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Abstract

Let f(n, p) be the maximum number of edges in a graph on n vertices with p perfect match-
ings. Dudek and Schmitt proved that there exist constants np and cp so that for even n ≥ np,
f(n, p) = n2

4 + cp; we call a graph p-extremal if it has p perfect matchings and n2

4 + cp edges. In
this paper, we develop structural theorems in matching theory to study p-extremal graphs and
use them in a new computational method. This method extends the known sizes of p-extremal
graphs from p ≤ 10 to p ≤ 27 while providing a complete characterization. This information
provides further evidence towards a conjectured upper bound for all values of p and shows the
sequence cp is not monotonic.

1 Introduction

A perfect matching is a set of disjoint edges that cover all vertices. Let Φ(G) be the number of
perfect matchings in a graph G, and for even n and positive p let f(n, p) be the maximum number
of edges in a graph G on n vertices with Φ(G) = p. The exact behavior of f(n, p) is not completely
understood. In this work, we determine f(n, p) for all p ≤ 27 as well as characterize the graphs
meeting these extremal values. We achieve these results by developing an extremal adaptation of
structural results in matching theory and then applying these results in an isomorph-free generation
algorithm. In the development, we use Lovász’s Two Ear Theorem [4], structure theorems of Hartke,
Stolee, West, and Yancey [3], and an isomorph-free generation scheme for 2-connected graphs [9].

Hetyei first characterized the extremal graphs with a single perfect matching and n vertices
(unpublished; see [5, Corollary 5.3.14]) giving f(n, 1) = n2

4 for all even n. Dudek and Schmitt [1]
generalized the problem for an arbitrary constant p and found the general form of f(n, p) for
sufficiently large n.
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Theorem 1.1 (Dudek, Schmitt [1]). For every p ≥ 1, there exist constants cp, np so that for all
even n ≥ np, f(n, p) = n2

4 + cp.

From this theorem, understanding the behavior of f(n, p) relies on understanding the sequences
np and cp. An important step to proving Theorem 1.1 is that if a graph exists with p perfect
matchings, n vertices, and n2

4 + c edges, then f(m, p) ≥ m2

4 + c for all even m ≥ n [1, Lemma 2.1]).
This motivates defining the excess of G to be c(G) = e(G) − 1

4n(G)2, since any graph G with p

perfect matchings gives a lower bound c(G) ≤ cp. A graph G with Φ(G) = p is p-extremal if it has
n2

4 + cp edges. In other words, p-extremal graphs have the largest excess out of all graphs with p

perfect matchings.
Dudek and Schmitt [1] computed cp for 2 ≤ p ≤ 6 and provided the exact structure of p-

extremal graphs for p ∈ {2, 3}. Hartke, Stolee, West, and Yancey [3] analyzed the structure of
p-extremal graphs and found that for a fixed p, the infinite family is constructable from a finite set
of fundamental graphs. Using McKay’s graph generation program geng [7], they discovered these
fundamental graphs, computed cp for 7 ≤ p ≤ 10, and described the structure of p-extremal graphs
for 4 ≤ p ≤ 10. These values of cp are given in Table 1. The best previously known upper bound1

is cp ≤ p− 6 for p ≥ 11, while the best known lower bound is cp ≥ 1 for all p ≥ 2 [3, Theorem 2.3].

p 1 2 3 4 5 6 7 8 9 10
np 2 4 4 6 6 6 6 6 6 6
cp 0 1 2 2 2 3 3 3 4 4

[1] [3]

Table 1: Known values of np and cp.

For an integer n, the double factorial n!! is the product of all numbers at most n with the same

parity. The values of cp are conjectured to be on order O
((

ln p
ln ln p

)2
)

, given below.

Conjecture 1.2 (Hartke, Stolee, West, Yancey [3]). Let p, k, t be integers so that k ∈ {1, . . . , 2t}
and k(2t− 1)!! ≤ p < (k + 1)(2t− 1)!! and set Cp = t2 − t+ k − 1. Always cp ≤ Cp.

When p = k(2t− 1)!!, a construction shows that cp ≥ t2 − t+ k − 1 [3].
We first extend structural theorems which form the core of the generation algorithm. After the

algorithm framework is developed, we develop additional structure theorems to make the compu-
tation more efficient as well as significantly prune the search space. These theorems are motivated
by algorithmic necessity, but may be of independent interest to the theory of perfect matchings.
From this search, we obtain the sequence cp and the structure of p-extremal graphs for all p ≤ 27.

We begin by discussing the structure of p-extremal graphs in Section 2. Sections 3 through 7
contain the description of the computational technique and optimization strategies. A brief outline
of these sections is given at the end of Section 2. In Section 8, we discuss the results of executing
the search.

1 This upper bound is given by cp ≤ maxq<p cq + 1 [1, Lemma 2.4] and that cp ≤ 4 for all p ≤ 10 [3].

2



Notation

In this work, H and G are graphs, all of which will are simple: there are no loops or multi-edges.
For a graph G, V (G) is the vertex set and E(G) is the edge set. The number of vertices is denoted
n(G) while e(G) is the number of edges.

2 Structure of p-Extremal Graphs

In this section, we describe the structure of p-extremal graphs as demonstrated by Hartke, Stolee,
West, and Yancey [3].

A graph is matchable if it has a perfect matching. An edge e ∈ E(G) is extendable if there
exists a perfect matching of G which contains e. Otherwise, e is free. The extendable subgraph (free
subgraph) of G is the spanning subgraph containing all extendable (free) edges of G.

If the extendable subgraph of a matchable graph G is connected, then G is elementary. A set
S ⊂ V (G) is a barrier2 if the number of connected components with an odd number of vertices in
G− S (denoted odd(G− S)) is equal to |S|. Recall Tutte’s Theorem [11] states G is matchable if
and only if |S| ≥ odd(G − S) for all subsets S ⊆ V (G), so barriers are the sets which make this
condition sharp. Note that the singletons {v} for each v ∈ V (G) is a barrier.

Elementary graphs and their barriers share important structure, which will be investigated
thoroughly in Section 5. If G is both elementary and p-extremal, then n(G) is bounded by a
function of p and cp.

Theorem 2.1 (Corollary 5.8 [3]). Let p ≥ 2. If G is a p-extremal elementary graph, then G has
at most Np vertices, where Np is the largest even integer at most 3 +

√
16p− 8cp − 23.

Any excess c(G) for a graph G with Φ(G) = p can replace cp in Theorem 2.1 to give an upper
bound on the order of a p-extremal elementary graph.

Let G be a graph with Φ(G) > 0. A chamber is a subgraph of G induced by a connected
component of the extendable subgraph of G. Chambers are the maximal elementary subgraphs of
G. Let G1, . . . , Gk be elementary graphs and for each i let Xi ⊆ V (Gi) be a barrier in Gi. The
spire generated by G1, . . . , Gk on X1, . . . , Xk is the graph given by disjoint union of G1, . . . , Gk and
edges xivj for all xi ∈ Xi and vj ∈ V (Gj), whenever i < j. The following theorem states that all
p-extremal graphs are spires with very specific conditions on G1, . . . , Gk and X1, . . . , Xk.

Theorem 2.2 (Theorem 5.9 [3]). Consider p ≥ 1. For each p-extremal graph G in Fp:

1. G is a spire generated by elementary graphs G1, . . . , Gk on barriers X1, . . . , Xk.
2. The chambers of G are G1, . . . , Gk.
3. For each i < k, Xi is a barrier of maximum size in Gi.
4. For all i < j, |Xi|

n(Gi)
≥ |Xj |

n(Gj)
and if equality holds, Gi and Gj can be swapped to form another

p-extremal graph.
2We adopt the convention that the empty set is a barrier.
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5. c(G) ≤
∑k

i=1 c(Gi). Equality holds if and only if |Xi|
n(Gi)

= 1
2 for all i < k.

6. Let pi = Φ(Gi). p =
∏k

i=1 pi.
7. For all i, n(Gi) ≤ Npi.
8. If pi = 1, then Gi

∼= K2, |Xi| = 1.

Theorem 2.2 provides an automated procedure for describing all p-extremal graphs. Begin by
determining all q-extremal elementary graphs for each factor q of p. Then, compute the maximum-
size barriers for these graphs. For all factorizations p =

∏k
i=1 pi and combinations of pi-extremal

elementary graphs Gi with maximum-size barrier Xi, compute c(G) for the spire generated by
G1, . . . , Gk on X1, . . . , Xk. The maximum excess of these graphs is the value cp. Larger graphs are
built by adding elementary graphs isomorphic to K2 and ordering the list of elementary graphs by
the relative barrier size |Xi|

n(Gi)
.

The most difficult part of this procedure is determining all q-extremal elementary graphs, which
is the focus of the remainder of this work. In [3], the authors found the q-extremal elementary graphs
by enumerating all graphs of order Nq using McKay’s geng program [7] until Nq ≥ 14 for q ≥ 11,
where this technique became infeasible. Our method greatly extends the range of computable
values. We split elementary graphs into extendable and free subgraphs, which are generated in
two stages of a computer search. We begin by investigating the structure of extendable subgraphs
in Section 3. In Section 4, we utilize this structure to design an algorithm for generating all
possible extendable subgraphs of q-extremal elementary graphs which focuses the search to a very
sparse family of graphs. In Section 5, we investigate the structure of free subgraphs and design an
algorithm to generate maximal graphs with a given extendable subgraph. This algorithm requires
the full list of barriers for an extendable subgraph, so we describe in Section 6 an on-line algorithm
for computing this list. In Section 7, we combine these techniques to bound the possible excess
reachable from a given graph in order to significantly prune the search space. These algorithms are
combined to a final implementation and the results of the computation are summarized in Section 8.

3 Structure of Extendable Subgraphs

A connected graph is 1-extendable if every edge is extendable3. By the definition of elementary
graph, the extendable subgraph of an elementary graph is 1-extendable.

A graph H with n(H) ≥ 3 is 2-connected if there is no vertex x ∈ V (G) so that H − x is
disconnected.

Proposition 3.1. If H is 1-extendable with Φ(H) ≥ 2, then H is 2-connected.

Proof. Since Φ(H) ≥ 2, there are at least four vertices in H. Suppose H was not 2-connected.
Then, there exists a vertex x ∈ V (H) so that H−x has multiple components. Since H has an even
number of vertices, at least one component of H−x must have an odd number of vertices. Since H
has perfect matchings, Tutte’s Theorem implies exactly one such component C has an odd number

3 This term comes from k-extendable graphs, where every matching of size k extends to a perfect matching.
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of vertices. Moreover, in every perfect matching of H, x is matched to some vertex in C. Hence,
the edges from x to the other components never appear in perfect matchings, contradicting that H
was 1-extendable.

2-connected graphs are characterized by ear decompositions. An ear is a path given by vertices
x0, x1, . . . , xk so that x0 and xk have degree at least three and xi has degree exactly two for all
i ∈ {1, . . . , k − 1}. The vertices x0 and xk are branch vertices while x1, . . . , xk−1 are internal
vertices. In the case of a cycle, the entire graph is considered to be an ear. For an ear ε, the length
of ε is the number of edges between the endpoints and its order is the number of internal vertices
between the endpoints. We will focus on the order of an ear. An ear of order 0 (length 1) is a single
edge, called a trivial ear.

An ear augmentation is the addition of a path between two vertices of the graph. This process is
invertible: an ear deletion takes an ear x0, x1, . . . , xk in a graph and deletes all vertices x1, . . . , xk−1

(or the edge x0x1 if k = 1). For a graph H, an ear augmentation is denoted H + ε while an ear
deletion is denoted H − ε. Every 2-connected graph H has a sequence of graphs H(1) ⊂ · · · ⊂
H(k) = H so that H(1) is a cycle and for all i < k, H(i+1) = H(i) + εi for some ear εi [13].

Lovász’s Two Ear Theorem gives the vital structural decomposition of 1-extendable graphs
using a very restricted type of ear decomposition. A sequence H(1) ⊂ H(2) ⊂ · · · ⊂ H(k) of ear
augmentations is a graded ear decomposition if each H(i) is 1-extendable. The decomposition is
non-refinable if for all i < k, there is no 1-extendable graph H ′ so that H(i) ⊂ H ′ ⊂ H(i+1) is a
graded ear decomposition.

Theorem 3.2 (Two Ear Theorem [4]; See also [5, 10]). If H is 1-extendable, then there is a non-
refinable graded ear decomposition H(1) ⊂ · · · ⊂ H(k) so that H(1) ∼= C2` for some ` and each
ear augmentation H(i) ⊂ H(i+1) uses one or two new ears, each with an even number of internal
vertices.

We will consider making single-ear augmentations to build 1-extendable graphs, so we classify
the graphs which appear after the first ear of a two-ear augmentation. A graph H is almost 1-
extendable if the free edges of H appear in a single ear of H. The following corollary is a restatement
of the Two Ear Theorem using almost 1-extendable graphs.

Corollary 3.3. If H is 1-extendable, then there is an ear decomposition H(1) ⊂ · · · ⊂ H(k) so that
H(1) ∼= C2` for some `, each ear augmentation H(i) ⊂ H(i+1) uses a single ear of even order, each
H(i) is either 1-extendable or almost 1-extendable, and if H(i) is almost 1-extendable then H(i−1)

and H(i+1) are 1-extendable.

An important property of graded ear decompositions is that Φ(H(i)) < Φ(H(i+1)), since the
perfect matchings in H(i) extend to perfect matchings of H(i+1) using alternating paths within the
augmented ear(s) and the other edges must appear in a previously uncounted perfect matching.

We use this theorem to develop our search space for the canonical deletion technique, forming
the first stage of the search. The second stage adds free edges to a 1-extendable graph with p
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perfect matchings. The structure of free edges is even more restricted, as shown in the following
proposition.

Proposition 3.4 (Theorems 5.2.2 & 5.3.4 [5]). Let G be an elementary graph. An edge e is free
if and only if the endpoints are in the same barrier. If adding any missing edge to G increases the
number of perfect matchings, then every barrier in G of size at least two is a clique of free edges.

In Section 5, we describe a technique for adding free edges to a 1-extendable graph, providing
the second stage of the search. In order to better understand the first stage, we investigate what
types of ear augmentations are allowed in a non-refinable graded ear decomposition.

Lemma 3.5. Let H ⊂ H+ε be a one-ear augmentation between 1-extendable graphs H and H+ε.
The endpoints of ε are in disjoint maximal barriers.

Proof. If the endpoints of ε were not in disjoint maximal barriers, then they are contained in the
same maximal barrier. If an edge were added between these vertices, Proposition 3.4 states that
this edge would be free. Since ε is an even subdivision of such an edge, the edges incident to the
endpoints are not extendable, making H + ε not 1-extendable.

Lemma 3.6. Let H ⊂ H + ε1 + ε2 be a non-refinable two ear augmentation between 1-extendable
graphs.

1. The endpoints of ε1 are within a maximal barrier of H.
2. The endpoints of ε2 are within a different maximal barrier of H.

Proof. (1) If the endpoints a, b of ε1 span two different maximal barriers, adding the edge ab would
add an extendable edge by Proposition 3.4. The perfect matchings of H + ab and H + ε1 would be
in bijection depending on if ab was used: if a perfect matching M in H + ab does not contain ab,
M extends to a perfect matching in H + ε1 by taking alternating edges within ε1, with the edges
incident to a and b not used; if M used ab, the alternating edges along ε1 would use the edges
incident to a and b. Hence, H+ε1 is 1-extendable and this is a refinable graded ear decomposition.
This contradiction shows that ε1 spans vertices within a single maximal barrier.

(2) The endpoints x, y of ε2 must be within a single maximal barrier by the same proof as (2),
since otherwise H + ε2 would be 1-extendable and the augmentation is refinable. However, if both
ε1 and ε2 span the same maximal barrier, H + ε1 + ε2 is not 1-extendable. By Proposition 3.4,
edges within a barrier are free. Hence, the perfect matchings of H + ε1 + ε2 do not use the internal
edges of ε1 and ε2 which are incident to their endpoints. This contradicts 1-extendability, so the
endpoints of ε2 are in a different maximal barrier than the endpoints of ε1.

4 Searching for p-extremal elementary graphs

Given p and c, we aim to generate all elementary graphs G with Φ(G) = p and c(G) ≥ c. If
c ≤ cp, Theorem 2.1 implies n(G) ≤ Np ≤ 3 +

√
16p− 8c− 23. In order to discover these graphs,

6



we use the isomorph-free generation algorithm of [9] to generate 1-extendable graphs with up to
p perfect matchings and up to Np vertices. In this section, we briefly discuss this technique and
how it is applied to the current problem. This algorithm is based on McKay’s canonical deletion
technique [6] and generates graphs using ear augmentations while visiting each unlabeled graph
only once. This technique will generate 1-extendable graphs and almost 1-extendable graphs. Let
Mp be the set of 2-connected graphs G with Φ(G) ∈ {2, . . . , p} that are either 1-extendable or
almost 1-extendable. Mp

Np
is the set of graphs in Mp with at most Np vertices.

The following lemma is immediate from Corollary 3.3.

Lemma 4.1. For each graph H ∈ Mp, either H is an even cycle or there exists an ear ε so that
H − ε is in Mp.

With this property, all graphs inMp
Np

can be generated by a recursive process: Begin at an even
cycle H(1) = C2`. For each H(i), try adding each all ears ε of order r to all pairs of vertices in H(i)

where 0 ≤ r ≤ Np − n(H(i)) to form H(i+1) + ε. If H(i+1) is 1-extendable or H(i) is 1-extendable
and H(i+1) is almost 1-extendable, recurse on H(i+1) until Φ(H(i+1)) > p. While this technique
will generate all graphs in Mp

Np
, it will generate each unlabeled graph several times. In fact, the

number of times an unlabeled H ∈ Mp
Np

appears is at least the number of ear decompositions
H(1) ⊂ · · · ⊂ H(k) ⊂ H which match the conditions of Corollary 3.3.

We will remove these redundancies in two ways. First, we will augment using pair orbits of
vertices in H(i). Second, we will reject some augmentations if they do not correspond with a
“canonical” ear decomposition of the larger graph.

Let del(H) be a function which takes a graph H ∈Mp and returns an ear ε in H so that H − ε
is inMp. This function del(H) is a canonical deletion if for any two H1, H2 ∈Mp so that H1

∼= H2,
there exists an isomorphism σ : H1 → H2 that maps del(H1) to del(H2).

Given a canonical deletion del(H), the canonical ear decomposition atH is given by the following
iterative construction: (i) Set H(0) = H and i = 0. (ii) While H(i) is not a cycle, define H(i−1) =
H(i)−del(H(i)) and decrement i. When this process terminates, what results is an ear decomposition
H(−k) ⊂ H(−(k−1)) ⊂ · · · ⊂ H(−1) ⊂ H(0) where H(−k) is isomorphic to a cycle and H(0) = H.

A simple consequence of this definition is that if H(−1) = H − del(H), then the canonical ear
decomposition of H begins with the canonical ear decomposition of H(−1) then proceeds with the
augmentation H(−1) ⊂ H(−1) + del(H) = H. Applying isomorph-free generation algorithm of [9]
will generate all unlabeled graphs in Mp without duplication by generating ear decompositions
using all possible ear augmentations and rejecting any augmentations which are not isomorphic to
the canonical deletion.

In order to guarantee the canonical deletion del(H) satisfies the isomorphism requirement, the
choice will depend on a canonical labeling. A function lab(H) which takes a labeled graph H and
outputs a bijection σH : V (H)→ {1, . . . , n(H)} is a canonical labeling if for all H1

∼= H2 the map
π : V (H1) → V (H2) defined as π(x) = σ−1

H2
(σH1(x)) is an isomorphism. The canonical labeling

σH = lab(H) on the vertex set induces a label γH on the ears of H. Given an ear ε of order
r between endpoints x and y, let γH(ε) be the triple (r,min{σH(x), σH(y)},max{σH(x), σH(y)}).
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These labels have a natural lexicographic ordering which minimizes the order of an ear and then
minimizes the pair of canonical labels of the endpoints. In this work, the canonical labeling lab(H)
is computed using McKay’s nauty library [7, 2]. We now describe the canonical deletion del(H)
which will generate a canonical ear decomposition matching Corollary 3.3 whenever given a graph
H ∈Mp.

By the proof of Lemma 4.1, we need all almost 1-extendable graphs H to have H − ε be 1-
extendable, but 1-extendable graphs H may have H − ε be 1-extendable or almost 1-extendable,
depending on availability. Also, since we are only augmenting by ears of even order, we must select
the deletion to have this parity.

The following sequence of choices describe the method for selecting a canonical ear to delete
from a graph H in Mp

Np
:

1. If H is almost 1-extendable, select an ear ε so that H − ε is 1-extendable. By the definition
of almost 1-extendable graphs, there is a unique such choice.

2. If H is 1-extendable and there exists an ear ε so that H − ε is 1-extendable, then select such
an ear with minimum value γH(ε).

3. If H is 1-extendable and no single ear ε has the deletion H − ε 1-extendable, then select
an even-order ear ε so that there is a disjoint even-order ear ε′ so that H − ε is almost 1-
extendable and H − ε− ε′ is 1-extendable. Out of these choices for ε, select ε with minimum
value γH(ε).

The full generation algorithm, including augmentations, checking canonical deletions, as well
as some optimizations and pruning techniques, is described in Section 8. We now investigate how
to find p-extremal elementary graphs using 1-extendable graphs in Mp. In the following section,
we discuss how to fill a 1-extendable graph H with free edges without increasing the number of
perfect matchings.

5 Structure of Free Subgraphs

By Proposition 3.4, the free edges within an elementary graph have endpoints within a common
barrier. This implies that the structure of the free edges is coupled with the structure of barriers in
G. In this section, we demonstrate that the structure of the free subgraph of a p-extremal elementary
graph depends entirely on the structure of the barriers in the extendable subgraph. This leads to
a method to generate all maximal sets of free edges that can be added to a 1-extendable graph.
Section 6 describes a method for quickly computing the list of barriers of a 1-extendable graph
using an ear decomposition. In particular, this provides an on-line algorithm which is implemented
along with the generation of canonical ear decompositions. Finally, Section 7 combines the results
of these sections into a very strict condition which is used to prune the search tree.
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Let G be an elementary graph. The barrier set B(G) is the set of all barriers in G. The barrier
partition P(G) is the set of all maximal barriers in G. The following lemmas give some properties
of P(G) and B(G) when G is elementary.

Lemma 5.1 (Lemma 5.2.1 [5]). For an elementary graph G, P(G) is a partition of V (G).

Lemma 5.2 (Theorem 5.1.6 [5]). For an elementary graph G and B ∈ B(G), B 6= ∅, all components
of G−B have odd order.

Given an elementary graph H, let E(H) be the set of elementary supergraphs with the same
extendable subgraph: E(H) = {G ⊇ H : V (G) = V (H),Φ(G) = Φ(H)}. We will refer to maximal
elements of E(H) using the subgraph relation ⊆, giving a poset (E(H),⊆). Note that (E(H),⊆)
has a unique minimal element, H.

Proposition 5.3. Let H be a 1-extendable graph. If G is a maximal element in E(H), then every
barrier in P(G) is a clique of free edges in G.

Proof. If some maximal barrier X in P(G) is not a clique, then there is a missing edge e between
vertices x, y of X. Since |X| = odd(G − X), all perfect matchings of G + e must match at least
one vertex of each odd component to some vertex in X, saturating X. This means that e is not
extendable in G+ e, and G+ e ∈ E(H). This contradicts that G was maximal in E(H).

By Proposition 3.4, the edges within the barriers are free.

Lemma 5.4. Let H be a 1-extendable graph and G ∈ E(H) be an elementary supergraph of H.
Every barrier B of G is also a barrier of H.

Proof. Each odd component of G − B is a combination of components of H − B, an odd number
of which are odd components, giving odd(H −B) ≥ odd(G−B). There are no new vertices in G,
so the components of G−B partition V (H)−B so that the partition of components of H −B is
a refinement of G−B.

Since B is a barrier of G, odd(G − B) = |B|. Since H is matchable, Tutte’s Theorem implies
odd(H −B) ≤ |B|. Thus |B| = odd(G−B) ≤ odd(H −B) ≤ |B| and equality holds, making B a
barrier of H.

Given a 1-extendable graph H, barriers B1 and B2 conflict if (a) B1 ∩ B2 6= ∅, (b) B1 spans
multiple components of H−B2, or (c) B2 spans multiple components of H−B1. A set I of barriers
in B(H) is a cover set if each pair B1, B2 of barriers in I are non-conflicting and I is a partition
of V (H). Let C(H) be the family of cover sets in B(H). If I1, I2 ∈ C(H) are cover sets, let the
relation I1 � I2 hold if for each set B1 ∈ I1 there exists a set B2 ∈ I2 so that B1 ⊆ B2. This
defines a partial order on C(H) and the poset (C(H),�) has a unique minimal element given by
the partition of V (H) into singletons.

Theorem 5.5. Let H be a 1-extendable graph. A graph G ∈ E(H) is maximal in (E(H),⊆) if and
only if each B ∈ P(G) is a clique, P(G) is a cover set, and P(G) is maximal in (C(H),�).
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Proof. We define a bijection between C(H) and a subset of elementary supergraphs in E(H), as
given in the following claim.

Claim 5.6. Cover sets I ∈ C(H) are in bijective correspondence with elementary graphs G ∈ E(H)
where the free subgraph of G is a disjoint union of cliques, each of which is a (not necessarily
maximal) barrier of G.

Let G be a graph in E(H) where the free subgraph of G is a disjoint union of cliques X1, X2, . . . ,
Xk, where each Xi is a barrier of G. Then, let I = {X1, . . . , Xk} be the set of barriers. Note that
I is a partition of V (H), each part of which is a barrier of G which is a barrier of H by Lemma 5.4.
Consider two barriers B1, B2 ∈ I. Since we selected I to be a partition, B1 ∩B2 = ∅. If B2 spans
multiple components of H−B1, then the vertices from these components are a single component in
G−B1, where B2 is a clique of edges. However, Lemma 5.2 gives that all components of H−B1 and
G−B1 are odd, since B1 is a barrier. This implies that |B1| = odd(H−B1) > odd(G−B1) = |B1|,
a contradiction. Hence, B2 is contained within a single component of H −B1, so B1 and B2 do not
conflict in H. This gives that I is a cover set in C(H).

This map from G ∈ E(H) to I ∈ C(H) is invertible by taking a cover set I ∈ C(H) and filling
each barrier B ∈ I with edges, forming a graph HI . Since each pair of barriers B1, B2 in I are
non-conflicting, the components of H −B1 do not change by adding edges between vertices in B2.
Therefore, each set B ∈ I is also a barrier in HI . By Proposition 3.4, the edges within each barrier
of HI are free, so all extendable edges of HI are exactly those in H. This gives that Φ(HI) = Φ(H)
and HI ∈ E(H). The map from I to HI is the inverse of the earlier map from G ∈ E(H) with free
edges forming disjoint cliques to I ∈ C(H). Hence, this is a bijection, proving the claim.

An important point in the previous claim is that the free edges formed cliques which are barriers,
but those cliques were not necessarily maximal barriers. We now show that the above bijection
maps edge-maximal graphs in E(H) to maximal cover sets in C(H).

Claim 5.7. Let I be a cover set in C(H). The following are equivalent:

(i) I is maximal in (C(H),�).
(ii) HI is maximal in (E(H),⊆).

(iii) P(HI) = I.

(ii) ⇒ (iii) This is immediate from Proposition 5.3.
(iii) ⇒ (ii) Any edge e /∈ E(HI) must span two maximal barriers in I. By Proposition 3.4, e is

allowable in HI + e, so HI is maximal in (E(H),⊆).
(i)⇒ (ii) Let I be a maximal cover set of barriers in B(H) and HI the corresponding elementary

supergraph in E(H). Suppose there exists a supergraph H ′ ⊃ HI in E(H). Then, there is an edge
e in E(H ′) \E(HI) so that e is free in HI + e. This implies that e spans vertices within the same
barrier B of HI + e (by Proposition 3.4), and B is also a barrier of HI . However, B is split into
k barriers B1, . . . , Bk in I, for some k ≥ 2. Therefore, the set I ′ = (I \ {B1, . . . , Bk}) ∪ {B} is a
refinement of I.
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We now show that I ′ is a cover set in C(H). Note that any two barriers X1, X2 ∈ I ′ where
neither is equal to B is still non-conflicting. For any barrier X 6= B in I ′, notice that X does not
span more than one component of H −B, since B is a barrier in HI and HI′ . Also, if B spanned
multiple components of H −X, then those components would be combined in HI′ −X, but since
X is a barrier, |X| = odd(HI′ −X) ≤ odd(H −X) = |X|. Therefore, B does not conflict with any
other barrier X in I ′ giving I ′ is a cover set and I � I ′. This contradicts maximality of I, so HI
is maximal.

(ii) ⇒ (i) By (iii), I = P(HI). Let I ′ be a cover set so that I � I ′. I ′ also partitions V (H), so
P(HI) is a refinement of I ′. Then, the graph HI′ is a proper supergraph of G. By the maximality
of G, HI′ must not be an elementary supergraph in E(H). By the bijection of Claim 5.6, I ′ must
not be a cover set of H. Therefore, I is a maximal covering set in C(H).

This proves the claim and the theorem follows.

The previous theorem provides a method to search for the maximum elements of E(H) by
generating all cover sets {B1, . . . , Bk} in C(H) and maximizing the sum

∑k
i=1

(|Bi|
2

)
.

The näıve independent set generation algorithm runs with an exponential blowup on the number
of barriers. This can be remedied in two ways. First, we notice empirically that the number of
barriers frequently drops as more edges and ears are added, especially for dense extendable graphs.
Second, the number of barriers is largest when the graph is bipartite, as there are exactly two
maximal barriers each containing half of the vertices, with many subsets which are possibly barriers.
We directly adress the case when H is bipartite as there are exactly two maximum elements of E(H).

Lemma 5.8 (Corollary 5.2 [3]). The maximum number of free edges in an elementary graph with
n vertices is

(
n/2
2

)
.

Not only is this a general bound, but it is attainable for bipartite graphs. In a bipartite graph
H, there are exactly two graphs in E(H) which attain this number of free edges.

Lemma 5.9. If H is a bipartite 1-extendable graph, then there are exactly two maximal barriers,
X1 and X2. Also, there are exactly two maximum elements G1, G2 of E(H). Each graph Gi is given
by adding all possible edges within Xi.

Proof. Let X1 and X2 be the two sides of the bipartition of H. Since H is matchable, |X1| = |X2|
and V (H −X1) = X2 and V (H −X2) = X1. Thus X1 and X2 are both barriers which partition
V (H) and by Lemma 5.1 these must be the maximal barriers of H.

The sets I1 = {X1}∪ {{v} : v ∈ X2} and I2 = {X2}∪ {{v} : v ∈ X1} are maximal cover sets in
C(H). Using the bijection of Theorem 5.5, I1 corresponds with the maximal elementary graph G1

in E(H) where all possible edges are added to X1. Similarly, I2 corresponds to adding all possible
edges to X2, producing G2. Each of these graphs has

(
n(H)/2

2

)
free edges, the maximum possible

for graphs in E(H) by Lemma 5.8.
We must show that any other graph G in E(H) has fewer free edges. We again use the bijection

of Theorem 5.5 in order to obtain a maximal cover set I in B(H) which are filled with free edges
in G. Then, the number of free edges in G is given by s(I) =

∑
B∈I

(|B|
2

)
.
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Without loss of generality, the barrier A of largest size within I is a subset of X1. For conve-
nience, we use m = n(H)/2 to be the size of each part X1, X2 and k = |A|, with 1 ≤ k < m. Note
that in HI , no free edges have endpoints in both A and X1 \A, leaving at least k(m−k) = mk−k2

fewer free edges within X1 in G than in G1. If HI has
(
n(H)/2

2

)
edges, then the barriers in X2 add

at least mk − k2 free edges.
The problem of maximizing s(I) over all maximal cover sets can be relaxed to a linear program

with quadratic optimization function as follows: First, fix the barriers of I within X1, including
the largest barrier, A. Then, fix the number of barriers of I within X2 to be some integer `. Then,
let {B1, . . . , B`} be the list of barriers in X2. Now, create variables xi = |Bi| for all i ∈ {1, . . . , `}.
The barriers in X1 are fixed, so to maximize s(I), we must maximize

∑`
i=1

(
xi
2

)
.

We now set some constraints on the xi. Since the barriers Bi are not empty, we require xi ≥ 1.
Since Bi does not conflict with A, each Bi is within a single component of H − A. Since there
are |A| such components, there are at least |A| − 1 other vertices in X2 that are not in Bi, giving
xi ≤ m− k + 1. Also, since A is the largest barrier, xi ≤ k. Finally, the barriers Bi partition X2,
giving

∑`
i=1 xi = m and that there are is at least one barrier per component, giving ` ≥ k.

Since for x < y,
(
x−1

2

)
+
(
y+1
2

)
>
(
x
2

)
+
(
y
2

)
, optimal solutions to this linear program have

maximum value when the maximum number of variables have maximum feasible value. Suppose
1 ≤ xi ≤ t are the tightest bounds on the variables x1, . . . , x`. Then m−`

t−1

(
t
2

)
is an upper bound on

the value of the system.
Case 1: Suppose k ≥ m−k+1. Now, the useful constraints are

∑`
i=1 xi = m, 1 ≤ xi ≤ m−k+1 and

we are trying to maximize
∑`

i=1

(
xi
2

)
. The optimal value is bounded by m−`

m−k

(
m−k+1

2

)
. As a function

of `, this bound is maximized by the smallest feasible value of `, being ` = k. Hence, we have an
optimum value at most m−k

m−k
(m−k+1)(m−k)

2 = 1
2m (m+ 1)−

(
m+ 1

2

)
k − 1

2k
2. Since k ≥ m− k + 1,

the inequality k ≥ 1
2(m+ 1) holds, and (ii) ⇒ (iii) This is immediate from Proposition 5.3.

the optimum value of this program is at most

1
2
m

(
m+

1
2

)
−
(
m+

1
2

)
k − 1

2
k2 ≤ mk︸︷︷︸

k≥ 1
2
(m+1)

− k2︸︷︷︸
k≤m

−1
2
k2 < mk − k2.

Therefore, HI must not have
(
n(H)/2

2

)
free edges.

Case 2: Suppose k < m−k+1. The constraints are now
∑`

i=1 xi = m, 1 ≤ xi ≤ k while maximizing∑`
i=1

(
xi
2

)
. This program has optimum value bounded above by m−`

k−1

(
k
2

)
, which is maximized by

the smallest feasible value of `. If m/k > k and ` < m/k, the program is not even feasible, as a
sum of ` integers at most k could not sum to m. Hence, ` ≥ max{k,m/k}.
Case 2.a: Suppose k ≥ m/k. Setting ` = k gives a bound of m−k

k−1

(
k
2

)
= 1

2(mk− k2). This is clearly
below mk − k2, so HI does not have

(
n(H)/2

2

)
free edges.

Case 2.b: Suppose k < m/k. Setting ` = dm/ke gives a bound of m−dm/ke
k−1

(
k
2

)
= 1

2(mk−m). Since
k < m/k, k2 < m and 1

2(mk −m) ≤ mk − k2. Hence, HI does not have
(
n(H)/2

2

)
free edges.

Experimentation over the graphs used during the generation algorithm for p-extremal graphs
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shows that a näıve generation of cover sets in C(H) is sufficiently fast to compute the maximum
excess in E(H) when the list of barriers B(H) is known. The following section describes a method
for computing B(H) very quickly using the canonical ear decomposition.

6 The Evolution of Barriers

In this section, we describe a method to efficiently compute the barrier list B(H) of a 1-extendable
graph H utilizing a graded ear decomposition. Consider a non-refinable graded ear decomposition
H(1) ⊂ H(2) ⊂ · · · ⊂ H(k) = H of a 1-extendable graph H starting at a cycle C2` = H(1). Not only
are the maximal barriers of C2` easy to compute (the sets X,Y forming the bipartition) but also
the barrier list (every non-empty subset of X and Y is a barrier).

Lemma 6.1. Let H(i) ⊂ H(i+1) be a non-refinable ear decomposition of a 1-extendable graph
H(i+1) from a 1-extendable graph H(i) using one or two ears. If B′ is a barrier in H(i+1), then
B = B′ ∩ V (H) is a barrier in H(i).

Proof. There are |B′| odd components in H(i+1) − B′. There are at most |B| odd components in
H(i) −B, which may combine when the ear(s) are added to make H(i+1).

Let x1, x2, . . . , xr be the vertices in B′ \B. Each xi is not in V (H(i)) so it is an internal vertex
of an augmented ear. Therefore, xi has degree two in H(i+1), so removing xi from H(i+1) − (B ∪
{x1, . . . , xi−1}) increases the number of odd components by at most one. Hence, the number of odd
components of H(i+1) −B′ is at most the number of odd components of H(i) −B plus the number
of vertices in B′ \B. These combine to form the inequalities

|B′| = odd(H(i+1)−B′) ≤ odd(H(i+1)−B)+|B′\B| ≤ odd(H(i)−B)+|B′\B| ≤ |B|+|B′\B| = |B′|.

Equality holds above, so B is a barrier in H(i).

As one-ear augmentations and two-ear augmentations are applied to each H(i), we update the
list B(H(i+1)) of barriers in H(i+1) using the list B(H(i)) of barriers in H(i).

Lemma 6.2. Let B be a barrier of a 1-extendable graph H(i). Let H(i) ⊂ H(i+1) be a 1-extendable
ear augmentation of H(i) using one (ε1) or two (ε1, ε2) ears.

1. If any augmenting ear connects vertices from different components of H(i)−B, then B is not
a barrier in H(i+1), and neither is any B′ ⊃ B where B = B′ ∩ V (H(i)).

2. Otherwise, if B does not contain any endpoint of the augmented ear(s), then B is a barrier
of H(i+1), but B ∪ S for any non-empty subset S ⊆ V (H(i+1)) \ V (H(i)) is not a barrier of
H(i+1).

3. If B contains both endpoints of some ear εi, then B is not a barrier in H(i+1) and neither is
any B′ ⊃ B.

4. If B contains exactly one endpoint (x) of one of the augmented ears (εj), then
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(a) B is a barrier of H(i+1).
(b) For S ⊆ V (H(i+1)) \V (H(i)), B ∪S is a barrier of H(i+1) if and only if S contains only

internal vertices of εj of even distance from x along εj.

5. If B = ∅, then for any subset S ⊆ V (H(i+1)) \ V (H(i)) B ∪ S is a barrier of H(i+1) if and
only if the vertices in S are on a single ear εj and the pairwise distances along εj are even.

Proof. Let B′ be a barrier in H(i+1). Lemma 6.1 gives B = B′ ∩ V (H(i)) is a barrier of H(i), and
H(i) − B has |B| odd connected components. Thus, the barriers of H(i+1) are built from barriers
B in H(i) and adding edges from the new ear(s).
Case 1: If an ear εj spans two components of H(i) − B, then the number of components in
H(i+1) − B is at most |B| − 2. Any vertices from εj added to B can only increase the number of
odd components by at most one at a time, but also increases the size of B by one. Hence, vertices
in V (H(i+1)) \ V (H(i)) can be added to B to form a barrier in H(i+1).
Case 2: If each ear εj spans points in the same components of H(i) − B, then the number of
odd connected components in H(i+1) − B is the same as in H(i) − B, which is |B|. Hence, B is a
barrier of H(i+1). However, adding a single vertex from any ei does not separate any component
of H(i+1) − B, but adds a count of one to |B|. Adding any other vertices from εj to B can only
increase the number of components by one but increases |B| by one. Hence, no non-empty set of
vertices from the augmented ears can be added to B to form a barrier of H(i+1).
Case 3: Suppose B contains both endpoints of an ear εj . If εj is a trivial ear, then it is an
extendable edge. If B′ ⊇ B is a barrier in H(i+1), this violates Proposition 3.4 which states edges
within barriers are free edges. If εj has internal vertices, they form an even component in H(i+1)−B.
By Lemma 5.2, this implies that B is not a barrier. Any addition of internal vertices from εj to form
B′ ⊃ B will add at most one odd component each, but leave an even component in H(i+1)−B′. It
follows that no such B′ is a barrier in H(i+1).
Case 4: Note that If an ear εj has an endpoint within B, then in H(i+1)−B, the internal vertices
of εj are attached to the odd component of H(i+1) − B containing the opposite endpoint. Since
there are an even number of internal vertices on εj , then H(i+1) − B has the same number of odd
connected components as H(i) −B, which is |B|. Hence, B is a barrier in H(i+1).

Let the ear εj be given as a path of vertices x0x1x2 . . . xk, where x0 = x and xk is the other
endpoint of εj . Let S be a subset of {x1, . . . , xk−1}, the internal vertices of εj . The number of
components given by removing S from the path x1x2 · · ·xk−1xk is equal to the number of gaps in
S: the values a so that xa is in S and xa+1 is not in S. These components are all odd if and only
if for each xa and xa′ in S, |a− a′| is even. Thus, B ∪ S is a barrier in H(i+1) if and only if S is a
subset of the internal vertices which are an even distance from x0.

Lemma 6.2 describes all the ways a barrier B ∈ B(H) can extend to a barrier B′ ∈ B(H+ε1) or
B′ ∈ B(H+ε1 +ε2). Note that the barriers B′ which use the internal vertices of ε1 are independent
of those which use the internal vertices of ε2, unless one of the ears spans multiple components of
H + ε1 + ε2 − B′. This allows us to define a pseudo-barrier list B(H + ε) for almost 1-extendable
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graphs H + ε, where H is 1-extendable. During the generation algorithm, we consider a single-ear
augmentation H(i) ⊂ H(i) + εi = H(i+1). Regardless of if H(i) or H(i+1) is almost 1-extendable, we
can update B(H(i+1)) by taking each B ∈ B(H(i)) and adding each B ∪S that satisfies Lemma 6.2
to B(H(i+1)). This process generates all barriers B′ ∈ B(H(i+1)) so that B′ ∩ V (H(i)) = B, so each
barrier is generated exactly once.

In addition to updating the barrier list in an ear augmentation H(i) ⊂ H(i+1), we determine
the conflicts between these barriers.

Lemma 6.3. Let H(i) ⊂ H(i+1) be a 1-extendable ear augmentation using one (ε1) or two (ε1, ε2)
ears. Suppose B′1 and B′2 are barriers in H(i+1) with barriers B1 = V (H(i)) ∩ B′1 and B2 =
V (H(i))∩B′2 of H(i). The barriers B′1 and B′2 conflict in H(i+1) if and only if one of the following
holds: (1) B′1 ∩ B′2 6= ∅, (2) B1 and B2 conflict in H(i), or (3) B′1 and B′2 share vertices in some
ear (εj), with vertices x0x1x2 . . . xk, and there exist indices 0 ≤ a1 < a2 < a3 < a4 ≤ k so that
xa1 , xa3 ∈ B′1 and xa2 , xa4 ∈ B′2.

Proof. Note that by definition, if B′1 ∩ B′2 6= ∅, then B′1 and B′2 conflict. We now assume that
B′1 ∩B′2 = ∅.

If B1 or B2 conflict in H(i), then without loss of generality, B2 has vertices in multiple compo-
nents of H(i) −B1. Since B′1 is a barrier in H(i+1), Lemma 6.2 gives that no ear εj spans multiple
components of H(i)−B1, and the components of H(i)−B1 correspond to components of H(i+1)−B1.
Hence, B2 also spans multiple components of H(i+1) −B1 and B′1 and B′2 conflict in H(i+1).

Now, consider the case that the disjoint barriers B1 and B2 did not conflict in H(i). Since B1 and
B2 are barriers of H(i), then the vertices in B′1 \B1 are limited to one ear εj1 of the augmentation,
and similarly the vertices of B′2 \ B2 are within a single ear εj2 . Since B1 and B2 do not conflict,
all of the vertices within B2 lie in a single component of H(i) −B1: the component containing the
ear εj1 . Similarly, the vertices of B1 are contained in the component of H(i)−B2 that contains the
endpoints of εj2 .

The components of H(i+1)−B1 are components in H(i+1)−B′1 except the component containing
the ear εj1 is cut into smaller components for each vertex in εj1 and B′1. In order to span these
new components, B′2 must have a vertex within εj1 . Therefore, the ears εj1 and εj2 are the same
ear, given by vertices x0, x1, . . . , xk.

Suppose there exist indices 0 ≤ a1 < a2 < a3 < a4 ≤ k so that xa1 and xa3 are in B′1 and xa2

and xa4 are in B′2. Then, the vertices xa1 and xa3 of B′1 are in different components of H(i+1)−B′2,
since every path from xa3 to xa1 in H(i+1) passes through one of the vertices xa2 or xa4 . Hence, B′1
and B′2 conflict.

If B′1 and B′2 do not admit such indices a1, . . . , a4, then listing the vertices x0, x1, x2, . . . , xk in
order will visit those in B′1 and B′2 in two contiguous blocks. In H(i+1) −B′1, the block containing
the vertices in B′2 remain connected to the endpoint closest to the block, and hence B′2 will not span
more than one component of H(i+1) − B′1. Similarly, B′1 will not span more than one component
of H(i+1) −B′2. B′1 and B′2 do not conflict in this case.
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The following corollary is crucial to the bound in Lemma 7.1.

Corollary 6.4. Let H(i) ⊂ H(i+1) be a 1-extendable ear augmentation using one (ε1) or two (ε1, ε2)
ears. Let I be a maximal cover set in C(H(i+1)) and S be the set of internal vertices x of an ear
εj such that the barrier in I containing x has at least one vertex in V (H(i)). Then, S contains at
most half of the internal vertices of εj.

Proof. Let A′ ⊂ I be the set of barriers containing a vertex x in εj and a vertex y in V (H(i)).
For a barrier B to contain an internal vertex of εj and a vertex in V (H(i)), Lemma 6.2 states that
B must contain at least one of the endpoints of the ear εj . Since each barrier in A′ contains and
endpoint of εj and non-conflicting barriers are non-intersecting, there are at most two barriers in
A′.

If there is exactly one barrier B in A′, by Lemma 6.2 it must contain vertices an even distance
away from the endpoint contained in B, and hence at most half of the internal vertices of εj are
contained in B.

If there are two non-conflicting barriers B1 and B2 in A′, then by Lemma 6.3 the vertices of B1

and B2 within εj come in two consecutive blocks along εj . Since each barrier includes only vertices
of even distance apart, B1 contains at most half of the vertices in one block and B2 contains at
most half of the vertices in the other block. Hence, there are at most half of the internal vertices
of εj in S.

7 Bounding the maximum reachable excess

In order to prune search nodes, we wish to detect when it is impossible to extend the current 1-
extendable graph H with q perfect matchings to a 1-extendable graph H ′ with p perfect matchings
so that H ′ has an elementary supergraph G′ ∈ E(H ′) with excess c(G′) ≥ c. The following lemma
gives a method for bounding c(G′) using the maximum excess c(G) over all elementary supergraphs
G in E(H).

Lemma 7.1. Let H be a 1-extendable graph on n vertices with Φ(H) = q. Let H ′ be a 1-extendable
supergraph of H built from H by a graded ear decomposition. Let Φ(H ′) = p > q and N = n(H ′).
Choose G ∈ E(H) and G′ ∈ E(H ′) with the maximum number of edges in each set. Then,

c(G′) ≤ c(G) + 2(p− q)− 1
4

(N − n)(n− 2).

Proof. Let
H = H(0) ⊂ H(1) ⊂ · · · ⊂ H(k−1) ⊂ H(k) = H ′

be a non-refinable graded ear decomposition as in Theorem 3.2. For each i ∈ {0, 1, . . . , k}, let
G(i) ∈ E(H(i)) be of maximum size. Without loss of generality, assume G(0) = G and G(k) = G′.
The following claims bound the excess c(G(i)) in terms of c(G(i−1)) using the ear augmentation
H(i−1) ⊂ H(i).
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Claim 7.2. If H(i−1) ⊂ H(i) is a single ear augmentation H(i) = H(i−1) + ε1 where ε1 has order
`(i), then

c(G(i)) ≤ c(G(i−1)) + 1 +
3
4
`(i) − 1

8
(`(i))2 − 1

4
`(i)n(H(i−1)).

By Lemma 3.5, ε1 spans two maximal barriers X,Y ∈ P(H(i)). H(i) has `(i)+1 more extendable
edges than H(i−1).

We now bound the number of free edges G(i) has compared to the number of free edges in G(i−1).
The elementary supergraph G(i) has a clique partition of free edges given by a maximal cover set I
in C(H(i)). For each barrier B ∈ I, the set B∩V (H(i−1)) is also a barrier of H(i−1), by Lemma 6.1.
Through this transformation, the maximal cover set I admits an cover set I ′ = {B ∩ V (H(i−1)) :
B ∈ I} in C(H(i−1)). This cover set I ′ generates an elementary supergraph G

(i−1)
∗ ∈ E(H(i−1))

through the bijection in Claim 5.6. The free edges in G(i) which span endpoints within V (H(i−1))
are exactly the free edges of G(i−1)

∗ . By the selection of G(i−1), e(G(i−1)
∗ ) ≤ e(G(i−1)).

When `(i) > 0, the `(i) internal vertices of ε1 may be incident to free edges whose other endpoints
lie in the barriers X and Y . By Corollary 6.4, at most half of the vertices in ε1 have free edges to
vertices in X and Y . Since the barriers X and Y are in H(i−1), they have size at most n(H(i−1))

2 . So,
there are at most `(i)

2
n(H(i−1))

2 free edges between these internal vertices and the rest of the graph.
Also, there are at most

(
`(i)/2

2

)
= 1

8(`(i))2− 1
4`

(i) free edges between the internal vertices themselves.
Combining these edge counts leads to the following inequalities:

c(G(i)) = e(G(i))− (n(H(i−1)) + `(i))2

4

≤

[
e(G(i−1)

∗ ) +
(

1 + `(i)
)

+
n(H(i−1))`(i)

2
+

1
8

(`(i))2 − 1
4
`(i)

]

−

[
n(H(i−1))2

4
+
n(H(i−1))`(i)

2
+

(`(i))2

4

]

≤ e(G(i−1)) + 1 +
3
4
`(i) − n(H(i−1))2

4
− 1

8
(`(i))2

= c(G(i−1)) + 1 +
3
4
`(i) − 1

8
(`(i))2 − 1

4
`(i)ni−1.

This proves Claim 7.2. We now investigate a similar bound for two-ear autmentations.

Claim 7.3. Let H(i−1) ⊂ H(i) be a two-ear augmentation H(i) = H(i−1) + ε1 + ε2 where the ears
ε1 and ε2 have `(i)1 and `(i)2 internal vertices, respectively. Set `(i) = `

(i)
1 + `

(i)
2 . Then,

c(G(i)) ≤ c(G(i)) + 2 +
3
4
`(i) − 1

8
(`(i))2 − 1

4
`
(i)
1 `

(i)
2 −

1
4
`(i)n(H(i−1).

By Lemma 3.6, the first ear spans endpoints x1, x2 in a maximal barrier X ∈ P(H(i)) and the
second ear spans endpoints y1, y2 in a different maximal barrier Y ∈ P(H(i)). Note that after these
augmentations, x1 and x2 are not in the same barrier, and neither are y1 and y2, by Lemma 6.2.

The graph G(i) is an elementary supergraph of H(i) given by adding cliques of free edges
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corresponding to a maximal cover set I in C(H(i)). By Lemma 6.1, each barrier B ∈ I generates
the barrier B ∩ V (H(i−1)) in V (H(i−1)). This induces a cover set I ′ = {B ∩ V (H(i−1)) : B ∈ I} in
C(H(i−1)) which in turn defines an elementary supergraph G(i−1)

∗ through the bijection in Claim 5.6.
By the choice of G(i−1), e(G(i−1)

∗ ) ≤ e(G(i−1)).
Consider the number of free edges in G(i) compared to the free edges in G

(i−1)
∗ . First, the

number of edges between the `(i)1 + `
(i)
2 new vertices and the n(H(i−1)) original vertices is at most(

`
(i)
1
2 + `

(i)
2
2

)
n(H(i−1))

2 , since the additions must occur within barriers, at most half of the internal

vertices of each ear can be used (by Corollary 6.4), and barriers in H(i−1) have at most n(H(i−1))
2

vertices. Second, consider the number of free edges within the `(i)1 + `
(i)
2 vertices. Note that no

free edges can be added between ε1 and ε2 since the internal vertices of ε1 and ε2 are in different
maximal barriers of H(i). Thus, there are at most

(`(i)1 /2
2

)
+
(`(i)2 /2

2

)
free edges between the internal

vertices. Since
(`(i)1 /2

2

)
+
(`(i)2 /2

2

)
= 1

8(`(i)1 + `
(i)
2 )2 − 1

4(`(i)1 + `
(i)
2 + `

(i)
1 `

(i)
2 ), we have

c(G(i)) = e(G(i))− (ni−1) + `
(i)
1 + `

(i)
2 )2

4

≤ e(G(i−1)
∗ ) +

(
1 + `

(i)
1 + 1 + `

(i)
2

)
+
n(H(i−1))(`(i)1 + `

(i)
2 )

4

+
1
8

(
`
(i)
1 + `

(i)
2

)2
− 1

4

(
`
(i)
1 + `

(i)
2 + `

(i)
1 `

(i)
2

)
−

[
n(H(i−1))2

4
+
n(H(i−1))(`(i)1 + `

(i)
2 )

2
+

(`(i)1 + `
(i)
2 )2

4

]

≤ e(G(i−1))− n(H(i−1))2

4
+
(

2 + `
(i)
1 + `

(i)
2

)
− 1

4

(
`
(i)
1 + `

(i)
2

)
− 1

8

(
`
(i)
1 + `

(i)
2

)2
− 1

4
`
(i)
1 `

(i)
2 −

1
4
n(H(i−1))`(i)

= c(G(i−1)) + 2 +
3
4

(
`(i)
)
− (`(i))2

8
− 1

4
`
(i)
1 `

(i)
2 −

1
4
n(H(i−1))`(i).

We have now proven Claim 7.3. We now combine a sequence of these bounds to show the global
bound.

Since each ear augmentation forces Φ(H(i)) > Φ(H(i−1)), there are at most p−q augmentations.
Moreover, the increase in c(G(i)) at each step is bounded by 1 + 3

4`
(i) − 1

8(`(i))2 − 1
4`

(i)n(H(i−1))
in a single ear augmentation and 2 + 3

4`
(i) − 1

8(`(i))2 − 1
4`

(i)
1 `

(i)
2 − 1

4`
(i)n(H(i−1)) in a double ear

augmentation. Independent of the number of ears,

c(G(i))− c(G(i−1)) ≤ 2 + `(i) − 1
8

(`(i))2 − 1
4
`(i)n(H(i−1)).
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Note also that if `(i) is positive, then it is at least two. Combining those inequalities gives

c(G′) ≤ c(G) +
k∑

i=1

(
2 +

3
4
`(i) − 1

8
(`(i))2 − 1

4
`(i)n(H(i−1))

)

≤ c(G) +
k∑

i=1

2 +
3
4

k∑
i=1

`(i) − 1
8

k∑
i=1

(`(i))2 − 1
4

k∑
i=1

`(i)n(H(i−1))

≤ c(G) + 2k +
3
4

(N − n)− 1
8

k∑
i=1

2`(i) − 1
4

k∑
i=1

`(i)n

≤ c(G) + 2(p− q)− 1
4

(N − n)(n− 2).

This proves the result.

Corollary 7.4. Let p, c ≥ 1 be integers. If H is a 1-extendable graph with q = Φ(H), c′ is the
maximum excess c(G) over all graphs G ∈ E(H), and c′+2(p−q) < c, then there is no 1-extendable
graph H ⊂ H ′ reachable from H by a graded ear decomposition so that Φ(H ′) = p and there exits
a graph G′ ∈ E(H ′) with excess c(G′) ≥ c.

Corollary 7.4 gives the condition to test if we can prune the current node, since there does
not exist a sequence of ear augmentations that lead to a graph with excess at least our known
lower bound on cp. Moreover, Lemma 7.1 provides a dynamic bound on the maximum order
r of ears that can be added to the current graph while maintaining the possibility of finding a
graph with excess at least the known lower bound on cp by selecting r to be maximum so that
c′ + 2(p− Φ(H))− 1

4r(n− 2) ≥ c.

8 Full Algorithm, Results, and Data

The full algorithm to search for p-extremal elementary graphs combines three types of algorithms.
First, the canonical deletion from Section 3 is used to enumerate the search space with no dupli-
cation of isomorphism classes. Second, the pruning procedure from Section 7 greatly reduces the
number of generated graphs by backtracking when no dense graphs are reachable. Third, Section 5
provided a method for adding free edges to a 1-extendable graph with p perfect matchings to find
maximal elementary supergraphs.

The recursive generation algorithm Search(H(i), N, p, c) is given in Algorithm 1. Given a pre-
viously computed lower bound c ≤ cp, the full search Generate(p, c) (Algorithm 2) operates by
running Search(C2k, Np, p, c) for each even cycle C2k with 4 ≤ 2k ≤ Np. All elementary graphs G
with Φ(G) = p and c(G) ≥ c are generated by this process.

Theorem 8.1. Given p and c ≤ cp, Generate(p, c) (Algorithm 2) outputs all unlabeled elementary
graphs with p perfect matchings and excess at least c.
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Algorithm 1 Search(H(i), N (i), p, c)
Check all pairs of vertices, up to symmetries
for all vertex-pair orbits O in H(i) do
{x, y} ← representative pair of O
Augment by ears of all even orders
for all orders r ∈ {0, 2, . . . , N (i) − n(H(i))} do
H(i+1) ← H(i) + Ear(x, y, r)
if H(i) is almost 1-extendable and H(i+1) is not 1-extendable then

Skip H(i+1) (decomposition is not graded).
else if Φ(H(i+1)) > p then

Skip H(i+1).
else

Check the canonical deletion
(x′, y′, r′)← del(H(i+1))
if r = r′ and {x′, y′} in orbit with {x, y} in H(i+1) then

This augmentation matches the canonical deletion
n(i+1) ← n(H(i+1)).
p(i+1) ← Φ(H(i+1)).
c(i+1) ← max{c

(
H

(i+1)
I

)
: I ∈ C(H(i+1))}.

if p(i+1) = p and c(i+1) ≥ c then
There are solutions within E(H(i+1)).
for all cover sets I ∈ C(H(i+1)) do

if c
(
H

(i+1)
I

)
≥ c then

Output HI .
end if

end for
else if p(i+1) < p and c(i+1) + 2(p− p(i+1)) ≥ c then

Use Lemma 7.1 to bound the number of vertices for future augmentations.
N (i+1) = max{N ′ : c(i+1) + 2(p− p(i+1))− 1

4(N ′ − n(i+1)))(n(i+1) − 2) ≥ c}.
Search(H(i+1), N (i+1), p, c).

end if
end if

end if
end for

end for
return

Algorithm 2 Generate(p, c)
N ← max{2r : 2r ≤ 3 +

√
16p− 8c− 23}.

for r ∈ {1, . . . , N/2} do
Search(C2r, N, p, c)

end for
return
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p 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
np 8 6 8 8 6 8 8 8 8 8 8 8 8 8 8 8 8
cp 3 5 3 4 6 4 4 5 4 5 5 5 5 6 5 5 6
Cp 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6

Table 2: New values of np and cp. Conjecture 1.2 states that cp ≤ Cp.

Proof. Given an unlabeled graph G with Φ(G) = p and c(G) ≥ c, note that Theorem 2.1 implies
n(G) ≤ 3 +

√
16p− 8c− 23. With respect to the canonical deletion del(H), let H(0) ⊂ H(1) ⊂

· · · ⊂ H(k) be the canonical ear decomposition of the extendable subgraph H in G. By the choice
of canonical deletion, this decomposition takes the form of Corollary 3.3. Moreover, H(0) is an even
cycle C2r for some r. The Generate(p, c) method initializes Search(C2r, N, p, c).

By the definition of canonical ear decomposition, the canonical ear ε(i) = del(H(i)) of H(i)

is the ear used to augment from H(i−1) to H(i). Let x(i), y(i) be the endpoints of ε(i). When
Search(H(i), N (i), p, c) is called, the pair orbit O containing {x(i+1), y(i+1)} is visited and an ear ε
of the same order as ε(i+1) is augmented to H(i) to form a graph H(i+1)

∗ . Note that H(i+1)
∗ ∼= H(i+1)

with an isomorphism mapping ε to ε(i+1). By the definition of the canonical deletion del(H), the
algorithm accepts this augmentation.

For each i, let G(i) be a maximum-size elementary supergraph in E(H(i)). By Theorem 5.5,
there exists a maximal cover set I ∈ C(H(i)) so that G(i) = H

(i)
I . Since c(G(k)) = c(G) ≥ c,

Lemma 7.1 gives c(G) ≤ c(G(i+1)) + 2(p − p(i+1)) − 1
4(n(G) − n(H(i+1)))(n(H(i+1)) − 2), so the

algorithm recurses with N (i+1) ≥ n(G).
When H(k) is reached, the algorithm notices that Φ(H(k)) = p and enumerates all cover sets

I ∈ C(H(k)) which generates the elementary supergraphs H(k)
I ∈ E(H(k)) with excess at least c.

Since H(k) is the extendable subgraph of G and c(G) ≥ c, this procedure will output G.

The framework for this search was implemented within the EarSearch library4. This imple-
mentation was executed on the Open Science Grid [8] using the University of Nebraska Campus
Grid [12]. The nodes available on the University of Nebraska Campus Grid consist of Xeon and
Opteron processors with a speed range of between 2.0 and 2.8 GHz.

A näıve search (using geng) on graphs with at most 10 vertices generated lower bounds on cp for
p ∈ {11, . . . , 27}. A full enumeration of p-extremal graphs for this range of p was then completed
using Algorithm 2 seeded with these lower bounds. The resulting values of cp and np are given in
Table 2. The computation time for these values ranged from less than a minute to more than 10
years. Table 3 gives the full list of computation times. The resulting p-extremal elementary graphs
for 11 ≤ p ≤ 27 are given in Figure 1.

To describe the complete structural characterization of p-extremal graphs on n vertices for all
even n ≥ np, we apply Theorem 2.2. An important step in applying Theorem 2.2 is to consider every
factorization p =

∏
pi and to check which spires are generated by the pi-extremal elementary graphs.

4The EarSearch library is available at https://github.com/derrickstolee/EarSearch
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p Np cp CPU Time
5 8 2 0.02s
6 10 3 0.04s
7 10 3 0.18s
8 12 3 0.72s
9 12 4 1.46s
10 12 4 5.95s
11 14 3 43.29s
12 14 5 44.01s
13 14 3 6.66m
14 16 4 12.17m
15 16 6 12.71m

.

p Np cp CPU Time
16 16 4 2.02h
17 16 4 6.77h
18 18 5 11.75h
19 18 4 2.71d
20 18 5 4.21d
21 18 5 13.71d
22 20 5 42.84d
23 20 5 118.32d
24 20 6 209.42d
25 20 5 2.52y
26 20 5 7.21y
27 22 6 10.68y

Table 3: Time analysis of the search for varying p values.

We describe these structures based on the types of constructions given by these factorizations. It
is necessary to consider the p-extremal elementary graphs for 1 ≤ p ≤ 10, in Figure 2.

For p ∈ {11, 13, 17, 19, 23}, p is prime, and there is no non-trivial factorization of p. Hence, a
p-extremal graph is a spire using exactly one p-extremal elementary graph with all other vertices
within chambers isomorphic to K2. In most cases, the p-extremal elementary graph must appear
at the top of the spire. Only when p = 11 and the 11-extremal elementary graph chosen is the one
with a barrier of size 4 can this chamber be positioned anywhere in the spire.

For each p ∈ {15, 22, 25, 26}, p has at least one non-trivial factorization p =
∏
pi, but the sum

of cpi over the factors is strictly below cp. Hence, no p-extremal spire could contain more than
one non-trivial chamber. Also, all p-extremal elementary graphs have a barrier with relative size
strictly below 1

2 , so the non-trivial chamber must appear at the top of the spire.
For each p ∈ {21, 27}, there exists at least one factorization p =

∏
pi, all with

∑
cpi ≤ cp, and

at least one factorization which reaches cp with equality. For example, 21 = 3 · 7, and c3 + c7 =
2 + 3 = 5 = c21. However, in these cases of equality, pi-extremal elementary graphs with large
barriers do not exist and it is impossible to achieve an excess of cp over the entire spire using
multiple non-trivial chambers. Hence, the p-extremal graphs for these values of p have exactly one
non-trivial chamber with p perfect matchings and these chambers have small barriers, so they must
appear at the top of the spire.

For each p ∈ {14, 18, 20, 24}, there is at least one factorization p =
∏
pi so that

∑
cpi = cp

and there are pi-extremal graphs with large enough barriers to admit a spire with excess cp. These
factorizations are 14 = 2 · 7, 18 = 3 · 6 = 2 · 9, 20 = 2 · 10, and 24 = 2 · 12. There are also the
p-extremal spires with exactly one non-trivial chamber, most of which must appear at the top of
the spire. For p ∈ {14, 24}, there exists one p-extremal elementary graph with a large barrier that
can appear anywhere in a p-extremal spire.

The case p = 16 is special: every factorization admits at least one configuration for a 16-extremal
spire. The q-extremal elementary graphs for q ∈ {1, 2, 4, 8} as found by Hartke, Stolee, West, and

22



p = 11 p = 11 p = 12 p = 13 p = 13 p = 13 p = 13 p = 13

p = 13 p = 14 p = 14 p = 15 p = 16 p = 16 p = 16 p = 16

p = 17 p = 17 p = 18 p = 18 p = 19 p = 19 p = 19 p = 19

p = 19 p = 19 p = 20 p = 21 p = 21 p = 21 p = 22 p = 23

p = 24 p = 24 p = 25 p = 25 p = 26 p = 26 p = 26 p = 27

Figure 1: The p-extremal elementary graphs where 11 ≤ p ≤ 27.

Yancey [3] are given in Figure 2. Note that for each such q, there exists at least one q-extremal
graph with a barrier with relative size 1

2 . This allows any combination of values of q that have
product 16 give a spire with 16 perfect matchings and excess equal to the sum of the excesses of
the chambers, which always adds to c16 = 4. There are two 8-extremal elementary graphs and
three 16-extremal elementary graphs which have small barriers and must appear at the top of a
16-extremal spire. All other chambers of a 16-extremal spire can take any order.

9 Future work

The O(
√
p) bound Np on the number of vertices in a p-extremal elementary graph was sufficient

for the computational technique described in this work to significantly extend the known values of
cp. However, all of the elementary graphs we discovered to be p-extremal for p ≤ 27 have at most
10 vertices. If a smaller bound on np could be proven, these p-extremal graphs could be generated
using existing software, such as McKay’s geng program [7].

A smaller Np bound would also improve the distributed search developed in this work. Com-
putation time would still be exponential in p because the depth of the search is a function of p,
but the branching factor at each level would be reduced. This delays the exponential behavior and
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p = 1 p = 2 p = 3 p = 4 p = 5 p = 5 p = 6

p = 6 p = 7 p = 8 p = 8 p = 8 p = 9 p = 10

Figure 2: The p-extremal elementary graphs with 1 ≤ p ≤ 10 [1, 3].

potentially makes searches over larger values of p become tractable.
The following conjecture is motivated by the orders of the known p-extremal elementary graphs

as well as the potential algorithmic implications.

Conjecture 9.1. Every p-extremal elementary graph has at most 2(log2 p+ 1) vertices.

This conjecture is tight for p = 2k, with k ∈ {1, 2, 3, 4} and holds for all p ≤ 27. Note that
n8 = 6, but there is an 8-extremal elementary graph with eight vertices. Similarly, n16 = 8, but
there is a 16-extremal elementary graph with ten vertices.

The structure theorem requires searching over all factorizations of p in order to determine which
factorizations yield a spire with the largest excess. However, all known values of p admit p-extremal
elementary graphs. Moreover, all composite values p = p1p2 admit cp ≥ cp1 + cp2 . Does this always
hold?

Conjecture 9.2. For all p ≥ 1, there exists a p-extremal elementary graph.

Conjecture 9.3. For all products p =
∏k

i=1 pi with p ≥ 1, cp ≥
∑k

i=1 cpi.

The closest known bound to Conjecture 9.3 is cp ≥ cp1 +
∑k

i=2w(pi), where w(n) is the number
of 1’s in the binary representation of n [3, Proposition 7.1].
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