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Uniquely Kr -Saturated Graphs

Definition

A graph G is uniquely Kr -saturated if G contains no Kr and for
every edge e ∈ G admits exactly one copy of Kr in G + e.

(a) 1-book (b) 2-book (c) 3-book

Figure: The (r − 2)-books are uniquely Kr saturated.



Uniquely Kr -Saturated Graphs

Definition

A graph G is uniquely Kr -saturated if G contains no Kr and for
every edge e ∈ G admits exactly one copy of Kr in G + e.

(a) 1-book (b) 2-book (c) 3-book

Figure: The (r − 2)-books are uniquely Kr saturated.



Dominating Vertices

Removing a dominating vertex from a uniquely Kr -saturated
graph creates a uniquely Kr−1-saturated graph.

Call uniquely Kr -saturated graphs with no dominating vertex
r -primitive.
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For r ≥ 1, C2r−1 is r -primitive.



Dominating Vertices

Removing a dominating vertex from a uniquely Kr -saturated
graph creates a uniquely Kr−1-saturated graph.

Call uniquely Kr -saturated graphs with no dominating vertex
r -primitive.

C5 C7 C9

For r ≥ 1, C2r−1 is r -primitive.



Dominating Vertices

Removing a dominating vertex from a uniquely Kr -saturated
graph creates a uniquely Kr−1-saturated graph.

Call uniquely Kr -saturated graphs with no dominating vertex
r -primitive.

C5 C7 C9

For r ≥ 1, C2r−1 is r -primitive.



Previously known 4-primitive graphs



Joshua Cooper Paul Wenger

Two Questions:



Joshua Cooper Paul Wenger

Two Questions:

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?



Joshua Cooper Paul Wenger

Two Questions:

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?

2. Is every r -primitive graph regular?



Joshua Cooper Paul Wenger

Two Questions:

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?

2. Is every r -primitive graph regular?

NO! Exists an irregular 5-primitive graph on 16 vertices!



Variables

Consider searching for uniquely Kr -saturated graphs on vertex
set {v1, . . . , vn}.

Use variables xi,j ∈ {0, 1, ∗} where

- xi,j = 0 fixes vivj /∈ E(G).
- xi,j = 1 fixes vivj ∈ E(G).
- xi,j = ∗ is unassigned.

If xi,j = ∗ for some i , j , the vector x is a partial assignment.

If xi,j = ∗ for all i , j , the vector x is the empty assignment.
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Symmetries of the System

The constraints

- There is no r -clique in G.
- Every non-edge e of G has exactly one r -clique in G + e.

are label-independent.

The permutations in Sn permute the variables xi,j by permuting
the indices.

Value-preserving permutations reflect the automorphisms of a
partial assignment.
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Orbital Branching

Generalizes branch-and-bound strategy.

Instead of selecting an unassigned variable, select an orbit O
of unassigned variables and branch (with some a ∈ {0, 1}):

B1: Select a representative xi ′,j ′ ∈ O and assign xi ′,j ′ = a.
B2: Assign xi,j = a for all xi,j ∈ O.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007)
for symmetric optimization problems such as covering and
packing.
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Kr -Completions

In addition to the usual constraints, we guarantee:

xi,j = 0 if and only if there exists a set S ⊂ [n] so that
xi,a = xj,a = xa,b = 1 for all a, b ∈ S.

i.e. for every non-edge we add, we add a Kr -completion.

Also, we set xi,j = 0 if it has a Kr -completion.
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Search Times

n r = 4 r = 5 r = 6 r = 7 r = 8
10 0.10 s 0.37 s 0.13 s 0.01 s 0.01 s
11 0.68 s 5.25 s 1.91 s 0.28 s 0.09 s
12 4.58 s 1.60 m 25.39 s 1.97 s 1.12 s
13 34.66 s 34.54 m 6.53 m 59.94 s 20.03 s
14 4.93 m 10.39 h 5.13 h 20.66 m 2.71 m
15 40.59 m 23.49 d 10.08 d 12.28 h 1.22 h
16 6.34 h 1.58 y 1.74 y 34.53 d 1.88 d
17 3.44 d 8.76 y 115.69 d
18 53.01 d
19 2.01 y
20 45.11 y

Total CPU times using Open Science Grid.



Strongly Regular Graphs
Custom Augmentations

An (n, k , λ, µ) strongly regular graph is a k -regular graph G on
n vertices where every vertex pair u, v ∈ V (G) has

- If uv is an edge, |N(u) ∩N(v)| = λ.
- If uv is not an edge, |N(u) ∩N(v)| = µ.
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n vertices where every vertex pair u, v ∈ V (G) has

- If uv is an edge, |N(u) ∩N(v)| = λ.
- If uv is not an edge, |N(u) ∩N(v)| = µ.

We use the λ and µ constraints for custom augmentations.
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4-Primitive Graphs
n = 13

G(A)
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Other r -Primitive Graphs

G(A)
15 G(B)

15

G(B)
16 G(C)

16



Infinite Families

Recall: For r ≥ 1, C2r−1 is r -primitive.

C5 C7 C9

Let n be an integer and S ⊆ Zn. The Cayley complement
C(Zn, S) is the complement of the Cayley graph for Zn with
generator set S.

C(Z2r−1, {1}) ∼= C2r−1 is r -primitive.
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Two Generators
Theorem

Let t ≥ 1, n = 4t2 + 1, and r = 2t2 − t + 1. The Cayley
complement C(Zn, {1, 2t}) is r -primitive.

Conjecture
Let S ⊆ Zn have |S| = 2. The Cayley complement C(Zn, S) is
r -primitive if and only if ∃t ≥ 1, n = 4t2 + 1, r = 2t2 − t + 1, and
C(Zn, S) ∼= C(Zn, {1, 2t}).



Three Generators

We have a similar conjecture for C(Zn, S) when |S| = 3.

Verified for 1 ≤ t ≤ 6.

When t = 6, we have r = 97, n = 304.

Pattern does not extend to |S| ≥ 4!
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More Generators

g Generators n r

4
{1, 5, 8, 34}

89 28{1, 11, 18, 34}
5 {1, 5, 14, 17, 25} 71 19
5 {1, 6, 14, 17, 36} 101 27
6 {1, 6, 16, 22, 35, 36} 97 21
7 {1, 20, 23, 26, 30, 32, 34} 71 15
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Two Generators

Theorem

Let t ≥ 1, n = 4t2 + 1, and r = 2t2 − t + 1. The Cayley
complement G = C(Zn, {1, 2t}) is r -primitive.
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Suppose X ⊆ Zn is an r -clique in G.
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Two Generators
n = 4t2 + 1, r = 2t2 − t + 1, G = C(Zn, {1, 2t})

Frames are collections Fj = {Bj , Bj+1, . . . , Bj+t−1} (j modulo r ).
(There are t blocks in each frame.)
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(a) Every block Bk has |Bk | ≥ 2.

(1 is a generator)

(b) Every frame Fj has a block Bk ∈ Fj with |Bk | ≥ 3.

2t is a generator, so xj+t 6= xj + 2t .
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|Bk | = dZn(xj , xj+t ) ≥ 2t + 1.

tn
(1)
=

r−1

∑
j=0

σ(Fj)
(2)
≥ r (2t + 1)

(3)
= tn + 1.

(1) Every block is counted t times.

(2) Claim.

(3) Arithmetic. Contradiction! ∴ ω(G) < r .
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G is vertex-transitive and there is an automorphism of G
(x 7→ −2tx) that maps {0, 2t} to {0, 1}.

For unique saturation, we only need to check G + {0, 1}.
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σ(Fj ′) = 2t + 2.

Fj ′ has (t − 2) 2-blocks and two 3-blocks (4 = 2 + 2).

All blocks of of X (except B0) have size 2 or 3.

There are exactly (2t + 1) 3-blocks.
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