs a binary string x and outputs a string M(x) of moves from the three
defined choices.

The second promise is that the portions of the unit

?>=<89:;L

1
&&

0 55
?>=<89:;76540123X

0

ff
1

88
?>=<89:;R

1
xx

0jj

L = Left X = Cross R = Right

Figure 5: A description of moves.

circle that the arrow traverses during a rotation do not
need to be visited more than once. That is, a player could
mark the portions of the unit circles that the arrow crosses
and consider the marked portions to be forbidden zones.
These forbidden zones are shown in Figure 8(b) on page
11. The length of a move sequence that never revisits the
forbidden zones is bounded at some length `. Now, the
player can do a brute-force attempt on all starting edges
and all move sequences of length `.

The algorithm for reachability with m sources is defined in Section 5 to follow the non-
deterministic player. A data structure called an explored region in G is used to represent the
coin and its placement in H. An added step called ExploreClass as defined in Section 5.1 expands
the explored region between moves. The oracle is simulated by the deterministic log-space algo-
rithm NextClass which determines if there is a path in G that allows the selected move and produces
the next edge class. Each move modifies the explored region as described in Section 5.2 to reflect
the rotation or movement of the coin.

To take this non-deterministic method into a deterministic algorithm, Section 6 uses the idea of
forbidden zones to bound the length of a legal move sequence to at most 12m. This gives a linear
bound on the space required to store such a move sequence, so the deterministic algorithm can be
shown to take O(m + log n) space as given in Theorem 1. The immediate corollary is given that
this algorithm runs in log-space for m = O(log n) sources.

5 Non-deterministic Search

The non-deterministic algorithm relies upon a log-space data structure called the explored region.
It uses two vertex pointers AL, AR to bound the region on the current source tree (side A), an edge
pointer ec to represent the current class of launch edges, and two vertex pointers BL, BR to bound
the region on the opposite end of this edge (side B). Here, L and R correspond to left and right,
from the conditions that IsClockwise(AL, eA

c , AR) and IsClockwise(BL, eB
c , BR) will always evaluate

as true. A vertex x is said to be contained in the explored region if either IsClockwise(AL, x, AR) or
IsClockwise(BL, x,BR) is true. Property 5 states some properties that are required of an explored
region.

Property 5. An explored region C = (AL, AR, ec, BL, BR) must satisfy these conditions:

1. At least one endpoint of ec is reachable from u. Call this vertex z.
2. AL, AR are not Null and IsClockwise(AL, eA

c , AR) = True.
3. If BL, BR are not Null, then IsClockwise(BL, eB

c , BR) = True.

7



4. If a variable AL, AR, BL, BR is not Null, then the corresponding vertex is reachable from z
using jump paths and edges from [ec].

5. Any launch edge xy with x contained in C has y reachable from z.

As the algorithm is defined, these properties are shown to persist as the explored region changes
as well as used to prove the correctness of the algorithm. Occasionally, CA and CB will be used to
refer to the A side or B side of the region.

To initialize the explored region C, consider the starting edge es to be any launch edge leaving
Tu. The vertex e1

s is in Tu and hence reachable. Set AL = TreeLeft(e2
s ), AR = TreeRight(e2

s ), ec = es,
and let BL and BR be Null. Property 5 can be seen to hold since reachability from u holds for every
vertex in the explored region. Initialize the state machine M to the Cross state.

The algorithm proceeds by non-deterministically selecting a bit x and using the move M(x).
The subroutine NextClass determines if the current explored region allows this move and returns
the next edge en. If the move is not allowed, en will be Null and the algorithm rejects. Otherwise,
C is modified (as described in Section 5.2) to reflect the move to en. Then, the explored region
expands by searching through all edges in the topological equivalence class of en and within C
(see subroutine ExploreClass in Section 5.1). Accept when C contains a launch edge to v. Since
Property 5.4 holds, v is reachable from u. After the subroutines are defined in the following sections,
completeness of this non-deterministic search will be shown by converting any uv path in G to a
list of moves that lead this algorithm to v.

5.1 Expanding the explored region

The subroutine ExploreClass expands the explored region C by using jump paths along with launch
edges of class [ec]. The launch edges e of class [ec] with e1 in CA can be used to expand CB and vice-
versa using an alternating iteration procedure. The procedure updates the variables AL, AR, BL,
and BR and terminates when no change occurs during the update.

First, start with an A–B iteration. Consider all edges e ∈ [ec] with e1 in CA. Let ` = TreeLeft(e2)
and r = TreeRight(e2). If BL and BR are Null, immediately set BL = ` and BR = r. Otherwise if
IsClockwise(`, BL, e2

c) update BL to `, as ` is farther counterclockwise from ec than BL. Similarly if
IsClockwise(e2

c , BR, r), then update BR to r.
The B–A iteration performs the symmetric update for all edges e ∈ [ec] with e1 in CB. See

Figure 6 for an example of these iterations.

� �
��

��
��

��

��

� �

(a) An A–B iteration.

� �
��

��

��
��

��

�l

(b) A B–A iteration.

Figure 6: The alternating ExploreClass iteration types.

8



Lemma 6. The subroutine ExploreClass preserves Property 5.

Proof. As long as Property 5.4 holds in a given iteration, the updates to AL, AR, BL, and BR will
respect the first four parts of Property 5, since the edges used for the expansion have reachable
endpoints.

To see why Property 5.4 holds after an update, consider a launch edge e with e1 in CA. The
argument is symmetric when e1 is in CB. Without loss of generality, assume IsClockwise(AL, e1, eA

c ),
as the argument is symmetric when IsClockwise(eA

c , e1, AR). By iteration, we can assume that e1

was not in the explored region until the latest update. Let f1 be the launch edge that was used to
update AL before the latest update, and f2 is the launch edge used in the current update.

There are two cases to consider.

� �

��

��

����

��

��

��

�

(a) Edge between updates.

� �

��

��

����

��

�

��

(b) Edge outside updates.

Figure 7: Launch edges within the explored region and how they are reachable. The jagged dotted
lines correspond to jump paths between a launch edge and AL or between two launch edges.

The first case is that IsClockwise(fA
1 , e1, fA

2 ). Since e is a launch edge, but appears clockwise
between to launch edges of type [ec], e has class [ec]. If e1 is reachable from z, e2 is reachable,
so assume that e1 is not. This means that AL is not reachable using a path that crosses the tree
path from e1 to s(e1). Hence, the path from z to AL must follow a jump path between fB

1 and fB
2 .

Figure 7(a) shows that even though e1 is not reachable, e2 is the descendant of this jump path that
connects ec to AL.

The second case is that IsClockwise(e1, fA
1 , fA

2 ). That is, e1 is on the portion of the explored
region that is between AL and fA

1 . However, this region was defined with AL = TreeLeft(fA
1 ), so

by Lemma 3 any launch edge between AL and fA
1 is reachable from fA

1 and hence from z. This is
seen in Figure 7(b) where the jump path from fA

1 to AL must cross the tree path from e1 to s(e1).
Note that any launch edge of a different class than [ec] will fall into this second case, and hence has
both endpoints reachable.

5.2 Moving the explored region

Given a move, it can be determined if that move is legal or not by examining the explored region
C.

Consider the case of a Cross move. Such a move is legal only if there is a launch edge en ∈ [ec]
so that e1

n is in CA. Property 5.4 shows that e2
n is reachable. Modify CA as follows by swapping

AL with BL and AR with BR. This effectively moves the coin to the opposite side of ec. Since en

has e1
n on the A side, the subroutine ExploreClass would have initialized BL and BR. Property 5 is

satisfied.

9



Now, consider a Right rotation. A Right move attempts to rotate the coin clockwise to the
equivalence class of edges adjacent to [ec]. If no other equivalence classes exist on the source tree
TA within the explored region, then this move is impossible. Otherwise, if two launch edges e1, e2

have incident vertices x1, x2 in TA and IsClockwise(eA
c , x, y) holds, then e1 is closer to [ec] than e2.

The edge e that is closest to [ec] is a representative of the new class and en is set to e. Moreover,
since en was selected to be closest even among its own equivalence class, there exist edges in [en]
within CA if and only if en has an incident vertex within CA. If not, the move is not allowed.
Otherwise, set ec = en, z = eA

n , and set BL and BR to Null. The modifications for a Left rotation
are similar, except use the counter-clockwise direction instead. Since AL and AR are unchanged,
BL and BR are Null, and eA

n is reachable, Property 5 is verified.

6 Bounding the depth of an accepting path

Let P = u, x1, x2, . . . , xk, v be a directed path in G. P is called irreducible if for every i, j ∈
{1, . . . , k} with i < j, if xi is an ancestor of xj in the forest F , then xi, xi+1, . . . , xj−1, xj are the
vertices in the tree path from xi to xj . That is, if any vertex of P has an ancestor that appears
earlier in P , then P follows the tree path. Any path P that is not irreducible can produce an
irreducible path by removing the subpath between violating pairs of vertices and replacing it with
the corresponding tree path.

This irreducible property provides the concept of forbidden zones in the Coin Crawl game. Let
P = u, x1, x2, . . . , xk, v as before. If i1, . . . , i` are the indices so that (xij , xij+1) is a launch edge for
every j, then the subpaths xij+1, xij+2, . . . , xij+1 are jump paths. If (xij , xij+1) and (xij+1 , xij+1+1)
are launch edges of different equivalence classes, all vertices between xij+1 and xij+1 in that source
tree are either ancestors or descendants of the jump path between them. Hence, if P is an irreducible
path, then P cannot visit this portion of the source tree without violating the irreducible condition
(by visiting a descendant) or the acyclic condition (by visiting an ancestor).

Lemma 7. An irreducible u–v path induces a list of moves of length at most 12m.

Proof. The equivalence classes of launch edges partitions the source trees into two types of regions:

1. Vertices between the tree paths from equivalent launch edges to their sources.
2. Vertices between the tree paths from non-equivalent launch edges to their sources.

These regions are demonstrated in Figure 8(a). Each rotation move corresponds to P traversing
an entire region of the second type, marking a forbidden zone in the Coin Crawl Game as seen in
Figure 8(b). Each class of launch edges has two such regions on each side of the class. Since one
is used on the rotation move that allows the coin to reach this class, and another is used on the
rotation move that allows the coin to leave this class. Hence, this class can be visited at most twice
by the move string from an irreducible path. This bounds the number of rotation moves to be at
most twice the number of equivalence classes. By Theorem 4, there are at most 3(m + 2)− 6 = 3m
classes and hence at most 6m rotation moves. Since each Cross move must immediately follow a
rotation move, the number of Cross moves is also bounded by 6m. Therefore, the total number of
moves is at most 12m.

Lemma 7 provides the last step to showing Theorem 1. This is shown by combining the
non-determinstic log-space algorithm with the 12m space required for a move string. Setting
m = O(log n) gives Corollary 2, that reachability for log-source planar DAGs is in L.

10



�

� �

(a) Partitions of source trees.

�

(b) Forbidden zones.

Figure 8: Partitions of source trees compared to forbidden zones in the Coin Crawl Game.

7 Finding Cycles

It is important to recognize that a planar digraph is acyclic, in order to verify that the algorithm
executes correctly. Note that by performing the forest decomposition and applying the SMPD
algorithm, one can verify in log-space that the tree edges do not form a cycle and each induced
source tree is acyclic. It remains only to verify that no cycles exist that use launch or loop edges.
If a cycle exists using a launch edge xy, there exists an irreducible path P from y to x. This path
can be found using the given algorithm. By iterating over all launch edges and testing for reverse
reachability, an existing cycle will be found in log-space.

8 Future Work

While this work has increased the class of graphs that allow deciding reachability within deter-
ministic log-space, there are directions that can be pursued for further advancement. The current
reachability algorithm has lower bounds on the length of move strings if the graph and forest de-
composition are chosen arbitrarily. However, if the forest decomposition was chosen in a non-trivial
way it may be possible to reduce the number of moves to sublinear in m. This will translate to an
increased number of sources allowed while staying in log-space.

The forest decomposition technique may be useful in other problems involving directed acyclic
graphs. More importantly, the topological equivalence of edges in the resulting contracted graph
may have applications to other problems.

9 Acknowledgements

The authors would like to thank the UNL Discrete Math Seminar participants, especially Stephen
G. Hartke, for meaningful discussion that helped to correct mistakes and clarify non-obvious proofs.
Also, thanks to the anonymous referees whose comments improved this paper.

11



References

[ABC+09] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and
Sambuddha Roy. Planar and grid graph reachability problems. Theor. Comp. Sys.,
45(4):675–723, 2009.

[AM04] Eric Allender and Meena Mahajan. The complexity of planarity testing. Information
and Computation, 189:117–134, 2004.

[Bar89] David A. Mix Barrington. Bounded-width polynomial-size branching programs rec-
ognize exactly those languages in NC1. Journal of Computer and System Sciences,
38:150–164, 1989.

[BLMS98] David A. Mix Barrington, Chi-Jen Lu, Peter Bro Miltersen, and Sven Skyum. Searching
constant width mazes captures the AC0 hierarchy. In 15th International Symposium on
Theoretical Aspects of Computer Science (STACS), Volume 1373 in Lecture Notes in
Computer Science, pages 74–83. Springer, 1998.

[BTV09] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reacha-
bility is in unambiguous log-space. ACM Trans. Comput. Theory, 1(1):1–17, 2009.

[DKLM07] Samir Datta, Raghav Kulkarni, Nutan Limaye, and Meena Mahajan. Planarity, deter-
minants, permanents, and (unique) perfect matchings. In Proceedings of 2nd Interna-
tional Computer Science Symposium in Russia CSR, pages 115–126, 2007. Springer-
Verlag Lecture Notes in Computer Science series Volume 4649.

[DLN+09] Samir Datta, Nutan Limaye, Prajakta Nimbhorkar, Thomas Thierauf, and Fabian Wag-
ner. Planar graph isomorphism is in log-space. Annual IEEE Conference on Computa-
tional Complexity, 0:203–214, 2009.

[Ete97] Kousha Etessami. Counting quantifiers, successor relations, and logarithmic space.
Journal of Computer and System Sciences, 54(3):400–411, June 1997.

[JLR06] Andreas Jakoby, Maciej Lískiewicz, and Rüdiger Reischuk. Space efficient algorithms
for directed series-parallel graphs. J. Algorithms, 60(2):85–114, 2006.

[JT07] Andreas Jakoby and Till Tantau. Logspace algorithms for computing shortest and
longest paths in series-parallel graphs. In FSTTCS, pages 216–227, 2007.

[LT79] Richard J. Lipton and Robert E. Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

[Rei08] Omer Reingold. Undirected connectivity in log-space. J. ACM, 55(4), 2008.

[Wes01] Douglas B. West. Introduction to Graph Theory. Prentice-Hall, second edition, 2001.

12


	Introduction
	Forest Decomposition
	Topological Equivalence
	Coin-Crawl Game
	Non-deterministic Search
	Expanding the explored region
	Moving the explored region

	Bounding the depth of an accepting path
	Finding Cycles 
	Future Work
	Acknowledgements

