
ReachFewL = ReachUL

Brady Garvin Derrick Stolee* Raghunath Tewari
N. V. Vinodchandran

August 15, 2011

The “Big” Theorems in Space-Bounded Complexity

I NL ⊆ SPACE[log2(n)] Savitch, 1970

I NL = coNL Immerman-Szelepcsényi, 1987

I RL ⊆ SC2 Nisan, 1995

I RL ⊆ SPACE[log3/2(n)] Saks, Zhou, 1999

I L = SL Reingold, 2008

I NL
?
= UL ???, 20??

The “Big” Theorems in Space-Bounded Complexity

I NL ⊆ SPACE[log2(n)] Savitch, 1970

I NL = coNL Immerman-Szelepcsényi, 1987

I RL ⊆ SC2 Nisan, 1995

I RL ⊆ SPACE[log3/2(n)] Saks, Zhou, 1999

I L = SL Reingold, 2008

I NL
?
= UL ???, 20??

The “Big” Theorems in Space-Bounded Complexity

I NL ⊆ SPACE[log2(n)] Savitch, 1970

I NL = coNL Immerman-Szelepcsényi, 1987

I RL ⊆ SC2 Nisan, 1995

I RL ⊆ SPACE[log3/2(n)] Saks, Zhou, 1999

I L = SL Reingold, 2008

I NL
?
= UL ???, 20??

The “Big” Theorems in Space-Bounded Complexity

I NL ⊆ SPACE[log2(n)] Savitch, 1970

I NL = coNL Immerman-Szelepcsényi, 1987

I RL ⊆ SC2 Nisan, 1995

I RL ⊆ SPACE[log3/2(n)] Saks, Zhou, 1999

I L = SL Reingold, 2008

I NL
?
= UL ???, 20??

The “Big” Theorems in Space-Bounded Complexity

I NL ⊆ SPACE[log2(n)] Savitch, 1970

I NL = coNL Immerman-Szelepcsényi, 1987

I RL ⊆ SC2 Nisan, 1995

I RL ⊆ SPACE[log3/2(n)] Saks, Zhou, 1999

I L = SL Reingold, 2008

I NL
?
= UL ???, 20??

The “Big” Theorems in Space-Bounded Complexity

I NL ⊆ SPACE[log2(n)] Savitch, 1970

I NL = coNL Immerman-Szelepcsényi, 1987

I RL ⊆ SC2 Nisan, 1995

I RL ⊆ SPACE[log3/2(n)] Saks, Zhou, 1999

I L = SL Reingold, 2008

I NL
?
= UL ???, 20??

The “Big” Theorems in Space-Bounded Complexity

I NL ⊆ SPACE[log2(n)] Savitch, 1970

I NL = coNL Immerman-Szelepcsényi, 1987

I RL ⊆ SC2 Nisan, 1995

I RL ⊆ SPACE[log3/2(n)] Saks, Zhou, 1999

I L = SL Reingold, 2008

I NL
?
= UL ???, 20??

Unambiguous Log-Space

UL contains languages A with non-deterministic log-space
machines so that

I For each x /∈ A, there are no accepting computation paths.

I For each x ∈ A there is exactly one accepting computation
path from the initial configuration.

Unambiguous Log-Space

UL contains languages A with non-deterministic log-space
machines so that

I For each x /∈ A, there are no accepting computation paths.

I For each x ∈ A there is exactly one accepting computation
path from the initial configuration.

Unambiguous Log-Space

UL contains languages A with non-deterministic log-space
machines so that

I For each x /∈ A, there are no accepting computation paths.

I For each x ∈ A there is exactly one accepting computation
path from the initial configuration.

Log-space Classes and Reachability

L
Deterministic

Complete:
Undirected Reach

(Reingold 08)

Log-space Classes and Reachability

L
Deterministic

Complete:
Undirected Reach

(Reingold 08)

NL
Nondeterministic

Complete:
Directed Reach

Log-space Classes and Reachability

L
Deterministic

Complete:
Undirected Reach

(Reingold 08)

UL
Unambiguous

Contains:
Dir. Planar Reach

(BTV 09)

NL
Nondeterministic

Complete:
Directed Reach

Much ado about UL

I UL/poly = NL/poly. Reinhardt, Allender, 2002

I Planar Reachability is in UL Bourke, T—, V—, 2009

Much ado about UL

I UL/poly = NL/poly. Reinhardt, Allender, 2002

I Planar Reachability is in UL Bourke, T—, V—, 2009

Much ado about UL

I UL/poly = NL/poly. Reinhardt, Allender, 2002

I Planar Reachability is in UL Bourke, T—, V—, 2009

FewL

FewL contains languages A with non-deterministic Turing
machines and a constant k so that

I For x /∈ A, there are no accepting computation paths.

I For x ∈ A, there are at most nk accepting computation paths.

UL ⊆ FewL ⊆ NL

FewL

FewL contains languages A with non-deterministic Turing
machines and a constant k so that

I For x /∈ A, there are no accepting computation paths.

I For x ∈ A, there are at most nk accepting computation paths.

UL ⊆ FewL ⊆ NL

FewL

FewL contains languages A with non-deterministic Turing
machines and a constant k so that

I For x /∈ A, there are no accepting computation paths.

I For x ∈ A, there are at most nk accepting computation paths.

UL ⊆ FewL ⊆ NL

FewL

FewL contains languages A with non-deterministic Turing
machines and a constant k so that

I For x /∈ A, there are no accepting computation paths.

I For x ∈ A, there are at most nk accepting computation paths.

UL ⊆ FewL ⊆ NL

Other Forms of Unambiguity

I UL has at most one path from initial configuration to
accepting configuration.

I ReachUL has at most one path from initial configuration to
any configuration.

I StrongUL has at most one path from any configuration to
any configuration.

StrongUL ⊆ ReachUL ⊆ UL

Other Forms of Unambiguity

I UL has at most one path from initial configuration to
accepting configuration.

I ReachUL has at most one path from initial configuration to
any configuration.

I StrongUL has at most one path from any configuration to
any configuration.

StrongUL ⊆ ReachUL ⊆ UL

Other Forms of Unambiguity

I UL has at most one path from initial configuration to
accepting configuration.

I ReachUL has at most one path from initial configuration to
any configuration.

I StrongUL has at most one path from any configuration to
any configuration.

StrongUL ⊆ ReachUL ⊆ UL

Other Forms of Unambiguity

I UL has at most one path from initial configuration to
accepting configuration.

I ReachUL has at most one path from initial configuration to
any configuration.

I StrongUL has at most one path from any configuration to
any configuration.

StrongUL ⊆ ReachUL ⊆ UL

Other Forms of Fewness

I FewL has polynomially many paths from initial configuration
to accepting configuration.

I ReachFewL has polynomially many paths from initial
configuration to any configuration.

I StrongFewL has polynomially many paths from any
configuration to any configuration.

StrongFewL ⊆ ReachFewL ⊆ FewL

(ReachUL and ReachFewL originally defined by Buntrock, Jenner,
Lange, and Rossmanith in 1991.)

Other Forms of Fewness

I FewL has polynomially many paths from initial configuration
to accepting configuration.

I ReachFewL has polynomially many paths from initial
configuration to any configuration.

I StrongFewL has polynomially many paths from any
configuration to any configuration.

StrongFewL ⊆ ReachFewL ⊆ FewL

(ReachUL and ReachFewL originally defined by Buntrock, Jenner,
Lange, and Rossmanith in 1991.)

Other Forms of Fewness

I FewL has polynomially many paths from initial configuration
to accepting configuration.

I ReachFewL has polynomially many paths from initial
configuration to any configuration.

I StrongFewL has polynomially many paths from any
configuration to any configuration.

StrongFewL ⊆ ReachFewL ⊆ FewL

(ReachUL and ReachFewL originally defined by Buntrock, Jenner,
Lange, and Rossmanith in 1991.)

Other Forms of Fewness

I FewL has polynomially many paths from initial configuration
to accepting configuration.

I ReachFewL has polynomially many paths from initial
configuration to any configuration.

I StrongFewL has polynomially many paths from any
configuration to any configuration.

StrongFewL ⊆ ReachFewL ⊆ FewL

(ReachUL and ReachFewL originally defined by Buntrock, Jenner,
Lange, and Rossmanith in 1991.)

Unambiguous Complexity Classes

NL

FewL

OO

UL

ggPPPPPPPPPPPPP

ReachFewL

OO

StrongFewL

OO

ReachUL

OO

ggOOOOOOOOOOOO

StrongUL

OOggOOOOOOOOOOO

Unambiguous Complexity Classes

NL

FewL

OO

UL

ggPPPPPPPPPPPPP

ReachFewL

[PTV11+]
77nnnnnnnnnnnnn

StrongFewL

OO

ReachUL

OO

ggOOOOOOOOOOOO

StrongUL

OOggOOOOOOOOOOO

Previous Results with ReachUL and ReachFewL

I ReachUL is closed under complement. BJLR, 1991

I ReachUL has a complete problem. Lange, 1997

I ReachUL ⊆ SPACE
[

log2(n)
log log(n)

]
. Allender, Lange, 1998

I ReachFewL ⊆ UL ∩ coUL Pavan, T—, V—, 2011

Previous Results with ReachUL and ReachFewL

I ReachUL is closed under complement. BJLR, 1991

I ReachUL has a complete problem. Lange, 1997

I ReachUL ⊆ SPACE
[

log2(n)
log log(n)

]
. Allender, Lange, 1998

I ReachFewL ⊆ UL ∩ coUL Pavan, T—, V—, 2011

Previous Results with ReachUL and ReachFewL

I ReachUL is closed under complement. BJLR, 1991

I ReachUL has a complete problem. Lange, 1997

I ReachUL ⊆ SPACE
[

log2(n)
log log(n)

]
. Allender, Lange, 1998

I ReachFewL ⊆ UL ∩ coUL Pavan, T—, V—, 2011

Previous Results with ReachUL and ReachFewL

I ReachUL is closed under complement. BJLR, 1991

I ReachUL has a complete problem. Lange, 1997

I ReachUL ⊆ SPACE
[

log2(n)
log log(n)

]
. Allender, Lange, 1998

I ReachFewL ⊆ UL ∩ coUL Pavan, T—, V—, 2011

Complete Problems

Lru = {〈G , s, t〉 : G is a graph with exactly one path from s to t,

there is at most one path from s to any other vertex in G}.

Lru is ReachUL-complete.

L
(k)
rf = {〈G , s, t〉 : G is a graph with a path from s to t,

there are at most nk paths from s to any other vertex in G}.

Each language in ReachFewL reduces to L
(k)
rf for some k .

Complete Problems

Lru = {〈G , s, t〉 : G is a graph with exactly one path from s to t,

there is at most one path from s to any other vertex in G}.

Lru is ReachUL-complete.

L
(k)
rf = {〈G , s, t〉 : G is a graph with a path from s to t,

there are at most nk paths from s to any other vertex in G}.

Each language in ReachFewL reduces to L
(k)
rf for some k .

Main Theorem

Brady Garvin Derrick Stolee

Raghunath Tewari N. V. Vinodchandran

ReachFewL = ReachUL

A Lemma About Oracles
Lemma

LReachUL = ReachUL

Proof.
We can assume O is a ReachUL-complete oracle.

There are two terminal configurations: “accept” and “reject.”

A Lemma About Oracles
Lemma

LReachUL = ReachUL

Proof.

O

Accept

Reject

Input

A Lemma About Oracles
Lemma

LReachUL = ReachUL

Proof.

A

R

i

?

?

?

A Lemma About Oracles
Lemma

LReachUL = ReachUL

Proof.

A Lemma About Oracles
Lemma

LReachUL = ReachUL

Proof.

Distance Isolation

A (weighted) graph G with vertex s is distance-isolated with
respect to s if there is no vertex t so that there are two paths from
s to t of the same weight.

A Hashing Result

Theorem (Fredman, Komlós and Szemerédi, 1984)

Let c be a constant and S be a set of n-bit integers with |S | ≤ nc .
Then there is a c ′ and a (c ′ log n)-bit prime number p so that for
any x 6= y ∈ S, we have x 6≡ y (mod p).

Hashing to Distance Isolation

Lemma
Let G be a graph with edges E (G) = {e1, e2, . . . , e`}. If G has at
most nk paths from u to any vertex v ∈ V (G), then there is a
prime p ≤ nk ′

, for some constant k ′, such that the weight function
wp : E (G)→ {1, . . . , p} given by wp(ei) = 2i (mod p) defines a
weighted graph Gwp which is distance isolated with respect to u.

Hashing to Distance Isolation

Hashing to Distance Isolation

Hashing to Distance Isolation

01000000000

00
00

00
00

00
1

00000010000

ts

01000010001

Hashing to Distance Isolation

Layering Transformation

Let G be a graph. The layered graph lay(G) is the graph on vertex
set V (G)× {0, . . . , n(G)} with edges (u, i)→ (v , i + 1) whenever
u → v is in G .

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

Layering Transformation

Let G be a graph. The layered graph lay(G) is the graph on vertex
set V (G)× {0, . . . , n(G)} with edges (u, i)→ (v , i + 1) whenever
u → v is in G .

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

1

2

3

4

5

6

8

7

Layering Transformation

Lemma

There is a path of distance d from s to t in G if and only if there
is a path from (s, 0) to (t, d) in lay(G).

Corollary

G is distance-isolated with respect to s if and only if lay(G) is
reach-unique with respect to (s, 0).

Layering Transformation

Lemma

There is a path of distance d from s to t in G if and only if there
is a path from (s, 0) to (t, d) in lay(G).

Corollary

G is distance-isolated with respect to s if and only if lay(G) is
reach-unique with respect to (s, 0).

Putting it Together

1. Given a reach-nk graph G with vertices s, t.

2. For each prime p ∈ {2, 3, . . . , nk ′}, generate Gwp .

3. Generate lay(Gwp).

4. Test (using ReachUL) if lay(Gwp) is reach-unique.

5. If so, test if (s, 0)→ (t, d) exists for each distance d .

6. If all attempts fail, reject.

Putting it Together

1. Given a reach-nk graph G with vertices s, t.

2. For each prime p ∈ {2, 3, . . . , nk ′}, generate Gwp .

3. Generate lay(Gwp).

4. Test (using ReachUL) if lay(Gwp) is reach-unique.

5. If so, test if (s, 0)→ (t, d) exists for each distance d .

6. If all attempts fail, reject.

Putting it Together

1. Given a reach-nk graph G with vertices s, t.

2. For each prime p ∈ {2, 3, . . . , nk ′}, generate Gwp .

3. Generate lay(Gwp).

4. Test (using ReachUL) if lay(Gwp) is reach-unique.

5. If so, test if (s, 0)→ (t, d) exists for each distance d .

6. If all attempts fail, reject.

Putting it Together

1. Given a reach-nk graph G with vertices s, t.

2. For each prime p ∈ {2, 3, . . . , nk ′}, generate Gwp .

3. Generate lay(Gwp).

4. Test (using ReachUL) if lay(Gwp) is reach-unique.

5. If so, test if (s, 0)→ (t, d) exists for each distance d .

6. If all attempts fail, reject.

Putting it Together

1. Given a reach-nk graph G with vertices s, t.

2. For each prime p ∈ {2, 3, . . . , nk ′}, generate Gwp .

3. Generate lay(Gwp).

4. Test (using ReachUL) if lay(Gwp) is reach-unique.

5. If so, test if (s, 0)→ (t, d) exists for each distance d .

6. If all attempts fail, reject.

Putting it Together

1. Given a reach-nk graph G with vertices s, t.

2. For each prime p ∈ {2, 3, . . . , nk ′}, generate Gwp .

3. Generate lay(Gwp).

4. Test (using ReachUL) if lay(Gwp) is reach-unique.

5. If so, test if (s, 0)→ (t, d) exists for each distance d .

6. If all attempts fail, reject.

ReachFewSearch(G , s, t)

Require: G has at most nk paths from s to any other vertex.
Ensure: Accepts if and only if there is a path from s to t in G .

for all primes p ∈ {1, . . . , nk ′} do
Define wp(ei) = 2i (mod p).
Construct Gwp .
Construct lay(Gwp).
if IsReachUnique(lay(Gwp)) then

for each d ∈ {1, . . . , n(Gwp)} do
if ReachUnique(lay(Gwp), (s, 0), (t, d)) then

return True
end if

end for
return False

end if
end for
return False

Unambiguous Complexity Classes: Before

NL

FewL

OO

UL

ggPPPPPPPPPPPPP

ReachFewL

[PTV11+]
77nnnnnnnnnnnnn

StrongFewL

OO

ReachUL

OO

ggOOOOOOOOOOOO

StrongUL

OOggOOOOOOOOOOO

Unambiguous Complexity Classes: After

NL

FewL

OO

UL

OO

ReachFewL = ReachUL

OO

StrongFewL

OO

StrongUL

OO

ReachFewL = ReachUL

Brady Garvin Derrick Stolee* Raghunath Tewari
N. V. Vinodchandran

August 15, 2011

This work is supported in part by NSF Grants CCF-0916525,
CFDA#47.076, DMS-0914815, and AFOSR grant FA9550-10-1-0406.

