
Space-Efficient Algorithms for Reachability in Surface-Embedded

Graphs

Derrick Stolee∗ N. V. Vinodchandran†

May 4, 2012

Abstract

This work presents a log-space reduction which compresses a directed acyclic graph with m
sources embedded on a surface of genus g to a graph on O(m + g) vertices while preserving
reachability between a given pair of vertices. Applying existing algorithms to this smaller
graph gives improved space bounds as well as improved simultaneous time-space bounds for
the reachability problem for a large class of directed acyclic graphs. Specifically, it significantly
extends the class of surface-embedded graphs with log-space reachability algorithms: from planar
graphs with O(log n) sources, to graphs with 2O(

√
logn) sources embedded in a surface of genus

2O(
√

logn). Additionally it also yields sublinear space (n1−ε space) algorithms with polynomial
running time for graphs with n1−ε sources embedded on surfaces of genus n1−ε.

1 Introduction

Graph reachability problems are central to space-bounded computations. Different versions of this
problem characterize several important space complexity classes. The problem of deciding whether
there is a path from a given vertex u to a vertex v in a directed acyclic graph is the canonical
complete problem for non-deterministic log-space (NL). The recent breakthrough result of Reingold
implies that the undirected reachability problem characterizes the complexity of deterministic log-
space (L) [13]. It is also known that certain restricted promise versions of the directed reachability
problem characterize randomized log-space computations (RL) [14]. Clearly, progress in space
complexity studies is directly related to progress in understanding graph reachability problems.
We refer the readers to a (two decades old, but excellent) survey by Avi Wigderson [19] and a
recent update by Eric Allender [1] to further understand the significance of reachability problems
in complexity theory.

In this paper we focus on designing deterministic algorithms for reachability with improved
space complexity. For the general directed graph reachability problem the best known result re-
mains the 40-year old O(log2 n) space bound due to Savitch [16] (where n is the number of vertices
in the graph). Designing a deterministic algorithm for the directed graph reachability problem that
asymptotically beats Savitch’s bound is the most significant open questions in this topic. While
this remains a difficult open problem, investigating classes of directed graphs for which we can
design space efficient algorithms that beat Savitch’s bound is an important research direction with
some outstanding results, including Saks and Zhou’s O(log3/2 n) bound for reachability problems
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characterizing RL computations [15] and Reingold’s log-space algorithm for the undirected reacha-
bility problem [13]. In this paper we consider the reachability problem over directed acyclic graphs
that are embedded on topological surfaces. We present the best (to date) space complexity upper
bounds for the reachability problem over this class of directed graphs.

Prior Results

Jakoby, Lískiewicz, and Reischuk [8] and Jakoby and Tantau [9] show that various reachability and
optimization questions for series-parallel graphs admit deterministic log-space algorithms. Series-
parallel graphs are a very restricted subclass of planar DAGs. In particular, such graphs have a
single source and a single sink. Allender, Barrington, Chakraborty, Datta, and Roy [2] extended
the result of Jakoby et al. to show that the reachability problem for Single-source Multiple-sink
Planar DAGs (SMPDs) can be decided in logarithmic space. Building on the work of Allender et
al. [2], in [17], the present authors show that reachability for planar DAGs with O(log n) sources
can be decided in logarithmic space. Theorem 1 below is implicit in [17].

Theorem 1 ([17]). Let G(m) denote the class of planar DAGs with at most m = m(n) sources,
where n is the number of vertices. The reachability problem over G(m) can be solved by a log-space
nondeterministic machine using a one-way certificate of O(m) bits. In particular, reachability over
G(m) can be decided deterministically in min{O(log n+m), O(log n · logm)} space.

The O(log n+m) space bound is obtained by a brute-force search over all certificates of length
O(m). Setting m = O(log n) we get a deterministic log-space algorithm for reachability over planar
graphs with O(log n) source nodes. The O(log n · logm) bound is obtained by first converting the
nondeterministic algorithm to a layered graph with m layers and poly(n) vertices in each layer, and
then applying Savitch’s algorithm on this layered graph. The second bound leads to a deterministic
algorithm that beats Savitch’s bound for reachability over DAGs with 2o(logn) sources (for example,
setting m = 2log1−ε n, it gives a log2−ε n space algorithm for reachability over planar graphs with
2log1−ε n source nodes).

However, if we are aiming for deterministic algorithms with O(log n) space complexity, the
above theorem could not handle asymptotically more than log n sources. In this paper we improve
the upper bound from min{O(log n+m), O(log n · logm)} to O(log n+ log2m). This yields a new
deterministic log-space algorithm for reachability over planar DAGs with m = 2O(

√
logn) source

nodes. We also extend our results to graphs embedded on higher genus surfaces. In addition,
techniques of this paper also leads to new results on simultaneous time-space bounds for reachability
which are not implied by [17].

The main technique of [17] (that leads to O(log n · logm) bound) can be viewed as a log-space
reduction that takes 〈G, u, v〉 where G ∈ G(m) and outputs 〈G′, u′, v′, 〉 so that (a) there is a directed
path from u to v in G if and only if there is a directed path from u′ to v′ in G′, (b) G′ is a layered
graph with m layers and poly(n) vertices per layer. This poly(n) factor in the size of G′ makes it
useless for obtaining a logarithmic space bound. We get rid of this poly(n) factor by avoiding the
intermediate nondeterminism and giving a direct reduction to a new reachability instance. This
requires a more careful analysis of the topological interaction of paths in surface-embedded graphs.

New Results

Let n be the number of vertices in the input graph. Let G(m, g) denote the class of DAGs with at
most m = m(n) source vertices embedded on a surface (orientable or non-orientable) of genus at
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most g = g(n). Our main technical contribution is the following log-space reduction that compresses
an instance of reachability for such surface-embedded DAGs.

Theorem 2. There is a log-space reduction that given an instance 〈G, u, v〉 where G ∈ G(m, g) and
u, v vertices of G, outputs an instance 〈G′, u′, v′〉 where G′ is a directed graph and u′, v′ vertices of
G′, so that (a) there is a directed path from u to v in G if and only if there is a directed path from
u′ to v′ in G′, (b) G′ has O(m+ g) vertices.

By a direct application of Savitch’s theorem on the reduced instance we get the following result.

Theorem 3. The reachability problem for graphs in G(m, g) can be decided in deterministic O(log n+
log2(m+ g)) space.

This improves the earlier-known space bound of min{O(log n+m), O(log n · logm)} and also
extends it to higher genus graphs. By setting m = g = 2O(

√
logn) we get a deterministic log-space

algorithm for reachability over graphs in G(2O(
√

logn), 2O(
√

logn)).

Corollary 4. The reachability problem for directed acyclic graphs with 2O(
√

logn) sources embedded
on surfaces of genus 2O(

√
logn) can be decided in deterministic logarithmic space.

By setting m and g to be no(1) we get o(log2 n) bound. The following corollary as stated is
implicit in [17]. However, the space bound we get for any specific function nl(n) where l(n) ∈ o(1)
is better than what is implied by the results of [17].

Corollary 5. The reachability problem for directed acyclic graphs embedded on surfaces with sub-
polynomial genus and with sub-polynomial number of sources can be decided in deterministic space
o(log2 n).

Theorem 2 leads to new simultaneous time-space bound for the reachability problem. Designing
algorithms for reachability with simultaneous time and space bound is another important direction
that has been of considerable interest in the past. Since a depth first search can be implemented
in linear time and linear space, the goal here is to improve the space bound while maintaining
a polynomial running time. The most significant result here is Nisan’s O(log2 n) space, nO(1)

time bound for RL [12]. The best upper bound for general directed reachability is the 20-year old
O(n/2

√
logn) space, nO(1) time algorithm due to Barnes, Buss, Ruzzo and Schieber [4]. Combining

our reduction with a simple depth-first search gives better simultaneous time-space bound for
reachability over a large class of graphs that beats the Barnes et al. bound.

Theorem 6. The reachability problem for graphs in G(m, g) can be decided in polynomial time
using O(log n+m+ g) space.

Note that Theorem 6 has a space bound which matches to O(log n+m) space bound of Theorem
1, except it guarantees polynomial time, where the previous bound gave 2O(m) poly(n) running time.
For any ε < 1, we get a polynomial time algorithm for reachability over graphs in G(O(nε), O(nε))
that uses O(nε) space.

Corollary 7. For any ε with 0 < ε < 1, the reachability problem for graphs in G(O(nε), O(nε)) can
be decided in polynomial time using O(nε) space.
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We note that the upper bound on space given in Theorem 6 can be slightly improved to
O
(

(m+ g)2−
√

log(m+g)
)

by using the Barnes et al. algorithm instead of depth-first search, which
will give a o(nε) space bound in the above corollary.

Theorem 8. The reachability problem for graphs in G(m, g) can be decided in deterministic poly-
nomial time using O

(
log n+ m+g

2
√

log(m+g)

)
space.

Before we go into further details, we note that throughout this paper certain known log-space
primitives are frequently used as subroutines without explicit reference to them. In particular,
Reingold’s log-space algorithm for undirected reachability is often used, for example to identify
connected components in certain undirected graphs.

1.1 Outline

Theorem 2 is proven in several parts. We begin in Section 2 by reviewing some concepts of topo-
logical embeddings including log-space algorithms on embedded graphs. In Section 3, we present a
simple structural decomposition called the forest decomposition of the given directed acyclic graph.
Based on this decomposition, we classify the edges as local and global. We present log-space al-
gorithms of Allender, Barrington, Chakraborty, Datta, and Roy [2] to decide reachability using
local edges. In order to control how the global edges interact, we define the notion of topological
equivalence among global edges in Section 4. We show that the number of possible equivalence
classes is bounded by O(m + g). Then, Section 5 describes a finite list of patterns that charac-
terize how paths use edges in these equivalence classes. We also analyze the structure of these
patterns. In particular, for each pattern type we identify a pair of log-space computable edges in
the corresponding equivalence class that has certain canonical properties. In Section 6, we describe
a graph on O(m+ g) vertices called the pattern graph whose vertices are described by patterns on
equivalence classes. The edges in the pattern graph are defined by a very restricted reachability
condition between equivalence classes. We finally show that this pattern graph is computable in
log-space and preserves reachability between a given pair of vertices.

Before we begin, we note that throughout this paper certain known log-space primitives are fre-
quently used as subroutines without explicit reference to them. In particular, Reingold’s log-space
algorithm for undirected reachability is often used, for example to identify connected components
in certain undirected graphs.

1.2 Notation

We mainly deal with directed graphs. A directed edge e = xy has the direction from x to y and we
call x the tail denoted by Tail(e), and y the head denoted by Head(e).

We assume that the given graph is acyclic. Lemma 9 gives a technique for converting a source-
bounded reachability algorithm on graphs promised to be acyclic into a cycle-detection algorithm
without asymptotically increasing the space requirement.

Lemma 9. Let s(n,m, g) = Ω(log n). If there exists an O(s(n,m, g))-space bounded algorithm
for testing uv-reachability over graphs in G(m, g) then there exists an O(s(n,m, g))-space bounded
algorithm to test if a graph is acyclic, given that it has at most m sources and is embedded in a
surface of genus at most g.

Proof. Let A(G, u, v) be the algorithm for testing uv-reachability on G ∈ G(m, g). Fix an incoming
edge at each non-source vertex, making a set F ⊆ E(G). By taking reverse walks from each vertex,
it can be verified that F has no cycles.
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Order the edges E(G) as {e1, . . . , e|E(G)|}. For each i ∈ {0, 1, . . . , |E(G)|}, letGi be the subgraph
of G where an edge ej is present in Gi if ej ∈ F or j ≤ i. Iterate through all such i and test if
A(Gi,Head(ei+1),Tail(ei+1)) ever returns with success. If any returns True, then there is a cycle
including the edge ei+1. Note that A gives the correct response, since G0 was cycle free and by
iteration, Gi is cycle free. Each Gi is acyclic for i ∈ {1, . . . , |E(G)|} if and only if G is acyclic and
all queries A(Gi,Head(ei+1),Tail(ei+1)) return False.

2 Topological Embeddings and Algorithms

We assume that the input graph G is embedded on a surface S where every face is homeomorphic
to an open disk. Such embeddings are called 2-cell embeddings. We assume that such an embedding
is presented as a combinatorial embedding where for each vertex v the circular ordering of the edges
incident to v is specified. In the case of a non-orientable surface, the signature of an edge is also
given, specifying if the orientation of the rotation switches across this edge. Since computing or
approximating a low-genus embedding of a non-planar graph is an NP-complete problem [5,18], we
require the embedding to be given as part of the input and we consider reachability in G(m, g) to
be a promise problem. In the case of genus zero, we can compute a planar embedding in log-space
and the promise condition can be removed.

Let G be a graph with n vertices and e edges embedded on a surface S with f faces. Then by
the well known Euler’s Formula we have n−e+f = χS , where χS is the Euler characteristic of the
surface S. The number of faces in a graph is log-space computable from a combinatorial embedding
(for a proof, see [10]), so χS is also computable in log-space. The genus gS of the surface S is given
by the equation χS = 2− 2gS for orientable surfaces and χS = 2− gS for non-orientable surfaces.

Let C be a simple closed curve on S given by a cycle in the underlying undirected graph of G.
C is called surface separating if the removal of C disconnects G. A surface separating curve C is
called contractible if removal of the nodes in C disconnects G where at least one of the connected
components has an induced embedding homeomorphic to a disc.

In order to perform log-space algorithms on curves in the graph, we must be able to represent
these curves in log-space. A curve C is log-space walkable if there is a log-space algorithm which
outputs the edges of C in order. Examples of such curves are given in the following section. Given
a log-space walkable curve C, it is possible to detect the type (separating, contractible, or neither)
of C in log-space.

First, note that if C is not orientable (i.e. there are an odd number of negatively-signed edges
in C) then C cannot be separating or contractible. By first checking the parity of such edges, we
can assume that C is orientable.

Given an orientable curve C = x1x2 . . . xk (indices taken modulo k), we can create (in log-space)
an auxiliary graph GC where each vertex xi is copied to two vertices xi,1, xi,2 with edges xixi+1

copied to two edges xi,1xi+1,1 and xi,2xi+1,2. However, an edge from a vertex y in V (G) \ C to a
vertex xi in C maps to one of two edges:

1. yxi maps to yxi,1 if yxi appears between xi−1xi and xixi+1 in the clockwise order about xi.
2. yxi maps to yxi,1 if yxi appears between xixi+1 and xi−1xi in the clockwise order about xi.

There is a natural combinatorial embedding of GC induced from the embedding of G by using the
same cyclic relations for vertices y ∈ V (G)\C and for split vertices xi,1 and xi,2, use the orientation
of xi but skip the edges which are not incident to the new vertex. See Figure 1 for an example of
such a split. The following properties are simple to prove:
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(a) A graph G with curve C. (b) The split graph GC .

Figure 1: Splitting G at a curve C.

1. C is separable if and only if GC is disconnected. In this case, GC has two components.
2. C is contractible if and only if GC is disconnected and at least one of the components is

embedded with characteristic zero.

Moreover, using Reingold’s undirected reachability algorithm we can detect that C is separable.
Given a vertex y /∈ C, we can also detect which connected component of GC contains y. We shall
exploit both of these properties in the following two sections as we partition the edge set using
topological information.

3 Forest Decomposition

A simple structural decomposition, called a forest decomposition, of a directed acyclic graph forms
the basis of our algorithm. This forest decomposition has been utilized in previous works [2, 17].

Let G be a directed acyclic graph and let u, v be two vertices. Our goal is to decide whether
there is a directed path from u to v. Let u, s1, . . . , sm be the sources of G. If u is not a source,
make it a source by removing all the incoming edges. This will not affect uv-reachability, increases
the number of sources by at most one, and only reduces the genus of the embedding.

Definition 10 (Forest Decomposition). Let A be a deterministic log-space algorithm that on input
of a non-source vertex x, outputs an incoming edge yx (for example, selecting the lexicographically-
first vertex y so that yx is an edge in G). This algorithm defines a set of edges FA = {yx : x ∈
V (G) \ {u, v, s1, . . . , sm}, y = A(x)}, called a forest decomposition of G.

Since G is acyclic, the reverse walk x1, x2, . . . , where x1 = x and xi+1 = A(xi), must terminate
at a source sj , u, or v, so the edges in FA form a forest subgraph. For the purposes of the forest
decomposition, v is treated as a source since no incoming edge is selected. If a vertex x is in the tree
with source v, then all non-tree edges entering x are deleted. This will not affect uv-reachability,
since G is acyclic and does not increase the number of sources or the genus of the surface. Each
connected component in FA is a tree rooted at a source vertex, called a source tree. The forest
forms a typical ancestor and descendant relationship within each tree. For the remainder of this
work, we fix an acyclic graph G ∈ G(m, g) embedded on a surface S (defined by the combinatorial
embedding) and F = FA a log-space computable forest decomposition.
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Definition 11 (Tree Curves). Let x and y be two vertices in some source tree T of F . The tree
curve at xy is the curve on S formed by the unique undirected path in T from x to y. If xy is an
edge, then the closed curve formed by xy and the tree curve at xy is called the closed tree curve at
xy.

Definition 12 (Local and Global Edges). Given an S-embedded graph G and a forest decompo-
sition F , an edge xy in E(G) \F is classified as local1 if (a) x and y are on the same tree in F , (b)
the closed tree curve at xy is contractible (i.e. the curve cuts S into a disk and another surface),
and (c) No sources lie on the interior of the surface which is homeomorphic to a disk. If S is the
sphere, then the curve cuts S into two disks and xy is local if one of the disks contains no source
in the interior. Otherwise, the edge xy is global.

3.1 Paths within a single tree

Definition 13 (Region of a tree). Let T be a connected component in the forest decomposition F
along with the local edges between vertices in T . The region of T , denoted R[T ] is the portion of
the surface S given by the faces enclosed by the tree and local edges in T .

The faces that compose R[T ] are together homeomorphic to a disk, since R[T ] can contract to
the source vertex by contracting the disks given by the local edges into the tree, and then contracting
the tree into the source vertex. This disk is oriented using the combinatorial embedding at the
source by the right-hand rule. Reachability in such subgraphs T can be decided using the SMPD
algorithm [2], in log-space. Note that the restriction of a 2-cell embedding implies all global edges
are incident to vertices on the outer curve of the diskR[T ]. Our figures depict source trees as circles,
with the source placed in the center, with tree edges spanning radially away from the source2. We
can also assign a clockwise or counter-clockwise direction to all local edges in a source tree region
R[Tsj ].

Definition 14 (Rotational Direction within R[T ]). For a local edge xy, the closed tree curve at xy
is cyclicly oriented by the direction of xy. The edge xy is considered clockwise (counter-clockwise)
if this cyclic orientation is clockwise (counter-clockwise) with respect to the orientation of R[T ].

Definition 15 (Irreducible Path). A path P = x1x2 . . . xk in G is F -irreducible if for each i < j
so that xi is an F -ancestor of xj , then xixi+1 . . . xj−1xj is the path in F from xi to xj . We say P
is irreducible when the forest decomposition F is implied from context.

Lemma 16. If there is a path from x to y in G, there is an F -irreducible path from x to y.

Proof. Replace the violating subpaths with the given tree paths.

A very useful property of irreducible paths is that they travel in a single rotational direction
within each source tree.

Lemma 17. Let P be an irreducible local path from x to y in a source tree T , where y is on the
boundary of R[T ]. There is a unique direction (clockwise or counter-clockwise) so that all non-tree
edges of P follow this direction.

1This definition of local differs from the use in [2] and [17].
2This visualization of source trees was crucial to the development of this work, and is due to [2].
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Proof. Let e be the first local edge in P . Without loss of generality, we assume it takes a clockwise
orientation. Assume for the sake of contradiction there exists a local edge in P that takes a
counterclockwise orientation. Let f be the first such edge. Consider how P travels from the head
of e to reach the tail of f . Note that all non-tree edges in this path have a clockwise orientation.
This gives three cases:

Case 1: P passes through the ancestor path of Head(f) at a vertex a. In this case, P is not
irreducible, since f is not a tree edge and an irreducible path would take the tree edges from a to
Head(f).

Case 2: P passes through the descendants of Head(f) at a vertex b. In this case, following P
from a to Head(f) then the tree path from Head(f) to a creates a cycle, contradicting that G is a
DAG.

Case 3: P travels around the descendants of Head(f) using a local edge e′. Now, Head(f) is
properly contained within the tree cycle given by e′. In order for P to reach y on the boundary of
R[T ], P must cross this curve. This must cross the descendants of Tail(e′) or Head(e′), creating a
cycle, contradicting that G is acyclic.

Therefore, such an f does not exist and all edges take the same orientation.

3.2 Reachability within a single tree

We now focus on the reachability problem within a single tree Tsj . By the definition of local edges,
we have the subgraph given by local edges within a single tree is a single-source multiple-sink planar
DAG. Allender et al. [2] solved the reachability problem in this class of graphs. We review their
method as well as adapt the method to test directional reachability.

Definition 18 (Step and Jump Edges). A local edge e /∈ F is a jump edge if the tree curve Ce
partitions V (G) \ Ce into two non-trivial parts. Otherwise, e is a step edge.

First, we discuss how to solve reachability when restricted to tree and step edges.

Theorem 19 (Allender et al. [2]). Let sj be a source in G. Reachability within R[Tsj ] using tree
and step edges is log-space computable.

Proof. Here, we consider the subgraph in R[Tsj ] given by the tree and step edges to be a planar
graph with a single source. Since we have removed the jump edges in R[Tsj ], all sinks in this graph
are on the boundary of R[Tsj ]. By adding a new global sink t to the outer face, the graph R[Tsj ]+ t
becomes a Single-source Single-sink Planar DAG (SSPD).

The cyclic orientation of edges at each vertex must have the outgoing edges and incoming edges
in two consecutive blocks. If not, suppose that the edges e1, e2, e3, e4 appear in clockwise order at a
vertex x, with e1, e3 are outgoing edges and e2, e4 are incoming edges. Since there is a single source
sj , there are paths P2 and P4 from sj to x using the edges e2 and e4, respectively. Likewise, there
are paths P1 and P3 from x to t starting with edges e1, and e3, respectively. This gives two closed
curves C1 (composed of P1 and P3) and C2 (composed of P2 and P4) which cross at x. Thus, they
must cross at another point y. By following C1 from x to y and C2 from y to x, there is a cycle in
G, a contradiction.

Given that the outgoing edges at any vertex x are in a single block of the cyclic orientation,
we can define the notion of left-most and right-most outgoing edges of x as those appearing as
the first and last (respectively) outgoing edges of the block with respect to the clockwise ordering.
This defines a left-most walk and a right-most walk from a vertex x by following the left-most and

8



right-most edges, starting at x and terminating at t. The left-most and right-most walks define a
closed curve Cx that includes x and t.

A vertex y is inside this curve Cx if and only if it is reachable from x: if y is within Cx, any path
from sj to y must cross the curve Cx, creating a path from x to y, and if y is reachable from x via
a path P , the edges of P must appear between the left-most and right-most walks from x. Hence,
by splitting R[Tsj ] + t along Cx and computing if y is within Cx, we can detect reachability.

Using the step-reachability algorithm as a subroutine, we now discuss directional reachability
using all local edges.

Theorem 20 (Allender et al. [2]). Given vertices x, y on the boundary of R[Tsj ] and a direction
d (left or right), reachability from x to y in R[Tsj ] using local edges using an irreducible path in
direction d is log-space computable.

Proof. We shall define a log-space data structure called an explored region which in turn defines a
set of vertices in R[T ]. The crucial property of these vertices is that all jump edges with tail in
the set and head outside the set are reachable from x. We will then use these edges to modify the
explored region while maintaining this property. When complete, the explored region will contain y
if and only if y is reachable from x via an irreducible path with rotational direction d, with respect
to the orientation of the source sj .

We shall assume that the direction d is Right (clockwise). The other direction follows by
symmetry.

Given a vertex w in Tsj , define ReachStep(w) to be the vertices in Tsj , reachable from w by
tree and step edges. Define functions StepLeft(w) and StepRight(w) to be the vertices within
ReachStep(w) which appear most counter-clockwise and clockwise, respectively, breaking ties by
selecting vertices closer to the source sj along T .

We shall define two log-size variables ReachLeft and ReachRight and initialize them as StepLeft(x)
and StepRight(x). These two variables store enough information for the explored region. The vertex
set Between(ReachLeft,ReachRight) is defined as the vertices which are strictly between ReachLeft
and ReachRight in the clockwise order of Tsj and the descendants of ReachLeft and ReachRight.
Note that this does not include the ancestors of ReachLeft and ReachRight.

Of particular interest to the explored region are jump edges with tail in the explored region
Between(ReachLeft,ReachRight) and head not in the explored region. We call these edges exiting
edges. Note that a jump edge e is exiting if and only if the tree curve at e contains ReachRight.

Since each d-directional exiting edge contains ReachRight, the exiting edges form a linear order
e1, e2, . . . , er where ei is contained within the tree curve on ej if and only if i < j. We shall extend
the explored region by using the minimal exiting edge, denoted ejump, and setting ReachRight to
StepRight(Head(ejump)).

Proceed to extend the explored region until one of two situations arise: if the vertex y is within
ReachStep(Head(ejump)), we return True; if there are no exiting edges, stop and return False. This
process is detailed in Algorithm 1.

The correctness of ReachLocal(x, y, d) requires the following claim regarding the explored region.

Claim 21. At every stage of Algorithm 1, every exiting edge e has Tail(e) reachable from x using
a d-directional irreducible path.

Proof of Claim. Without loss of generality, we assume d = R. We proceed by induction on the
number of iterations in the execution of ReachLocal(x, y, d). When ReachLeft and ReachRight are
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1. StepLeft(x)

2. StepRight(x)

3. e(1)
jump

4. Head(e(1)
jump)

5. StepLeft(Head(e(1)
jump))

6. StepRight(Head(e(1)
jump))

7. e(2)
jump

8. Head(e(2)
jump)

9. e(3)
jump

10. Head(e(3)
jump)

11. e(4)
jump

12. Head(e(4)
jump)

The shaded region is the explored region. The flat gray areas are reachable while the
striped areas are not. The striped area is darker depending on how many iterations that
region was in the explored region.

Figure 2: An example execution of ReachLocal(x, y,R).
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Algorithm 1 ReachLocal(x, y, d) — Returns True if and only if y reachable from x

ReachLeft← StepLeft(x)
ReachRight← StepRight(x)
i← 1
while there exists a d-directional exiting edge do
e
(i)
jump ← the minimal d-directional exiting edge

if y ∈ ReachStep(Head(e(i)jump)) then
return True

else if d = Right then
ReachRight← StepRight(Head(e(i)jump))

else if d = Left then
ReachLeft← StepLeft(Head(e(i)jump))

end if
i← i+ 1

end while
return False

initialized, the explored region consists of vertices within ReachStep(x) and vertices strictly within
the curve given by concatenating the following paths:

sj
T−→ ReachLeft

(local)−→ x
(local)−→ ReachRight T−→ sj .

If a jump edge e has tail within the explored region, then either (1) it is within ReachStep(x) and
is reachable, or (2) it is bound by the curve and must not be an exiting edge. Thus, the claim holds
for the first iteration.

Assume the claim holds for the kth iteration. Consider the next iteration’s selection of ejump

and let e be a jump edge with tail within the new explored region. If the tail of e is in the previous
explored region, the induction step shows the claim holds. Otherwise, there are only two cases.
First, the tail of e is within ReachStep(Head(ejump)) and e is reachable since ejump was reachable
by induction. Second, the tail of e is strictly within the curve given by concatenating the following
paths:

sj
T−→ Tail(ejump)

ejump−→ Head(ejump)
(local)−→ ReachRight T−→ sj ,

and hence the edge e is not exiting. This proves the claim.

Given the above claim, observe that when ReachLocal(x, y, d) returns True it is correct, as there
is some subset of the ejump edges which can be combined with local paths to create a path from x
to y.

To finish, we must prove that if there is a d-directional irreducible path from x to y in R[Tsj ],
then ReachLocal(x, y, d) returns True. Fix a path from x to y that uses the minimum num-
ber jump edges and consider the sequence e1, . . . , et of jump edges within this path. The mini-
mum number of jump edges guarantees that Tail(ei) ∈ ReachStep(Head(ei−1)) and Tail(ei+1) 6∈
ReachStep(Head(ei−1)) for all suitable i ∈ {2, . . . , t− 1}. The first jump edge e1 is an exiting edge
for the first explored region.

We claim that at each iteration where y is not in ReachStep(Head(ejump)), there is an edge ei of
the path that is an exiting edge. This is given by the choice of ejump as the mimimal d-directional

11



exiting edge. In the previous iteration, there was some ei that was exiting. If ei was selected as
ejump, then Tail(ei+1) is within ReachStep(ejump) and Head(ei+1) is not. Since all jump edges are
d-directional, the edge ei+1 is an exiting edge and the claim holds for another iteration.

Suppose that ejump was not selected to be ei. Then, the tree curve at ejump is contained
within the tree curve at ei. This provides two cases: (1) Head(ei) 6∈ ReachStep(Head(ejump))
and ei is still an exiting edge, or (2) Head(ei) ∈ ReachStep(Head(ejump)) and hence Tail(ei+1) ∈
ReachStep(Head(ejump)). In the latter case it is not immediate that ei+1 is an exiting edge, but
some edge ei′ with i′ > i will be an exiting edge, since y is not in ReachStep(Head(ejump)).

4 Topological Equivalence

The following notion of topological equivalence plays a central role in our algorithms. It was
originally presented in [17] for planar graphs, but we extend it to arbitrary surfaces.

Definition 22 (Topological Equivalence). Let G be a graph embedded on a surface S. Let F be
a forest decomposition of G. We say two (undirected) global edges xy and wz are topologically
equivalent if the following two conditions are satisfied: (a) They span the same source trees in F
(assume x and w are on the same tree), (b) The closed curve in the underlying undirected graph
formed by (1) the edge xy, (2) the tree curve from y to z, (3) the edge zw, and (4) the tree curve
from w to x bounds a connected portion of S, denoted D(xy,wz), that is homeomorphic to a disk
and no source lies within D(xy,wz).

Topological equivalence is an equivalence relation. For the sake of the reflexive property, we
take as convention that a single edge is topologically equivalent to itself. The symmetry of the
definition is immediate. Transitivity is implied by the following lemma, which is immediate from
the definitions.

Lemma 23. Let e1, e2 be topologically equivalent global edges and e3 a global edge.

1. If e3 has an endpoint in D(e1, e2), then e3 is equivalent to both e1 and e2.
2. If e3 is equivalent to e2, then one of the following cases holds:

(a) e1 is in D(e2, e3).
(b) D(e1, e2) and D(e2, e3) intersect at the curve given by e2 and the ancestor paths from its

endpoints to their respective sources, and D(e1, e3) = D(e1, e2) ∪D(e2, e3).

In both cases (a) and (b), e1 is topologically equivalent to e3.

Let E be an equivalence class of global edges containing an edge e, where e spans two different
source trees. Consider the subgraph of G given by the vertices in the source trees containing the
endpoints of e, along with all local edges in those trees and the edges in E. This subgraph is
embedded in a disk on S, as given in the following corollary.

Corollary 24. Given an equivalence class E of global edges, let SE =
⋃
e1,e2∈E D(e1, e2). The

surface SE is a disk.

Proof. Lemma 23, implies that for any triple e1, e2, e3 ∈ E and any pair of the disks D(e1, e2),
D(e1, e3), and D(e2, e3) are either adjacent or have a containment relationship. There is an ordering
e1, . . . , ek of the edges of E so that the disksD(ei, ei+1) pairwise intersect only at boundaries. Gluing
the disks D(ei−1, ei) and D(ei, ei+1) along ei constructs SE as a disk.
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We shall make explicit use of this locally-planar embedding. For an equivalence class of global
edges spanning vertices in the same tree, a similar subgraph and embedding is formed by considering
the ends of the equivalence class to be different copies of that source tree.

The lexicographically-least edge e in a topological equivalence class of global edges is log-space
computable. By counting how many global edges which are lexicographically smaller than e and are
the lexicographically-least in their equivalence classes, the equivalence class containing e is assigned
an index i. The class Ei is the ith equivalence class in this ordering. We shall use this notation to
label the equivalence classes.

Definition 25 (The Region of an Equivalence Class). Let Ei be an equivalence class of global
edges. Define the region enclosed by Ei as R[Ei] =

⋃
e1,e2∈Ei D(e1, e2).

The region R[Ei] has some properties which are quickly identified. There are two edges ea, eb ∈
Ei so that R[Ei] = D(ea, eb). These outer edges define the sides of R[Ei]. The boundary of R[Ei] is
given by these two edges and their ancestor paths in F on all four endpoints. All vertices in a source
tree T are contained in the region R[T ]. Let TA and TB be the two source trees containing the tail
and head, respectively, of the representative edge in Ei. The vertices within the boundary of R[Ei]
are within R[TA] and R[TB]. The vertices in R[Ei] are partitioned into two ends, A and B, where
the vertices are placed in an end determined by containment in R[TA] ∩ R[Ei] and R[TB] ∩ R[Ei]
when the trees TA and TB are different or by the two connected components of R[TA]∩R[Ei] when
the trees TA and TB are equal. Note that the endpoints of edges in Ei lie on the boundary of the
regions R[TA] and R[TB]. There is an ordering ea = e1, e2, . . . , ek = eb of Ei so that the endpoints
of the ej on the A-end appear in a clockwise order in that tree. Two regions R[Ei] and R[Ej ] on
different classes Ei and Ej intersect only on the boundary paths. The vertices on the boundary are
not considered inside the region, since they may be in multiple regions.

Since global edges appear on the boundary of R[T ] for a given source tree T , there is a natural
clockwise ordering on these edges, with respect to the orientation of T . Further, we can order the
incident equivalence classes (with possibly a single repetition, in the case of global edges with both
endpoints in T ) by the clockwise order the ends R[Ei] ∩R[T ] appear on the boundary of R[T ].

The resource bounds we prove directly depends on the number of equivalence classes. The
following lemma bounds the number of equivalence classes.

Lemma 26. Let G be a graph embedded on a surface S with Euler characteristic χS with a forest
decomposition F with m sources. There are at most 3(m + |χS |) topological equivalence classes of
global edges. If gS is the genus of S, |χS | = O(gS) and there are O(m+ gS) equivalence classes of
global edges.

Proof. Consider a graph G which has a maximal number of equivalence classes and remove all but
one representative of each class. Create a new multigraph H on the m sources with edges given by
the representatives of each class, with the edges embedded in S by following the undirected path
composed of the tree path from the first source to the edge, the edge, then the tree path from the
edge to the second source. There are m vertices, and let e be the number of edges, f the number of
faces. Subdivide these edges twice to get a simple graph embedded in S. Note that Euler’s formula
holds in this graph on m+ 2e vertices, 3e edges, and f faces. Hence,

χS = (m+ 2e)− (3e) + f

= m− e+ f.
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Moreover, each face must have at least three equivalence classes, and each edge is incident to
two faces, so 2e ≤ 3f and f ≤ 2

3e. This gives

χS = m− e+ f ≤ m− 1
3
e

⇒ e ≤ 3m− 3χS ≤ 3(m+ |χS |).

Now that all tree and local edges are embedded in disks of the form R[T ] and global edges
are in O(m + g) disks of the form R[Ei], we are able to abandon all other portions of S. The
important information from S is that the ends of regions incident to a given source tree appear
in a clockwise order on the boundary of R[T ] and that there are O(m + g) equivalence classes of
global edges. Each source tree looks like a disk (R[T ]) with strips (R[Ei] for incident classes Ei)
stretching radially away from it (as long as the other end of the strip R[Ei] is not considered).
Hence, the regions R[Tsj ] and R[Ei] form a ribbon graph, which encodes the entire surface but has
only m vertices and O(m+ g) edges.

Consider an equivalence class Ei between source trees TA and TB, a rotational direction d
(clockwise or counterclockwise), and a vertex x in TA outside the region R[Ei]. We say that the
vertex x fully reaches Ei in the direction d if there is an irreducible d-directional local path from x
to an endpoint of each edge in Ei. If x does not fully reach Ei in direction d, but there is a local
path from x to an endpoint of some edge of Ei, then we say x partially reaches Ei in this direction.
If such a path is irreducible, then the path follows a clockwise or counter-clockwise direction within
TA and we say x fully (or partially) reaches Ei using a clockwise (or counter-clockwise) rotation.

Lemma 27. Let x be a vertex in a source tree TA. For each rotational direction (clockwise or
counter-clockwise), there is an ordering Ei0 , Ei1 , . . . , Ei` of the edge classes reachable via irreducible
paths in that direction so that

1. x fully reaches each Eij for j ∈ {1, . . . , `− 1}.
2. x either fully or partially reaches Ei0 and Ei`.
3. If x is not in the interior of R[Ei0 ], x fully reaches Ei0.

Figure 3: A vertex x with three counter-clockwise reachable classes, Ei1,, Ei2 , and Ei3 , as in Lemma 27.

Proof. Construct the list using all reachable classes in the given rotational direction and order by
their appearance. The irreducible path P from x to the class Ei` must intersect the tree paths from
the source to the edges in each class Eij for all j < `, with x 6∈ R[Eij ], since the edges in P lie in
R[T ], but the endpoints of the edges in Eij are on the boundary of R[T ]. Hence, x fully reaches
these classes.
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5 Global Edges and Patterns

At this point, we take a very different approach than [17]. The algorithm described in [17] focused
on reachability within the regions R[T ] on the source trees T . Here, we focus on reachability within
and between equivalence classes Ei. We create a constant number of vertices derived from each
equivalence class. This constant is given by the number of distinct ways a path can enter the region
R[Ei], use edges in Ei, then leave the region R[Ei]. We call these patterns.

Definition 28 (The Pattern Set). Let Ei be an equivalence class of global edges. An irreducible
path P that involves an edge of the class Ei induces a pattern on Ei defined by 〈abc〉 with a, c ∈
{L,R}, b ∈ {S,X} where a is the clockwise (R) or counter-clockwise (L) direction the path takes
as it enters R[Ei], c is the direction the path takes as it leaves R[Ei], and if b = S, the path enters
and leaves R[Ei] on the same end and if b = X, the path enters and leaves R[Ei] on opposite ends
3. Define the pattern set, P = {〈RSR〉, 〈LSL〉, 〈RXR〉, 〈RXL〉, 〈LXR〉, 〈LXL〉}.

A

B

eout
x ein

x

A

B

ein
x eout

x

A

B

eout
x ein

x

A

B

ein
x eout

x

A

B

einx =eout
x

A

B

einx =eout
x

〈RSR〉 〈LSL〉 〈RXL〉 〈LXR〉 〈RXR〉 〈LXL〉
Full Patterns Nesting Patterns

Table 1: Different patterns using an edge class Ei, entering from the A-end of R[Ei].

Let Ei be an edge class and R[Ei] be the enclosed region. Let t be an end of R[Ei] (either A or
B) and fix an orientation on that end and a pattern p that involves Ei. Then the entrance (exit)
of the pattern at the t-end is the ancestor path on the boundary of R[Ei] on the t-end that a path
must cross before (respectively, after) using the edges in Ei that induce the pattern p with the given
orientation. (See Figure 4 for a visual representation of the entrance and exit of a pattern.)

We can now define pattern descriptions which are the vertices of the pattern graph that we will
define in the next section.

Definition 29 (Pattern Descriptions). Let k be the number of topological equivalence classes of
edges of G. A pattern description is a tuple x = (i, t, o, p) where i ∈ {1, . . . , k}, t ∈ {A,B},
o ∈ {+1,−1}, and p ∈ P. Here i represents the equivalence class Ei, t represents the end of R[Ei]
that contains the entrance, o ∈ {+1,−1} specifies if the orientation of the path is in agreement
with (or opposite to, respectively) the local orientation of the tree on the t-side of Ei, and p ∈ P
represents the pattern used in Ei. The set {1, . . . , k} × {A,B} × {+1,−1} × P of all pattern
descriptions is denoted by VP.

For example, the description (i, B,+1, 〈RXL〉) is an element in VP corresponding to a 〈RXL〉
pattern, using at least one edge of the class Ei starting at the B-side and leaving the A-side, oriented

3The interested reader will find the notation for patterns derived from move sequences in the Coin Crawl Game
from [17].
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Figure 4: Terminology for the entrance and exit of a pattern and the modifiers of direction, end, and side.
This example is an 〈LXR〉 pattern.

to agree with the B-side. Lemma 26 implies the number of descriptions is O(m + gS) where m is
the number of sources and g the genus of the surface. A pattern description can be represented
with dlog ke+ 5 = O(log(m+ gS)) bits4.

We now investigate some properties of paths that induce these pattern descriptions. We focus
on a path which uses local edges and global edges in a single equivalence class and induces a single
pattern on that class. These single-pattern paths will be concatenated to make larger paths once
the structure of the shorter paths is understood.

An important property of these patterns is that if the pattern is of full type or the equivalence
class is fully reachable, we can assume without loss of generality that the path used two special
edges, which we call the canonical edge pair.

Definition 30 (Canonical Edge Pair). Let x = (i, t, o, p) be a pattern description centered at the
edge class Ei. There are two edges (incoming and outgoing) in Ei, called the canonical edge pair
for x. The outgoing edge, eout

x , is the edge e ∈ Ei with head on the exit end that is farthest from
the exit side so that there exists a local path from Head(e) to the exit of R[Ei]. The incoming edge,
einx , is the edge e ∈ Ei with the tail on the entrance end that is closest to the entrance side so that
either e = eout

x or Tail(eout
x ) is reachable from Head(e) using local paths and edges in Ei.

5.1 Full Patterns

Full patterns are named so because a path which induces a full pattern intersects the ancestor path
of at least one endpoint of every edge in the class. Hence, every edge is reachable. This leads to
the property that if an irreducible path induces such a pattern, then the path might as well use
the canonical edges in the corresponding equivalence class.

Lemma 31. Let x be a pattern description of full type centered at an edge class Ei. Let y, z ∈ V (G)
be vertices not inside R[Ei], where y is in the source tree on the entrance end of x and z is in the
source tree on the exit end of x. Then there is a path from y to z in G using only local paths and
edges of the class Ei that induces the pattern x if and only if Tail(einx ) is reachable from y using a
local path in the entrance direction of x and z is reachable from Head(eout

x ) using a local path in
the exit direction of x.

4This bland fact is in fact very important for the later use of Savitch’s Theorem.
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Figure 5: The edges used in the proof of Lemma 31 in an 〈LXR〉 pattern.

Proof. Note that if the tail of einx is reachable from y using a local path in the entrance direction,
and z is reachable from the head of eout

x using a local path in the exit direction, then there is a path
from y to z that induces the pattern x using the path between einx and eout

x given by the definition
of the canonical pair.

If a path exists from y to z that induces the pattern x, then there is at least one edge of the class
Ei in the path. Let e1 be the first edge of class Ei used in the path and e2 be the last. Consider
where e1 and e2 are in comparison to the canonical pair (einx , e

out
x ) in the ordering of the edges in

Ei. An example of the edges e1 and e2 are shown in Figure 5.
If e1 is closer to the entrance side of Ei compared to einx , then (by the definition of einx ) there

is no path from the head of e1 to the tail of eout
x using local paths and edges in Ei. Hence, a path

from e1 that leaves R[Ei] in the exit direction can not cross the ancestor path of the tail of eout
x ,

so it must cross the ancestor path of the head of eout
x . This implies there is an edge e in Ei in the

direction of eout
x that is farther from the exit direction and whose head reaches the head of eout

x .
This contradicts the definition of eout

x , since there is now a local path from the head of e1 that
reaches the boundary of R[Ei] in the exit direction.

Therefore, the edge e1 appears after einx in the order on Ei starting from the entrance side. This
implies that y has a local path that crosses the ancestor path from the tail of einx and hence reaches
the tail of einx . If eout

x is on the exit side of Ei compared to e2, then by the definition of eout
x , there

is no local path from the head of e2 that reaches the boundary of R[Ei] in the exit direction. So,
e2 is on the exit side of Ei compared to eout

x . The local path that reaches the boundary of R[Ei]
from the head of eout

x crosses the ancestor path to the head of e2, so z is reachable from the head
of eout

x using a local path.

Lemma 32. Let x be a pattern description of full type. The canonical edge pair (einx , e
out
x ) is

log-space computable.

Proof. The outgoing edge, eout
x , is computed by enumerating the set of edges in the class Ei with

head on the exit end of R[Ei] which reach the boundary of the region R[Ei] using local edges in
the exit direction of the pattern.

The incoming edge is computed by an iterative procedure. Store two edge pointers, e1 and e2.
These edges will always be in the class Ei or null. The edge e1 will have tail in the entrance end of
R[Ei] and e2 with have tail in the exit end of R[Ei]. Initialize e1 = eout

x and set e2 to be null.
Proceed by iterating through the edges in Ei starting at eout

x to the last edge in Ei on the
entrance side of R[Ei]. Each edge is a candidate to update e1 and e2.
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If the tail is in the entrance side of R[Ei], check if the head reaches the tail of e2 or eout
x using

a local path. If so, then update e1 to this edge.
If the tail is in the exit side of R[Ei], check if the head reaches the tail of e1 or eout

x using a
local path. If so, then update e2 to this edge.

After all edges have been tested, set einx = e1. There is a path from e1 to eout
x using local paths

and edges in Ei by considering the reverse sequence of e1 and e2 updates that allowed Tail(eout
x )

to be reachable from Head(e1). Further, no edge beyond e1 in the proper direction can reach eout
x

because it must cross the ancestor paths from e1 to the sources on each endpoint.

5.2 Nesting Patterns

Nesting patterns are named so because irreducible paths which induce such patterns use exactly
one edge of this class, and we may assume that the edge used is the one farthest from the entrance
that is reachable (and that a local path exists from its head to the exit). The following lemmas
describe properties of nesting patterns.

Lemma 33. If an irreducible path using local paths and edges in a global edge class Ei induces a
nesting pattern, then the path uses exactly one edge in the class Ei.

Proof. Let x and y be vertices outside Ei with a path from x to y that induces a nesting pattern
on Ei. Let e1 be the first edge in Ei used and e2 be the second. Note that e2 cannot be closer to
the entrance direction than e1, or else the head of e2 is a descendant of the local path from x to
the tail of e1, contradicting irreducibility. Also, e2 cannot be farther from the entrance direction
than e1 or else the path from the head of e2 to y must cross the ancestor path at the head of e1,
creating a cycle, contradicting that the graph is acyclic.

Lemma 34. Let x be a pattern description of nesting type centered at a global edge class Ei. Then,
einx = eout

x , and eout
x is log-space computable.

Proof. By the definition of eout
x , there is a local path P from the head of eout

x to the boundary
of R[Ei] in the exit direction (which is also the entrance direction). All edges in Ei closer to the
boundary in the entrance direction from eout

x have at least one endpoint reachable from P . If any
of these edges could reach eout

x , then there would be a cycle. Therefore, einx = eout
x .

Iterate through the edges in Ei starting on the exit side. Then, eout
x is the last edge in this

order with a local path from the head to the boundary of R[Ei] in the exit direction.

Lemma 35. Let x be a nesting pattern centered at an edge class Ei. Let y and z be vertices not
inside R[Ei]. If there exists an irreducible path from y to z using local paths and edges in the global
edge class Ei which induces x, then z is reachable from Head

(
eout
x

)
.

While it would be useful to have a property similar to Lemma 31 for nesting patterns, there
may exist a vertex w from which there are paths that induce a nesting pattern without reaching
the canonical incoming edge. We can define a new edge in the class that is similarly canonical,
except with respect to the vertex w.

Definition 36 (Most-Interior Edge). Let x = (i, t, o, p) be a pattern description of nesting type
and w be a vertex not in the interior of R[Ei]. The most-interior edge of x reachable from w,
denoted eint(w)

x , is the edge e in the class Ei that is farthest from the entrance side of R[Ei] so that
(a) there is a local path from w to Tail(e) in the entrance direction, and (b) there is a local path
from Head(e) to the exit boundary of R[Ei].

18



Figure 6: The most-interior edge from a vertex w in a pattern description x with an 〈RXR〉 pattern.

Lemma 37. Let x be a pattern description of nesting type and w a vertex not in the interior of
R[Ei]. The most-interior edge, eint(w)

x , is log-space computable. For any vertex z not in R[Ei],
there is a path from w to z that induces the pattern x if and only if there is an irreducible local path
from Head

(
e
int(w)
x

)
to z in the exit direction of x. If w fully reaches Ei, then eintw

x = eout
x .

Proof. The edges in the class Ei have an order using the rotation given by the entrance direction of
the pattern description x, where two edges in Ei can be compared using this order in log-space. Let
e
int(w)
x be the edge e of class Ei farthest from the entrance side of R[Ei] with tail reachable from w

and the head has a local path reaching the exit boundary of R[Ei] in the exit direction of x. Note
that this edge is computable in log-space using the SMPD algorithm and pairwise comparison of
the rotational order of edges.

Consider an irreducible path P from w that induces the pattern description x to reach a vertex
z outside R[Ei]. By Lemma 33, the path P uses exactly one edge e of the class Ei. The edge
cannot farther from the entrance side of R[Ei] than e

int(w)
x or else either w does not reach Tail(e)

or Head(e) does not reach the exit of R[Ei]. The path that exits the class Ei from the head of
e
int(w)
x must pass through the tree path from the source to the head of e. Therefore, the head of e

is reachable from the head of eint(w)
x and so is anything reachable from the head of e, including z.

Since Tail(eint(w)
x ) is reachable from w using a local path in the entrance direction, anything

reachable from Head(eint(w)
x ) using a local path in the exit direction is reachable from w using a

path that induces the pattern description x.

6 The Pattern Graph

We now describe a graph on O(m+ gS) vertices that preserves uv-reachability.

Definition 38 (The Pattern Graph). Given G and F as above, the pattern graph, denoted
P(G,F ) = (V ′P, E

′
P) is a directed graph defined as follows. The vertex set V ′P = {u′, v′} ∪ VP =

{u′, v′} ∪ ({1, . . . , k} × {A,B} × {+1,−1} × P). For two pattern descriptions x,y ∈ VP, an edge
x → y is in E′P if and only if there exists a (possibly empty) list of nesting pattern descriptions
z1, . . . , z` (called an adjacency certificate), so that the following two conditions hold:

1. There is an irreducible path from Head(eout
x ) to Tail(einy ) which induces the sequence z1, . . . , z`

of nesting pattern descriptions.
2. For each j ∈ {1, . . . , `}, Tail(einzj ) is not reachable from Head(eout

x ) using irreducible paths
that induce the pattern descriptions z1, . . . , zj−1.

19



Figure 7: The nesting patterns z1 and z2 satisfy the adjacency conditions in Definition 38 from x to each
yj . The pattern adjacencies are enumerated during the algorithm of Lemma 40 where e is assigned to e0,
e1, and e2, sequentially. Note that e0 = eout

x , e1 = e
int(Head(e0))
z1 , and e2 = e

int(Head(e1))
z2 . The pattern y1 is

reachable from w0 with no internal nesting patterns. The patterns y2 and y3 are reachable from w0 using
the nesting pattern z1. The pattern y4 is reachable from w0 using the nesting patterns z1 and z2. The
algorithm from Lemma 40 terminates at e2, since e2 does not give a partially-reachable class.

In addition, for a description x = (i, t, o, p) there is an edge u′ → x in E′P if and only if x has
the t-end in the tree Tu. Also, for a pattern description x = (i, t, o, p) there is an edge x→ v′ in E′P,
if and only if the class Ei is incident to v, t is the other end of the class, and p ∈ {〈RXL〉, 〈LXR〉}.

Theorem 39. There exists a path from u to v in G if and only if there exists a path from u′ to v′

in P(G,F ).

Proof. (⇒) Let P be an irreducible path from u to v in G. P induces a sequence of pattern
descriptions x1, . . . ,x`. Note that x1 is centered at an edge class that is incident to Tu and the
entrance end is on Tu. Note also that x` is centered at an edge class where the edges have head v.
Thus, in P(G,F ), u′ → x1 and x` → v′ are edges.

For full pattern descriptions xi, Lemma 31 implies that we may assume the first edge in the
global edge class of xi used by P is einxi and the last such edge is eout

xi .
Fix i ∈ {1, . . . , ` − 1} and let xj be the next full pattern induced after xi. If j = i + 1, then

the path P takes a local path between the edges that induce the patterns xi and xi+1. By Lemma
31, einxj is reachable from eout

xi by a local path and an adjacency exists from xi to xi+1 in P(G,F ),
using an empty list of nesting patterns as the adjacency certificate.

Otherwise, j > i+1 and there are j− i nested patterns between xi and xj . Rename the nesting
patterns between xi and xj as z1, . . . , zj−i where zi′ = xi+i′ . If z1, . . . , zj−i compose an adjacency
certificate for xi → xj , then this edge exists in P(G,F ). Otherwise, there exists such a k that
violates the adjacency condition between xi and xj , then let i′ be the smallest such index. There
is an edge in P(G,F ) from xi to the nesting pattern description zi′ , since Tail(einzi′ ) is reachable
from Head(eout

xi ) by a path using the nesting patterns z1, . . . , zi′−1 as the adjacency certificate.
By Lemma 37, Tail(einxj ) is reachable from Head(eout

zi′
) using an irreducible path which induces the

patterns zi′+1, . . . , zj−i. By iteration, there is a path from zi′ to xj in P(G,F ), and hence a path
from xi to xj in P(G,F ). Connecting all of the edges between the full patterns in x1, . . . ,x` gives
a path from u′ to v′ in P(G,F ).
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(⇐) Given a path P = u′,x1,x2, . . . ,x`, v′ in P(G,F ), let xj = (ij , tj , oj , pj) for each j ∈
{1, . . . , `}. Since u′ → x1 in P (G), Ei1 is a class incident to Tu and all edges are reachable from u.
Specifically, there is a tree path P0 from u to eout

x1
. Similarly, since x` → v′ in P(G,F ), Eik is a class

incident to Tv and all edges have v as a head. For each j ∈ {1, . . . , `− 1}, Lemmas 31 and 37 imply
there is an irreducible path Pi in G from the head of eout

xj to the tail of einxj+1
that is either a local

path or induces a list of nesting pattern descriptions which form an adjacency certificate. Also, by
Definition 30, there exist (possibly empty) paths Qj from einxj to eout

xj using local paths and edges of
the class Eij . These paths concatenate to a path uP0e

out
x1
P1e

in
x2
Q2e

out
x2
P2e

in
x3
. . . eout

x`−1
P`−1e

in
x`
v from

u to v in G.

Lemma 40. The pattern graph P(G,F ) is log-space computable.

Proof. Given a pattern description x, we describe a log-space algorithm for enumerating the pattern
descriptions reachable by an edge in P(G,F ). It is simple to find the pattern descriptions x,y so
that u→ x and y→ v.

A necessary subroutine takes a global edge e and enumerates all pattern descriptions reachable
from Head(e) using local paths in the exit direction of x. By Lemma 27, there is an ordered list of
topological equivalence classes Ei0 , Ei1 , . . . , Ei` reachable by local paths from the head of e. Ei0 is
the class containing e, so e is in R[Ei0 ]. All other classes Eij (for j ≥ 1, except possibly j = `) are
fully reachable. Hence, each pattern description y centered at a class Eij with j ∈ {1, . . . , ` − 1}
(where the entrance direction of y, orientation, and end all match the exit direction of x) has einy
reachable from Head(e) using a local path. Each pattern description y with entering direction the
same as the exit direction of x and centered at Ei` can be checked if einy is reachable from e. The
only pattern that could be used without having einy reachable is a nesting pattern.

To enumerate all neighbors of x in P(G,F ), perform the above subroutine on eout
x , adding edges

from x to each reachable pattern description y. If the nesting pattern z on Ei` is not fully reachable
(i.e. there is no local path from e to einz in the proper direction) then compute the most-interior edge
e
int(Head(e))
z . Repeat the subroutine on this edge, continuing until the class Ei` is fully reachable

(or the list is empty). In the jth iteration, let wj−1 = Head(e) and zj = z. See Figure 7 for an
example of this iterative procedure.

It is clear this algorithm takes log-space. It enumerates all neighbors of x in P(G,F ), since
a neighbor y requires a list of nesting classes z1, . . . , z` so that there is an irreducible path from
x to y inducing these classes. Each class zj has the edge einzj not reachable from x using the
patterns z1, . . . , zj−1. This means that the pattern zj is centered at the class Ei` computed by the
iteration of the subroutine on the edge eint(wj−1)

zj−1 . Moreover, y appears as a reachable class from the
most-interior edge computed at z`, so y is enumerated. Finally, any pattern enumerated by this
procedure can reconstruct the list of z1, . . . , z` by using the nesting patterns used in the subroutine
iterations.

Theorem 41 (Main Theorem). There is a log-space reduction that given an instance 〈G, u, v〉
where G ∈ G(m, g) and u, v vertices of G, outputs an instance 〈G′, u′, v′〉 where G is a directed
graph and u′, v′ vertices of G′, so that

(a) there is a directed path from u to v in G if and only if there is a directed path from u′ to v′

in G′,
(b) G′ has O(m+ g) vertices.
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Proof. Fix a forest decomposition F and let G′ be the pattern graph P(G,F ). Theorem 39 shows
that there is a path from u to v in G if and only if there is a path from u′ to v′ in P(G,F ) if and
only if there is a path from u′ to v′ in P(G,F ). Lemma 40 gives that G′ is log-space computable.
By Lemma 26, there are at most O(m+ g) equivalence classes in G (with respect to F ), and there
is a constant multiple of pattern descriptions per equivalence class, so G′ has O(m+g) vertices.

7 Discussion

We have succeeded in enlarging the class of surface-embedded DAGs which admit deterministic log-
space algorithms for reachability. By extending the concept of topological equivalence from [17], we
have shown that this is a useful algorithmic construct. Perhaps the structures built in this paper
have application to other problems. Placing planar DAG reachability within L will likely require
significant new ideas since the source-to-genus tradeoff hints that an algorithm for m-source planar
DAGs will also apply to m-genus DAGs.

Further, the algorithms developed in this work improve upper bounds for the class G(m, g) for
sub-polynomial values of m and g. See Table 2 for a list of space bounds of different algorithms for
reachability in certain classes of graphs. Table 3 describes which results give which space bounds
with simultaneous polynomial-time algorithms.
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