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A Lemma About Oracles
Lemma

LReachUL = ReachUL

Proof.
We can assume O is a ReachUL-complete oracle.

There are two terminal configurations: “accept” and “reject.”
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Distance Isolation

A (weighted) graph G with vertex s is distance-isolated with
respect to s if there is no vertex t so that there are two paths from
s to t of the same weight.



A Hashing Result

Theorem (Fredman, Komlós and Szemerédi, 1984)

Let c be a constant and S be a set of n-bit integers with |S | ≤ nc .
Then there is a c ′ and a (c ′ log n)-bit prime number p so that for
any x 6= y ∈ S, we have x 6≡ y (mod p).



Hashing to Distance Isolation

Lemma
Let G be a graph with edges E (G ) = {e1, e2, . . . , e`}. If G has at
most nk paths from u to any vertex v ∈ V (G ), then there is a
prime p ≤ nk ′

, for some constant k ′, such that the weight function
wp : E (G )→ {1, . . . , p} given by wp(ei ) = 2i (mod p) defines a
weighted graph Gwp which is distance isolated with respect to u.
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Layering Transformation

Let G be a graph. The layered graph lay(G ) is the graph on vertex
set V (G )× {0, . . . , n(G )} with edges (u, i)→ (v , i + 1) whenever
u → v is in G .
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Layering Transformation

Lemma

There is a path of distance d from s to t in G if and only if there
is a path from (s, 0) to (t, d) in lay(G ).

Corollary

G is distance-isolated with respect to s if and only if lay(G ) is
reach-unique with respect to (s, 0).
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Putting it Together

1. Given a reach-nk graph G with vertices s, t.

2. For each prime p ∈ {2, 3, . . . , nk ′}, generate Gwp .

3. Generate lay(Gwp ).

4. Test (using ReachUL) if lay(Gwp ) is reach-unique.

5. If so, test if (s, 0)→ (t, d) exists for each distance d .

6. If all attempts fail, reject.
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ReachFewSearch(G , s, t)

Require: G has at most nk paths from s to any other vertex.
Ensure: Accepts if and only if there is a path from s to t in G .

for all primes p ∈ {1, . . . , nk ′} do
Define wp(ei ) = 2i (mod p).
Construct Gwp .
Construct lay(Gwp ).
if IsReachUnique(lay(Gwp )) then

for each d ∈ {1, . . . , n(Gwp )} do
if ReachUnique(lay(Gwp ), (s, 0), (t, d)) then

return True
end if

end for
return False

end if
end for
return False
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