Searching for uniquely saturated (and strongly regular) graphs with coupled augmentations¹

Stephen G. Hartke Derrick Stolee² University of Nebraska-Lincoln s-dstolee1@math.unl.edu http://www.math.unl.edu/~s-dstolee1/

September 25, 2011

¹Supported by NSF grant DMS-0914815. ²Supported by an AMS travel grant.

Uniquely K_r-Saturated Graphs

Definition

A graph *G* is **uniquely** K_r -**saturated** if *G* contains no K_r and for every edge $e \in \overline{G}$ admits exactly one copy of K_r in G + e.

イロト イ理ト イヨト イヨト ヨー のくぐ

Uniquely K_r-Saturated Graphs

Definition

A graph *G* is **uniquely** K_r -**saturated** if *G* contains no K_r and for every edge $e \in \overline{G}$ admits exactly one copy of K_r in G + e.

Figure: The (r-2)-books are uniquely K_r saturated.

うつん 川 ・ ・ エッ・ ・ ・ ・ ・ しゃ

Dominating Vertices

Removing a dominating vertex from a uniquely K_r -saturated graph creates a uniquely K_{r-1} -saturated graph.

Dominating Vertices

Removing a dominating vertex from a uniquely K_r -saturated graph creates a uniquely K_{r-1} -saturated graph.

Call uniquely K_r -saturated graphs with no dominating vertex *r*-primitive.

Dominating Vertices

Removing a dominating vertex from a uniquely K_r -saturated graph creates a uniquely K_{r-1} -saturated graph.

Call uniquely K_r -saturated graphs with no dominating vertex *r*-primitive.

For $r \ge 1$, $\overline{C_{2r-1}}$ is *r*-primitive.

Previously known 4-primitive graphs

▲ロト ▲御ト ▲臣ト ▲臣ト 三臣 - のへで

(ロ) (四) (三) (三)

12

Joshua Cooper Paul Wenger

Two Questions:

・ロト ・御ト ・注ト ・注ト … 注

Joshua Cooper Paul Wenger

Two Questions:

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

12

Joshua Cooper Paul Wenger

Two Questions:

- **1.** Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?
- 2. Is every *r*-primitive graph regular?

Joshua Cooper Paul Wenger

Two Questions:

- **1.** Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?
- 2. Is every *r*-primitive graph regular?

NO! Exists an irregular 5-primitive graph on 16 vertices!

Variables

Consider searching for uniquely K_r -saturated graphs on vertex set $\{v_1, \ldots, v_n\}$.

Variables

Consider searching for uniquely K_r -saturated graphs on vertex set $\{v_1, \ldots, v_n\}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Use variables $x_{i,j} \in \{0, 1, *\}$ where

-
$$x_{i,j} = 0$$
 fixes $v_i v_j \notin E(G)$.

-
$$x_{i,j} = 1$$
 fixes $v_i v_j \in E(G)$.

-
$$x_{i,j} = *$$
 is **unassigned**.

Variables

Consider searching for uniquely K_r -saturated graphs on vertex set $\{v_1, \ldots, v_n\}$.

Use variables $x_{i,j} \in \{0, 1, *\}$ where

-
$$x_{i,j} = 0$$
 fixes $v_i v_j \notin E(G)$.

-
$$x_{i,j} = 1$$
 fixes $v_i v_j \in E(G)$.

- $x_{i,j} = *$ is unassigned.

If $x_{i,j} = *$ for some *i*, *j*, the vector **x** is a partial assignment.

If $x_{i,j} = *$ for all *i*, *j*, the vector **x** is the **empty assignment**.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

are label-independent.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.

The permutations in S_n permute the variables $x_{i,j}$ by permuting the indices.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.

The permutations in S_n permute the variables $x_{i,j}$ by permuting the indices.

Value-preserving permutations reflect the automorphisms of a partial assignment.

Generalizes branch-and-bound strategy.

Generalizes branch-and-bound strategy.

Instead of selecting an unassigned variable, select an **orbit** \mathcal{O} of unassigned variables and branch (with some $a \in \{0, 1\}$):

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Generalizes branch-and-bound strategy.

Instead of selecting an unassigned variable, select an **orbit** \mathcal{O} of unassigned variables and branch (with some $a \in \{0, 1\}$):

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ つ へ ()

B1: Select a representative $x_{i',j'} \in O$ and assign $x_{i',j'} = a$.

Generalizes branch-and-bound strategy.

Instead of selecting an unassigned variable, select an **orbit** \mathcal{O} of unassigned variables and branch (with some $a \in \{0, 1\}$):

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ つ へ ()

B1: Select a representative $x_{i',j'} \in \mathcal{O}$ and assign $x_{i',j'} = a$. **B2:** Assign $x_{i,j} = \overline{a}$ for all $x_{i,j} \in \mathcal{O}$.

Generalizes branch-and-bound strategy.

Instead of selecting an unassigned variable, select an **orbit** O of unassigned variables and branch (with some $a \in \{0, 1\}$):

B1: Select a representative $x_{i',j'} \in \mathcal{O}$ and assign $x_{i',j'} = a$. **B2:** Assign $x_{i,j} = \overline{a}$ for all $x_{i,j} \in \mathcal{O}$.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007) for symmetric optimization problems such as covering and packing.

K_r-Completions

In addition to the usual constraints, we guarantee:

 $x_{i,j} = 0$ if and only if there exists a set $S \subset [n]$ so that $x_{i,a} = x_{j,a} = x_{a,b} = 1$ for all $a, b \in S$.

K_r-Completions

In addition to the usual constraints, we guarantee:

 $x_{i,j} = 0$ if and only if there exists a set $S \subset [n]$ so that $x_{i,a} = x_{j,a} = x_{a,b} = 1$ for all $a, b \in S$.

i.e. for every non-edge we add, we add a K_r -completion.

Also, we set $x_{i,j} = 0$ if it has a K_r -completion.

We branch on an orbit $\ensuremath{\mathcal{O}}$ of unassigned variables.

We branch on an orbit $\ensuremath{\mathcal{O}}$ of unassigned variables.

B1: Select a representative $x_{i',j'} \in \mathcal{O}$ and set $x_{i',j'} = 0$.

We branch on an orbit \mathcal{O} of unassigned variables.

B1: Select a representative $x_{i',j'} \in \mathcal{O}$ and set $x_{i',j'} = 0$. **SB:** For every orbit \mathcal{A} of (r-2)-subsets, select a representative $S \in \mathcal{A}$ and assign $x_{i,a} = x_{i,a} = x_{a,b} = 1$ for all $a, b \in S$.

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ つ へ ()

We branch on an orbit \mathcal{O} of unassigned variables.

B1: Select a representative x_{i',j'} ∈ O and set x_{i',j'} = 0.
SB: For every orbit A of (r - 2)-subsets, select a representative S ∈ A and assign x_{i,a} = x_{j,a} = x_{a,b} = 1 for all a, b ∈ S.
B2: Set x_{i,j} = 1 for all x_{i,j} ∈ O.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

▲ロト▲圖ト▲目ト▲目ト 目 のへの

▲ロト▲舂▶▲臣▶▲臣▶ 臣 のへで

Search Times

п	<i>r</i> = 4	<i>r</i> = 5	<i>r</i> = 6	<i>r</i> = 7	<i>r</i> = 8
10	0.10 s	0.37 s	0.13 s	0.01 s	0.01 s
11	0.68 s	5.25 s	1.91 s	0.28 s	0.09 s
12	4.58 s	1.60 m	25.39 s	1.97 s	1.12 s
13	34.66 s	34.54 m	6.53 m	59.94 s	20.03 s
14	4.93 m	10.39 h	5.13 h	20.66 m	2.71 m
15	40.59 m	23.49 d	10.08 d	12.28 h	1.22 h
16	6.34 h	1.58 y	1.74 y	34.53 d	1.88 d
17	3.44 d			8.76 y	115.69 d
18	53.01 d				
19	2.01 y				
20	45.11 y				

Total CPU times using Open Science Grid.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Custom Augmentations

An (n, k, λ, μ) strongly regular graph is a *k*-regular graph *G* on *n* vertices where every vertex pair $u, v \in V(G)$ has

- If uv is an edge, $|N(u) \cap N(v)| = \lambda$.
- If uv is not an edge, $|N(u) \cap N(v)| = \mu$.

Custom Augmentations

An (n, k, λ, μ) strongly regular graph is a *k*-regular graph *G* on *n* vertices where every vertex pair $u, v \in V(G)$ has

- If uv is an edge, $|N(u) \cap N(v)| = \lambda$.
- If uv is not an edge, $|N(u) \cap N(v)| = \mu$.

We use the λ and μ constraints for custom augmentations.

Custom Augmentations

 λ -Augmentation

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のへぐ

Custom Augmentations

λ -Augmentation

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – 釣��

Custom Augmentations

 λ -Augmentation

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Custom Augmentations

 λ -Augmentation

µ-Augmentation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Custom Augmentations

λ -Augmentation

μ -Augmentation

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Custom Augmentations

4-Primitive Graphs n = 13

Payley(13)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ ���

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

◆ロト ◆聞 と ◆臣 と ◆臣 と ○ ● ○ ○ ○ ○

Other *r*-Primitive Graphs

Infinite Families

Recall: For $r \ge 1$, $\overline{C_{2r-1}}$ is *r*-primitive.

▲ロト ▲圖ト ▲ 臣ト ▲ 臣ト 三臣 - のへぐ

Infinite Families

Recall: For $r \ge 1$, $\overline{C_{2r-1}}$ is *r*-primitive.

Let *n* be an integer and $S \subseteq \mathbb{Z}_n$. The **Cayley complement** $\overline{C}(\mathbb{Z}_n, S)$ is the complement of the Cayley graph for \mathbb{Z}_n with generator set *S*.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Infinite Families

Recall: For $r \ge 1$, $\overline{C_{2r-1}}$ is *r*-primitive.

Let *n* be an integer and $S \subseteq \mathbb{Z}_n$. The **Cayley complement** $\overline{C}(\mathbb{Z}_n, S)$ is the complement of the Cayley graph for \mathbb{Z}_n with generator set *S*.

$$\overline{C}(\mathbb{Z}_{2r-1}, \{1\}) \cong \overline{C_{2r-1}}$$
 is *r*-primitive.

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

イロト イ理ト イヨト イヨト ヨー のくぐ

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive. For t = 1, r = 2, and $\overline{C}(\mathbb{Z}_n, \{1, 2\}) \cong \overline{K_5}$.

イロト イ理ト イヨト イヨト ヨー のくぐ

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

t = 2, *n* = 17, *r* = 7

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

t = 2, *n* = 17, *r* = 7

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

t = 2, *n* = 17, *r* = 7

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

t = 2, *n* = 17, *r* = 7

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

t = 2, *n* = 17, *r* = 7

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Conjecture

Let $S \subseteq \mathbb{Z}_n$ have |S| = 2. The Cayley complement $\overline{C}(\mathbb{Z}_n, S)$ is *r*-primitive if and only if $\exists t \ge 1$, $n = 4t^2 + 1$, $r = 2t^2 - t + 1$, and $\overline{C}(\mathbb{Z}_n, S) \cong \overline{C}(\mathbb{Z}_n, \{1, 2t\})$.

Three Generators

We have a similar conjecture for $\overline{C}(\mathbb{Z}_n, S)$ when |S| = 3.

Verified for $1 \le t \le 6$.

When t = 6, we have r = 97, n = 304.

Three Generators

We have a similar conjecture for $\overline{C}(\mathbb{Z}_n, S)$ when |S| = 3.

Verified for $1 \le t \le 6$.

When t = 6, we have r = 97, n = 304.

Pattern does not extend to $|S| \ge 4!$

More Generators

g	Generators	n	r
4	{1, 5, 8, 34} {1, 11, 18, 34}	89	28
5	{1,5,14,17,25}	71	19
5	{1,6,14,17,36}	101	27
6	{1, 6, 16, 22, 35, 36}	97	21
7	$\{1, 20, 23, 26, 30, 32, 34\}$	71	15

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

Searching for uniquely saturated and strongly regular graphs with coupled augmentations¹

Stephen G. Hartke Derrick Stolee² University of Nebraska–Lincoln s-dstolee1@math.unl.edu

http://www.math.unl.edu/~s-dstolee1/

September 25, 2011

¹Supported by NSF grant DMS-0914815. ²Supported by an AMS travel grant.

Two Generators

Theorem

Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Suppose $X \subseteq \mathbb{Z}_n$ is an *r*-clique in *G*.

···0000000000000000000000

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Elements are labeled $x_0, x_1, \ldots, x_i, \ldots$ (*i* modulo *r*).

Blocks are sets $B_k = \{x_k, x_k + 1, ..., x_{k+1} - 1\}$ (*k* modulo *r*). ("Intervals" closed on element x_k and open on x_{k+1})

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

Frames are collections $F_j = \{B_j, B_{j+1}, \dots, B_{j+t-1}\}$ (*j* modulo *r*). (There are *t* blocks in each frame.)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

(a) Every block B_k has $|B_k| \ge 2$.

(a) Every block B_k has $|B_k| \ge 2$. (1 is a generator)

(a) Every block B_k has $|B_k| \ge 2$. (1 is a generator)

(b) Every frame F_i has a block $B_k \in F_i$ with $|B_k| \ge 3$.

(a) Every block B_k has $|B_k| \ge 2$. (1 is a generator)

(b) Every frame F_i has a block $B_k \in F_i$ with $|B_k| \ge 3$.

2*t* is a generator, so $x_{j+t} \neq x_j + 2t$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1.$$

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・のへで
So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1.$$

$$tn \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(2)}{\geq} r(2t+1) \stackrel{(3)}{=} tn+1.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1.$$

$$tn \stackrel{(\mathbf{1})}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(\mathbf{2})}{\geq} r(2t+1) \stackrel{(\mathbf{3})}{=} tn+1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(1) Every block is counted *t* times.

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1.$$

$$tn \stackrel{(\mathbf{1})}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(\mathbf{2})}{\geq} r(2t+1) \stackrel{(\mathbf{3})}{=} tn+1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

(1) Every block is counted *t* times.

(2) Claim.

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1.$$

$$tn \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(2)}{\geq} r(2t+1) \stackrel{(3)}{=} tn+1.$$

- (1) Every block is counted *t* times.
- (2) Claim.
- (3) Arithmetic.

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1.$$

$$tn \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(2)}{\geq} r(2t+1) \stackrel{(3)}{=} tn+1.$$

- (1) Every block is counted *t* times.
- (2) Claim.
- (3) Arithmetic.

Contradiction! $\therefore \omega(G) < r$.

G is vertex-transitive and there is an automorphism of *G* $(x \mapsto -2tx)$ that maps $\{0, 2t\}$ to $\{0, 1\}$.

G is vertex-transitive and there is an automorphism of *G* $(x \mapsto -2tx)$ that maps $\{0, 2t\}$ to $\{0, 1\}$.

For unique saturation, we only need to check $G + \{0, 1\}$.

Suppose X is an *r*-clique in $G + \{0, 1\}$.

Suppose X is an *r*-clique in $G + \{0, 1\}$.

$$X = \{x_0 = 0, x_1 = 1, x_2, \dots, x_{r-1}\}.$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへぐ

Suppose X is an *r*-clique in $G + \{0, 1\}$.

$$X = \{x_0 = 0, x_1 = 1, x_2, \dots, x_{r-1}\}.$$

Consider frame family \mathcal{F}

$$\mathcal{F} = \{F_1, F_{t+1}, F_{2t+1}, \dots, F_{r-t}\}, \qquad |\mathcal{F}| = 2t - 1.$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$

So, $\sigma(F_j) = 2t + 1$ for all $F_j \in \mathcal{F}$ but <u>exactly one</u> $F_{j'} \in \mathcal{F}$ where $\sigma(F_{j'}) = 2t + 2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ●

$$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$$

So, $\sigma(F_j) = 2t + 1$ for all $F_j \in \mathcal{F}$ but <u>exactly one</u> $F_{j'} \in \mathcal{F}$ where $\sigma(F_{j'}) = 2t + 2$.

 $F_{j'}$ has (t - 2) 2-blocks and two 3-blocks (4 = 2 + 2).

$$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$$

So, $\sigma(F_j) = 2t + 1$ for all $F_j \in \mathcal{F}$ but <u>exactly one</u> $F_{j'} \in \mathcal{F}$ where $\sigma(F_{j'}) = 2t + 2$.

 $F_{i'}$ has (t-2) 2-blocks and two 3-blocks (4 = 2 + 2).

All blocks of of X (except B_0) have size 2 or 3.

There are exactly (2t + 1) 3-blocks.

(a) There are at most (t-1) 2-blocks between 3-blocks.

(a) There are at most (t-1) 2-blocks between 3-blocks.

(b) There are at least (t-2) 2-blocks between 3-blocks.

(3+3=6)

(a) There are at most (t-1) 2-blocks between 3-blocks.

(b) There are at least (t-2) 2-blocks between 3-blocks.

$$(3+3=6)$$

(c) If B_{k_0} , B_{k_1} , ..., $B_{k_{2t}}$ be the 3-blocks.

$$k_0 \ge t-1$$
, $k_{j+1} \in \{k_j + t - 2, k_j + t - 1\}$, $k_{2t} \le r - t$.

(a) There are at most (t-1) 2-blocks between 3-blocks.

(b) There are at least (t-2) 2-blocks between 3-blocks.

$$(3 + 3 = 6)$$

(c) If B_{k_0} , B_{k_1} , ..., $B_{k_{2t}}$ be the 3-blocks.

$$k_0 \ge t-1, \qquad k_{j+1} \in \{k_j+t-2, k_j+t-1\}, \qquad k_{2t} \le r-t.$$

A unique solution for k_0, \ldots, k_{2t} : $k_{j+1} = k_j + t - 2$.

Defines X which is an *r*-clique.

Searching for uniquely saturated and strongly regular graphs with coupled augmentations¹

Stephen G. Hartke Derrick Stolee² University of Nebraska–Lincoln s-dstolee1@math.unl.edu

http://www.math.unl.edu/~s-dstolee1/

September 25, 2011

¹Supported by NSF grant DMS-0914815. ²Supported by an AMS travel grant.