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Figure: The (r — 2)-books are uniquely K; saturated.
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Two Questions:
1. Fix r > 3. Are there a finite number of r-primitive graphs?
2. Is every r-primitive graph regular?

NO! Exists an irregular 5-primitive graph on 16 vertices!
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Variables

Consider searching for uniquely K;-saturated graphs on vertex
set {vq,..., Vn .

Use variables x;; € {0, 1, *} where
x;j = 0 fixes v;v; ¢ E(G).

- x;; = 1fixes v;v; € E(G).
- X;j = * is unassigned.

If x;; = * for some i, j, the vector x is a partial assignment.

If x;; = = for all /, j, the vector x is the empty assignment.
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Symmetries of the System

The constraints

- Thereis no r-clique in G.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.

The permutations in S, permute the variables x; ; by permuting
the indices.

Value-preserving permutations reflect the automorphisms of a
partial assignment.
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Orbital Branching

Generalizes branch-and-bound strategy.

Instead of selecting an unassigned variable, select an orbit O
of unassigned variables and branch (with some a € {0, 1}):

B1: Select a representative xy € O and assign x; ; = a.
B2: Assign x;; = aforall x;; € O.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007)
for symmetric optimization problems such as covering and
packing.
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K,-Completions

In addition to the usual constraints, we guarantee:

x;j = 0 if and only if there exists a set S C [n] so that
Xia = Xja= Xap = 1foralla, beS.

i.e. for every non-edge we add, we add a K,-completion.

Also, we set x;; = 0 if it has a K;-completion.
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Orbital Branching with K;-Completions

We branch on an orbit O of unassigned variables.

B1: Select a representative xy € O and set x; y = 0.

SB: For every orbit A of (r — 2)-subsets, select a representative
S € Aandassign x; ;, = Xj 5 = Xap = 1 foralla, b c S.

B2: Set x;; = 1forall x;; € O.






























Search Times

n r=4 r=5 r==6 r= r=28
10| 0.10s 0.37s 0.13s 0.01s 0.01s
11 0.68s 525s 191s 0.28 s 0.09s
12| 4.58s 1.60m | 25.39s 1.97s 1.12s
13 | 34.66s | 3454m | 6.53m | 59.94s 20.03 s
14| 493 m | 10.39h 5.13h | 20.66 m 2.71m
151 40.59m | 23.49d | 10.08d | 12.28 h 1.22 h
16 | 6.34h 1.58y 1.74y | 34.53d 1.88d
17 | 3.44d 8.76y | 115.69d
18 | 53.01d

19| 201y

20 | 4511y

Total CPU times using Open Science Grid.
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Custom Augmentations

An (n, k, A, ) strongly regular graph is a k-regular graph G on
n vertices where every vertex pair u, v € V(G) has

- Ifuvisanedge, IN(u)yNN(v)| = A.

- Ifuvisnotanedge, IN(u) N N(v)| = pu.



Strongly Regular Graphs

Custom Augmentations

An (n, k, A, ) strongly regular graph is a k-regular graph G on
n vertices where every vertex pair u, v € V(G) has

- Ifuvisanedge, IN(u)yNN(v)| = A.
- Ifuvisnotanedge, IN(u) N N(v)| = pu.

We use the A and u constraints for custom augmentations.
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Infinite Families

Recall: For r > 1, Cy,_1 is r-primitive.

Cs G

Let nbe an integer and S C Z,. The Cayley complement

C(Zp, S) is the complement of the Cayley graph for Z, with
generator set S.

C(Zar—1,{1}) = Cy_1 is r-primitive.
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Two Generators
Theorem

Lett >1,n=4t2+1,andr =2t> — t+ 1. The Cayley
complement C(Z,, {1,2t}) is r-primitive.

Conjecture

Let S C Z, have |S| = 2. The Cayley complement C(Z,, S) is
r-primitive if and only if 3t > 1,n =412 +1,r = 2t* — t+ 1, and
C(Zn, S) =2 C(Zn {1,2t}).
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Verified for 1 < t < 6.

When t = 6, we have r = 97, n = 304.



Three Generators

We have a similar conjecture for C(Z,, S) when |S| = 3.

Verified for 1 < t < 6.

When t = 6, we have r = 97, n = 304.

Pattern does not extend to |S| > 4!



More Generators

g Generators | n | r
{1,5,8,34}

4 {1,11,18,34) 89 |28

5 {1,5,14,17,25} 71 119

5 {1,6,14,17,36} 101 | 27

6| {1,6,16,2223536F | 97 | 21

7 |{1,20,23,26,30,32,34} | 71 | 15
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Two Generators

Theorem

Lett >1,n=4t2 +1,andr =2t> — t+ 1. The Cayley
complement G = C(Zp, {1, 2t}) is r-primitive.



Two Generators
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Suppose X C Z, is an r-clique in G.
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

Elements are labeled xg, x1, . .., X, ... (i modulo r).

- @000000000000000000@00 "
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

Blocks are sets B = {xx, xx +1,..., Xk+1 — 1} (k modulo r).
(“Intervals” closed on element x, and open on xx. 1)

"'QOQ0.00.0.0.0Q0.00.00"'
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

Frames are collections F; = {B;, Bj,1, ..., Bj.t-1} (j modulo r).
(There are t blocks in each frame.)

= @00000000000000000@00:
LR T
B BB BBBBB B

| 0 1 2 J| 3 4 5J| 6 7 8 J
F F F
0 3 6
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

(a) Every block By has |Bx| > 2. (1 is a generator)
(b) Every frame F; has a block By € F; with |By| > 3.
2t is a generator, 0 Xj,; # X; + 2t.

“'.0.0QOOQ0.0Q0.0.00QOO"'
X )C x X X

I_)I_)I_)I_)I_)I_)I_)I_)I_)
RN EL.LRY

F F F
0 3 6
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

So, 0(Fj) := Lper |Be| = dz, (X, Xjvt) = 2t + 1.

<2 3)
tn—Za ) > r(2t+1) = tn+1.

~—

(1) Every block is counted t times.
(2) Claim.
(3) Arithmetic. Contradiction! . w(G) < r.
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G is vertex-transitive and there is an automorphism of G
(x — —2tx) that maps {0, 2t} to {0, 1}.



Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

G is vertex-transitive and there is an automorphism of G
(x — —2tx) that maps {0, 2t} to {0, 1}.

For unique saturation, we only need to check G+ {0, 1}.
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

Suppose X is an r-clique in G+ {0, 1}.

X:{X():O,X1:1,X2 ..... Xr,1}.

Consider frame family F

f:{F1th+11F2t+1 1111 Ff—f}y ’f|:2t—1
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

n—1=Y o(F)>@t—-1)2t+1)=n-2.
FieF

So, o(F;) = 2t + 1 for all F; € F but exactly one F; € F where
o(Fy) =2t+2.

Fi has (t — 2) 2-blocks and two 3-blocks (4 = 2 + 2).

All blocks of of X (except By) have size 2 or 3.

There are exactly (2t + 1) 3-blocks.
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Two Generators
n=4 +1,r=212 —t+1,G= C(Zn {1,2t})

(a) There are at most (t — 1) 2-blocks between 3-blocks.
(b) There are at least (t — 2) 2-blocks between 3-blocks.
(3+3=6)

(c) If By, By, - .., By, be the 3-blocks.

ko>t—1,  kpiel{k+t—2k+t—1},  ky<r—t

A unique solution for kg, ..., Kot: Kipq = ki +t— 2.

Defines X which is an r-clique. O
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