Searching for uniquely saturated

 (and strongly regular) graphs with coupled augmentations ${ }^{1}$Stephen G. Hartke Derrick Stolee ${ }^{2}$
University of Nebraska-Lincoln
s-dstolee1@math.unl.edu
http://www.math.unl.edu/~s-dstolee1/

September 25, 2011
${ }^{1}$ Supported by NSF grant DMS-0914815.
${ }^{2}$ Supported by an AMS travel grant.

Uniquely K_{r}-Saturated Graphs

Definition

A graph G is uniquely K_{r}-saturated if G contains no K_{r} and for every edge $e \in \bar{G}$ admits exactly one copy of K_{r} in $G+e$.

Uniquely K_{r}-Saturated Graphs

Definition

A graph G is uniquely K_{r}-saturated if G contains no K_{r} and for every edge $e \in \bar{G}$ admits exactly one copy of K_{r} in $G+e$.

(a) 1-book
(b) 2-book

(c) 3-book

Figure: The $(r-2)$-books are uniquely K_{r} saturated.

Dominating Vertices

Removing a dominating vertex from a uniquely K_{r}-saturated graph creates a uniquely K_{r-1}-saturated graph.

Dominating Vertices

Removing a dominating vertex from a uniquely K_{r}-saturated graph creates a uniquely K_{r-1}-saturated graph.

Call uniquely K_{r}-saturated graphs with no dominating vertex r-primitive.

Dominating Vertices

Removing a dominating vertex from a uniquely K_{r}-saturated graph creates a uniquely K_{r-1}-saturated graph.

Call uniquely K_{r}-saturated graphs with no dominating vertex r-primitive.

$\overline{C_{5}}$

$\overline{C_{7}}$

\bar{C}

For $r \geq 1, \overline{C_{2 r-1}}$ is r-primitive.

Previously known 4-primitive graphs

Two Questions：

Two Questions:

1. Fix $r \geq 3$. Are there a finite number of r-primitive graphs?

Two Questions:

1. Fix $r \geq 3$. Are there a finite number of r-primitive graphs?
2. Is every r-primitive graph regular?

Two Questions:

1. Fix $r \geq 3$. Are there a finite number of r-primitive graphs?
2. Is every r-primitive graph regular?

NO! Exists an irregular 5-primitive graph on 16 vertices!

Variables

Consider searching for uniquely K_{r}-saturated graphs on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$.

Variables

Consider searching for uniquely K_{r}-saturated graphs on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$.

Use variables $x_{i, j} \in\{0,1, *\}$ where

- $x_{i, j}=0$ fixes $v_{i} v_{j} \notin E(G)$.
- $x_{i, j}=1$ fixes $v_{i} v_{j} \in E(G)$.
- $x_{i, j}=*$ is unassigned.

Variables

Consider searching for uniquely K_{r}-saturated graphs on vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$.

Use variables $x_{i, j} \in\{0,1, *\}$ where

- $x_{i, j}=0$ fixes $v_{i} v_{j} \notin E(G)$.
- $x_{i, j}=1$ fixes $v_{i} v_{j} \in E(G)$.
- $x_{i, j}=*$ is unassigned.

If $x_{i, j}=*$ for some i, j, the vector \mathbf{x} is a partial assignment.
If $x_{i, j}=*$ for all i, j, the vector \mathbf{x} is the empty assignment.

Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in $G+e$.
are label-independent.

Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in $G+e$.
are label-independent.

The permutations in S_{n} permute the variables $x_{i, j}$ by permuting the indices.

Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in $G+e$.
are label-independent.

The permutations in S_{n} permute the variables $x_{i, j}$ by permuting the indices.

Value-preserving permutations reflect the automorphisms of a partial assignment.

Orbital Branching

Generalizes branch-and-bound strategy.

Orbital Branching

Generalizes branch-and-bound strategy.
Instead of selecting an unassigned variable, select an orbit \mathcal{O} of unassigned variables and branch (with some $a \in\{0,1\}$):

Orbital Branching

Generalizes branch-and-bound strategy.
Instead of selecting an unassigned variable, select an orbit \mathcal{O} of unassigned variables and branch (with some $a \in\{0,1\}$):

B1: Select a representative $x_{i^{\prime}, j^{\prime}} \in \mathcal{O}$ and assign $x_{i^{\prime}, j^{\prime}}=a$.

Orbital Branching

Generalizes branch-and-bound strategy.
Instead of selecting an unassigned variable, select an orbit \mathcal{O} of unassigned variables and branch (with some $a \in\{0,1\}$):

B1: Select a representative $x_{i^{\prime}, j^{\prime}} \in \mathcal{O}$ and assign $x_{i^{\prime}, j^{\prime}}=a$.
B2: Assign $x_{i, j}=\bar{a}$ for all $x_{i, j} \in \mathcal{O}$.

Orbital Branching

Generalizes branch-and-bound strategy.
Instead of selecting an unassigned variable, select an orbit \mathcal{O} of unassigned variables and branch (with some $a \in\{0,1\}$):

B1: Select a representative $x_{i^{\prime}, j^{\prime}} \in \mathcal{O}$ and assign $x_{i^{\prime}, j^{\prime}}=a$.
B2: Assign $x_{i, j}=\bar{a}$ for all $x_{i, j} \in \mathcal{O}$.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007) for symmetric optimization problems such as covering and packing.

K_{r}-Completions

In addition to the usual constraints, we guarantee:
$x_{i, j}=0$ if and only if there exists a set $S \subset[n]$ so that

$$
x_{i, a}=x_{j, a}=x_{a, b}=1 \text { for all } a, b \in S
$$

K_{r}-Completions

In addition to the usual constraints, we guarantee:

$$
\begin{aligned}
& x_{i, j}=0 \text { if and only if there exists a set } S \subset[n] \text { so that } \\
& \qquad x_{i, a}=x_{j, a}=x_{a, b}=1 \text { for all } a, b \in S .
\end{aligned}
$$

i.e. for every non-edge we add, we add a K_{r}-completion.

Also, we set $x_{i, j}=0$ if it has a K_{r}-completion.

Orbital Branching with K_{r}-Completions

We branch on an orbit \mathcal{O} of unassigned variables.

Orbital Branching with K_{r}-Completions

We branch on an orbit \mathcal{O} of unassigned variables.
B1: Select a representative $x_{i^{\prime}, j^{\prime}} \in \mathcal{O}$ and set $x_{i^{\prime}, j^{\prime}}=0$.

Orbital Branching with K_{r}-Completions

We branch on an orbit \mathcal{O} of unassigned variables.

B1: Select a representative $x_{i^{\prime}, j^{\prime}} \in \mathcal{O}$ and set $x_{i^{\prime}, j^{\prime}}=0$.
SB: For every orbit \mathcal{A} of $(r-2)$-subsets, select a representative $S \in \overline{\mathcal{A}}$ and assign $x_{i, a}=x_{j, a}=x_{a, b}=1$ for all $a, b \in S$.

Orbital Branching with K_{r}-Completions

We branch on an orbit \mathcal{O} of unassigned variables.

B1: Select a representative $x_{i^{\prime}, j^{\prime}} \in \mathcal{O}$ and set $x_{i^{\prime}, j^{\prime}}=0$.
SB: For every orbit \mathcal{A} of $(r-2)$-subsets, select a representative $S \in \mathcal{A}$ and assign $x_{i, a}=x_{j, a}=x_{a, b}=1$ for all $a, b \in S$.
B2: Set $x_{i, j}=1$ for all $x_{i, j} \in \mathcal{O}$.

(
\bullet
\bullet

\bullet

\square
\bullet

\square
\bullet

$$
\oiiint
$$

$$
4
$$

Search Times

n	$r=4$	$r=5$	$r=6$	$r=7$	$r=8$
10	0.10 s	0.37 s	0.13 s	0.01 s	0.01 s
11	0.68 s	5.25 s	1.91 s	0.28 s	0.09 s
12	4.58 s	1.60 m	25.39 s	1.97 s	1.12 s
13	34.66 s	34.54 m	6.53 m	59.94 s	20.03 s
14	4.93 m	10.39 h	5.13 h	20.66 m	2.71 m
15	40.59 m	23.49 d	10.08 d	12.28 h	1.22 h
16	6.34 h	1.58 y	1.74 y	34.53 d	1.88 d
17	3.44 d			8.76 y	115.69 d
18	53.01 d				
19	2.01 y				
20	45.11 y				

Total CPU times using Open Science Grid.

Strongly Regular Graphs

An (n, k, λ, μ) strongly regular graph is a k-regular graph G on n vertices where every vertex pair $u, v \in V(G)$ has

- If $u v$ is an edge, $|N(u) \cap N(v)|=\lambda$.
- If $u v$ is not an edge, $|N(u) \cap N(v)|=\mu$.

Strongly Regular Graphs

An (n, k, λ, μ) strongly regular graph is a k-regular graph G on n vertices where every vertex pair $u, v \in V(G)$ has

- If $u v$ is an edge, $|N(u) \cap N(v)|=\lambda$.
- If $u v$ is not an edge, $|N(u) \cap N(v)|=\mu$.

We use the λ and μ constraints for custom augmentations.

Strongly Regular Graphs

Custom Augmentations

λ-Augmentation

Strongly Regular Graphs

Custom Augmentations

λ-Augmentation

Strongly Regular Graphs

Custom Augmentations

λ-Augmentation

Strongly Regular Graphs

Custom Augmentations

λ-Augmentation

Strongly Regular Graphs

Custom Augmentations

λ-Augmentation

μ-Augmentation

Strongly Regular Graphs

Custom Augmentations

λ-Augmentation

μ-Augmentation

4-Primitive Graphs

$n=13$

4-Primitive Graphs

$n=18: G_{18}^{(A)}$

4-Primitive Graphs

$n=18: G_{18}^{(B)}$

5-Primitive Graphs

$n=16: G_{16}^{(A)}$ is irregular!

Other r-Primitive Graphs

$G_{15}^{(A)}$

$G_{15}^{(B)}$

$G_{16}^{(B)}$

$(0,5)$

Infinite Families

Recall: For $r \geq 1, \overline{C_{2 r-1}}$ is r-primitive.

$\overline{C_{5}}$

$\overline{C_{7}}$

$\overline{C_{9}}$

Infinite Families

Recall: For $r \geq 1, \overline{C_{2 r-1}}$ is r-primitive.

$\overline{C_{5}}$

$\overline{C_{7}}$

$\overline{C_{9}}$

Let n be an integer and $S \subseteq \mathbb{Z}_{n}$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n}, S\right)$ is the complement of the Cayley graph for \mathbb{Z}_{n} with generator set S.

Infinite Families

Recall: For $r \geq 1, \overline{C_{2 r-1}}$ is r-primitive.

$\overline{C_{5}}$

$\overline{C_{7}}$

$\overline{C_{9}}$

Let n be an integer and $S \subseteq \mathbb{Z}_{n}$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n}, S\right)$ is the complement of the Cayley graph for \mathbb{Z}_{n} with generator set S.
$\bar{C}\left(\mathbb{Z}_{2 r-1},\{1\}\right) \cong \overline{C_{2 r-1}}$ is r-primitive.

Two Generators

Theorem

Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

Two Generators

Theorem

Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

For $t=1, r=2$, and $\bar{C}\left(\mathbb{Z}_{n},\{1,2\}\right) \cong \overline{K_{5}}$.

Two Generators
 Theorem

Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

$$
t=2, n=17, r=7
$$

Two Generators

Theorem

Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

$$
t=2, n=17, r=7
$$

Two Generators
 Theorem

Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

$$
t=2, n=17, r=7
$$

Two Generators

Theorem
Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

Two Generators

Theorem
Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

Two Generators

Theorem

Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.
Conjecture
Let $S \subseteq \mathbb{Z}_{n}$ have $|S|=2$. The Cayley complement $\bar{C}\left(\mathbb{Z}_{n}, S\right)$ is r-primitive if and only if $\exists t \geq 1, n=4 t^{2}+1, r=2 t^{2}-t+1$, and $\bar{C}\left(\mathbb{Z}_{n}, S\right) \cong \bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$.

Three Generators

We have a similar conjecture for $\bar{C}\left(\mathbb{Z}_{n}, S\right)$ when $|S|=3$.

Verified for $1 \leq t \leq 6$.
When $t=6$, we have $r=97, n=304$.

Three Generators

We have a similar conjecture for $\bar{C}\left(\mathbb{Z}_{n}, S\right)$ when $|S|=3$.

Verified for $1 \leq t \leq 6$.
When $t=6$, we have $r=97, n=304$.

Pattern does not extend to $|S| \geq 4$!

More Generators

g	Generators	n	r
4	$\{1,5,8,34\}$	89	28
	$\{1,11,18,34\}$		
5	$\{1,5,14,17,25\}$	71	19
5	$\{1,6,14,17,36\}$	101	27
6	$\{1,6,16,22,35,36\}$	97	21
7	$\{1,20,23,26,30,32,34\}$	71	15

Searching for uniquely saturated and strongly regular graphs with coupled augmentations ${ }^{1}$

Stephen G. Hartke Derrick Stolee ${ }^{2}$
University of Nebraska-Lincoln
s-dstolee1@math.unl.edu
http://www.math.unl.edu/~s-dstolee1/

September 25, 2011
${ }^{1}$ Supported by NSF grant DMS-0914815.
${ }^{2}$ Supported by an AMS travel grant.

Two Generators

Theorem
Let $t \geq 1, n=4 t^{2}+1$, and $r=2 t^{2}-t+1$. The Cayley complement $G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$ is r-primitive.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

Suppose $X \subseteq \mathbb{Z}_{n}$ is an r-clique in G.
-•000000000000000000000•••

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

Elements are labeled $x_{0}, x_{1}, \ldots, x_{i}, \ldots$ (i modulo r).

$$
\cdots
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

Blocks are sets $B_{k}=\left\{x_{k}, x_{k}+1, \ldots, x_{k+1}-1\right\}(k$ modulo $r)$. ("Intervals" closed on element x_{k} and open on x_{k+1})

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

Frames are collections $F_{j}=\left\{B_{j}, B_{j+1}, \ldots, B_{j+t-1}\right\}$ (j modulo r). (There are t blocks in each frame.)

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

(a) Every block B_{k} has $\left|B_{k}\right| \geq 2$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

(a) Every block B_{k} has $\left|B_{k}\right| \geq 2$. (1 is a generator)

Two Generators

$n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)$
(a) Every block B_{k} has $\left|B_{k}\right| \geq 2$. (1 is a generator)
(b) Every frame F_{j} has a block $B_{k} \in F_{j}$ with $\left|B_{k}\right| \geq 3$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

(a) Every block B_{k} has $\left|B_{k}\right| \geq 2$. (1 is a generator)
(b) Every frame F_{j} has a block $B_{k} \in F_{j}$ with $\left|B_{k}\right| \geq 3$.
$2 t$ is a generator, so $x_{j+t} \neq x_{j}+2 t$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
\text { So, } \sigma\left(F_{j}\right):=\sum_{B_{k} \in F_{j}}\left|B_{k}\right|=d_{\mathbb{Z}_{n}}\left(x_{j}, x_{j+t}\right) \geq 2 t+1
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
\text { So, } \sigma\left(F_{j}\right):=\sum_{B_{k} \in F_{j}}\left|B_{k}\right|=d_{\mathbb{Z}_{n}}\left(x_{j}, x_{j+t}\right) \geq 2 t+1
$$

$$
t n \stackrel{(\mathbf{1})}{=} \sum_{j=0}^{r-1} \sigma\left(F_{j}\right) \stackrel{(2)}{\geq} r(2 t+1) \stackrel{(\mathbf{3})}{=} t n+1
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
\text { So, } \sigma\left(F_{j}\right):=\sum_{B_{k} \in F_{j}}\left|B_{k}\right|=d_{\mathbb{Z}_{n}}\left(x_{j}, x_{j+t}\right) \geq 2 t+1
$$

$$
t n \stackrel{(\mathbf{1})}{=} \sum_{j=0}^{r-1} \sigma\left(F_{j}\right) \stackrel{(2)}{\geq} r(2 t+1) \stackrel{(\mathbf{3})}{=} t n+1 .
$$

(1) Every block is counted t times.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
\text { So, } \sigma\left(F_{j}\right):=\sum_{B_{k} \in F_{j}}\left|B_{k}\right|=d_{\mathbb{Z}_{n}}\left(x_{j}, x_{j+t}\right) \geq 2 t+1
$$

$$
t n \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma\left(F_{j}\right) \stackrel{(2)}{\geq} r(2 t+1) \stackrel{(\mathbf{3})}{=} t n+1
$$

(1) Every block is counted t times.
(2) Claim.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
\text { So, } \sigma\left(F_{j}\right):=\sum_{B_{k} \in F_{j}}\left|B_{k}\right|=d_{\mathbb{Z}_{n}}\left(x_{j}, x_{j+t}\right) \geq 2 t+1
$$

$$
t n \stackrel{(\mathbf{1})}{=} \sum_{j=0}^{r-1} \sigma\left(F_{j}\right) \stackrel{(2)}{\geq} r(2 t+1) \stackrel{(\mathbf{3})}{=} t n+1
$$

(1) Every block is counted t times.
(2) Claim.
(3) Arithmetic.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

So, $\sigma\left(F_{j}\right):=\sum_{B_{k} \in F_{j}}\left|B_{k}\right|=d_{\mathbb{Z}_{n}}\left(x_{j}, x_{j+t}\right) \geq 2 t+1$.

$$
\operatorname{tn} \stackrel{(\mathbf{1})}{=} \sum_{j=0}^{r-1} \sigma\left(F_{j}\right) \stackrel{(2)}{\geq} r(2 t+1) \stackrel{(\mathbf{3})}{=} t n+1
$$

(1) Every block is counted t times.
(2) Claim.
(3) Arithmetic.

Contradiction! $\therefore \omega(G)<r$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

G is vertex-transitive and there is an automorphism of G $(x \mapsto-2 t x)$ that maps $\{0,2 t\}$ to $\{0,1\}$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

G is vertex-transitive and there is an automorphism of G $(x \mapsto-2 t x)$ that maps $\{0,2 t\}$ to $\{0,1\}$.

For unique saturation, we only need to check $G+\{0,1\}$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

Suppose X is an r-clique in $G+\{0,1\}$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

Suppose X is an r-clique in $G+\{0,1\}$.

$$
X=\left\{x_{0}=0, x_{1}=1, x_{2}, \ldots, x_{r-1}\right\}
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

Suppose X is an r-clique in $G+\{0,1\}$.

$$
X=\left\{x_{0}=0, x_{1}=1, x_{2}, \ldots, x_{r-1}\right\}
$$

Consider frame family \mathcal{F}

$$
\mathcal{F}=\left\{F_{1}, F_{t+1}, F_{2 t+1}, \ldots, F_{r-t}\right\}, \quad|\mathcal{F}|=2 t-1
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
n-1=\sum_{F_{j} \in \mathcal{F}} \sigma\left(F_{j}\right) \geq(2 t-1)(2 t+1)=n-2
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
n-1=\sum_{F_{j} \in \mathcal{F}} \sigma\left(F_{j}\right) \geq(2 t-1)(2 t+1)=n-2
$$

So, $\sigma\left(F_{j}\right)=2 t+1$ for all $F_{j} \in \mathcal{F}$ but exactly one $F_{j^{\prime}} \in \mathcal{F}$ where $\sigma\left(F_{j^{\prime}}\right)=2 t+2$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
n-1=\sum_{F_{j} \in \mathcal{F}} \sigma\left(F_{j}\right) \geq(2 t-1)(2 t+1)=n-2
$$

So, $\sigma\left(F_{j}\right)=2 t+1$ for all $F_{j} \in \mathcal{F}$ but exactly one $F_{j^{\prime}} \in \mathcal{F}$ where $\sigma\left(F_{j^{\prime}}\right)=2 t+2$.
$F_{j^{\prime}}$ has $(t-2)$-blocks and two 3-blocks $(4=2+2)$.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

$$
n-1=\sum_{F_{j} \in \mathcal{F}} \sigma\left(F_{j}\right) \geq(2 t-1)(2 t+1)=n-2
$$

So, $\sigma\left(F_{j}\right)=2 t+1$ for all $F_{j} \in \mathcal{F}$ but exactly one $F_{j^{\prime}} \in \mathcal{F}$ where $\sigma\left(F_{j^{\prime}}\right)=2 t+2$.
$F_{j^{\prime}}$ has $(t-2)$ 2-blocks and two 3-blocks $(4=2+2)$.
All blocks of of X (except B_{0}) have size 2 or 3 .
There are exactly $(2 t+1)$ 3-blocks.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

(a) There are at most $(t-1)$ 2-blocks between 3-blocks.

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

(a) There are at most $(t-1)$ 2-blocks between 3-blocks.
(b) There are at least $(t-2)$ 2-blocks between 3-blocks.

$$
(3+3=6)
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

(a) There are at most $(t-1)$ 2-blocks between 3-blocks.
(b) There are at least $(t-2)$ 2-blocks between 3-blocks.

$$
(3+3=6)
$$

(c) If $B_{k_{0}}, B_{k_{1}}, \ldots, B_{k_{2 t}}$ be the 3-blocks.

$$
k_{0} \geq t-1, \quad k_{j+1} \in\left\{k_{j}+t-2, k_{j}+t-1\right\}, \quad k_{2 t} \leq r-t
$$

Two Generators

$$
n=4 t^{2}+1, r=2 t^{2}-t+1, G=\bar{C}\left(\mathbb{Z}_{n},\{1,2 t\}\right)
$$

(a) There are at most $(t-1)$ 2-blocks between 3-blocks.
(b) There are at least $(t-2)$ 2-blocks between 3-blocks.

$$
(3+3=6)
$$

(c) If $B_{k_{0}}, B_{k_{1}}, \ldots, B_{k_{2 t}}$ be the 3-blocks.

$$
k_{0} \geq t-1, \quad k_{j+1} \in\left\{k_{j}+t-2, k_{j}+t-1\right\}, \quad k_{2 t} \leq r-t
$$

A unique solution for $k_{0}, \ldots, k_{2 t}: k_{j+1}=k_{j}+t-2$.
Defines X which is an r-clique.

Searching for uniquely saturated and strongly regular graphs with coupled augmentations ${ }^{1}$

Stephen G. Hartke Derrick Stolee ${ }^{2}$
University of Nebraska-Lincoln
s-dstolee1@math.unl.edu
http://www.math.unl.edu/~s-dstolee1/

September 25, 2011
${ }^{1}$ Supported by NSF grant DMS-0914815.
${ }^{2}$ Supported by an AMS travel grant.

