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Unambiguous Log-Space

UL contains languages A with non-deterministic log-space
machines so that

» For each x ¢ A, there are no accepting computation paths.

» For each x € A there is exactly one accepting computation
path from the initial configuration.



Log-space Classes and Reachability

L
Deterministic

?
?

Complete:
Undirected Reach
(Reingold 08)



Log-space Classes and Reachability

L NL
Deterministic Nondeterministic

?
?

Complete: Complete:
Undirected Reach Directed Reach

(Reingold 08)



Log-space Classes and Reachability

L UL NL
Deterministic Unambiguous Nondeterministic

¢ 2
D&
@)
Complete: Contains: Complete:

Undirected Reach Dir. Planar Reach Directed Reach
(Reingold 08) (BTV 09)



Much ado about UL



Much ado about UL

» UL/poly = NL/poly. Reinhardt, Allender, 2002



Much ado about UL

» UL/poly = NL/poly. Reinhardt, Allender, 2002

» Planar Reachability is in UL Bourke, T—, V—, 2009
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FewL contains languages A with non-deterministic Turing
machines and a constant k so that

» For x ¢ A, there are no accepting computation paths.

» For x € A, there are at most n* accepting computation paths.

UL C FewL C NL
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» UL has at most one path from initial configuration to
accepting configuration.

» ReachUL has at most one path from initial configuration to
any configuration.

» StrongUL has at most one path from any configuration to
any configuration.

StrongUL C ReachUL C UL
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Other Forms of Fewness

» Fewl has polynomially many paths from initial configuration
to accepting configuration.

» ReachFewl has polynomially many paths from initial
configuration to any configuration.

» StrongFewl has polynomially many paths from any
configuration to any configuration.

StrongFewlL C ReachFewlL C FewlL

(ReachUL and ReachFewL originally defined by Buntrock, Jenner,
Lange, and Rossmanith in 1991.)
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Previous Results with ReachUL and ReachFewlL

» ReachUL is closed under complement. BJLR, 1991
» ReachUL has a complete problem. Lange, 1997
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L., = {(G,s,t): G is a graph with exactly one path from s to t,

there is at most one path from s to any other vertex in G}.

L., is ReachUL-complete.

LS?) ={(G,s,t) : G is a graph with a path from s to t,

there are at most n* paths from s to any other vertex in G}.

(

Each language in ReachFewL reduces to LrI;) for some k.
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Distance Isolation

A (weighted) graph G with vertex s is distance-isolated with
respect to s if there is no vertex t so that there are two paths from
s to t of the same weight.



A Hashing Result

Theorem (Fredman, Komlds and Szemerédi, 1984)

Let ¢ be a constant and S be a set of n-bit integers with |S| < n€.
Then there is a ¢’ and a (c’log n)-bit prime number p so that for
any x #y € S, we have x Z y (mod p).



Hashing to Distance Isolation

Lemma

Let G be a graph with edges E(G) = {e1,e2,...,e}. If G has at
most n* paths from u to any vertex v € V/(G), then there is a
prime p < nk/, for some constant k', such that the weight function
wp: E(G) — {1,...,p} given by wy(e;) =2 (mod p) defines a
weighted graph G,,, which is distance isolated with respect to u.
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Layering Transformation

Lemma

There is a path of distance d from s to t in G if and only if there
is a path from (s,0) to (t,d) in lay(G).

Corollary

G is distance-isolated with respect to s if and only if lay(G) is
reach-unique with respect to (s, 0).
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Putting it Together

Given a reach-n* graph G with vertices s, t.

For each prime p € {2,3,...,n¥'}, generate G,,.
Generate lay(Gy,).

Test (using ReachUL) if lay(Gy,) is reach-unique.

If so, test if (s,0) — (t, d) exists for each distance d.

ok W=

If all attempts fail, reject.



ReachFewSearch(G, s, t)

Require: G has at most n* paths from s to any other vertex.
Ensure: Accepts if and only if there is a path from s to t in G.
for all primes p € {1,...,n*'} do
Define w,(e;) = 2" (mod p).
Construct Gy,
Construct lay(Gu,).
if IsReachUnique(lay(Gy,)) then
for each d € {1,...,n(Gy,)} do
if ReachUnique(lay(Guw,), (s,0),(t,d)) then
return True
end if
end for
return False
end if
end for
return False
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