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H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph.

- Forevery e € E(G), G+ e contains H as a subgraph.
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Turan’s Theorem

Theorem (Turan, 1941) Letr > 3. If Gis K, {-saturated on n
vertices, then G has at most (1 — 1) 2 edges.
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Erdds, Hajnal, and Moon

Theorem (Erdds, Hajnal, Moon, 1964) Let r > 2. If G is K;-saturated
on n vertices, then G has at least (rgz) + (r—2)(n—r+2) edges.
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Erdds, Hajnal, and Moon

Theorem (Erdds, Hajnal, Moon, 1964) Let r > 2. If G is K;-saturated
on n vertices, then G has at least (rgz) + (r—2)(n—r+2) edges.

<R R

1-book 2-book 3-book
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Extremal and Saturation Numbers

Definition The extremal number ex(H; n) is the maximum number of
edges in an n-vertex H-saturated graph.

The saturation number sat(H; n) is the minumum number of edges in
an n-vertex H-saturated graph.
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Extremal and Saturation Numbers

Definition The extremal number ex(H; n) is the maximum number of
edges in an n-vertex H-saturated graph.

The saturation number sat(H; n) is the minumum number of edges in
an n-vertex H-saturated graph.

@ Turan:

1\ n?
eX(Kr+1,n) ~ <1 - r> ?

@ Erdos, Hajnal, Moon:

sat(Ky: n) — (rgz) +(r—2)(n—r+2).
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Definiion
Uniquely H-Saturated Graphs

Definition A graph G is uniquely H-saturated if G does not contain
H as a subgraph and for every edge e € G admits exactly one copy of
Hin G+ e.
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Uniquely H-Saturated Graphs Uniquely Cy-Saturated Graphs

Uniquely Ck-Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The

uniquely Cs-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.
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Uniquely Ck-Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The

uniquely Cs-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.

Theorem (Hoffman-Singleton, 1964) There are a finite number of
Moore graphs of diameter 2 and girth 5.
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Uniquely H-Saturated Graphs Uniquely Cy-Saturated Graphs

Uniquely Ck-Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The

uniquely Cs-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.

Theorem (Hoffman-Singleton, 1964) There are a finite number of
Moore graphs of diameter 2 and girth 5.

Cs Petersen Hoffman— 57-Regular
Singleton Order 3250
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Uniquely Ck-Saturated Graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There
are a finite number of uniquely C4-saturated graphs.
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Uniquely Ck-Saturated Graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There
are a finite number of uniquely C4-saturated graphs.

Theorem (Wenger, 2010) The only uniquely Cs-saturated graphs are
friendship graphs.
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Uniquely Ck-Saturated Graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There
are a finite number of uniquely C4-saturated graphs.

Theorem (Wenger, 2010) The only uniquely Cs-saturated graphs are
friendship graphs.

Theorem (Wenger, 2010) For k € {6,7,8}, no uniquely Cy-saturated
graph exists.

Conjecture (Wenger, 2010) For k > 6, no uniquely Cy-saturated
graph exists.
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Uniquely Ck-Saturated Graphs

The method of proof is similar for uniquely Ck-saturated graphs:
@ Prove that (except for a finite number of counterexamples) these
graphs are regular.

@ Develop constraints on powers of adjacency matrix using
unique saturation.

@ Prove the eigenvalues satisfy certain polynomial equations.

@ Due to integrality, there are a finite set of possible matrices.
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Uniquely K;-Saturated Graphs
Uniquely K--Saturated Graphs

Let’s consider H = K..

<R R

1-book 2-book 3-book

The (r — 2)-books are uniquely K;-saturated.
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Uniquely K;-Saturated Graphs
Dominating Vertices

Removing a dominating vertex from a uniquely K,-saturated graph
creates a uniquely K;_{-saturated graph.
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Uniquely K;-Saturated Graphs
Dominating Vertices

Removing a dominating vertex from a uniquely K,-saturated graph
creates a uniquely K;_{-saturated graph.

Call uniquely K;-saturated graphs without a dominating vertex

r-primitive.
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Uniquely K;-Saturated Graphs
Dominating Vertices

Removing a dominating vertex from a uniquely K,-saturated graph
creates a uniquely K;_{-saturated graph.

Call uniquely K;-saturated graphs without a dominating vertex

r-primitive.

2-primitive graphs are empty graphs.
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Uniquely K;-Saturated Graphs
Dominating Vertices

Removing a dominating vertex from a uniquely K,-saturated graph
creates a uniquely K;_{-saturated graph.

Call uniquely K;-saturated graphs without a dominating vertex

r-primitive.

Cs [
Forr > 1, Cor_1 is r-primitive.

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs October 11, 2011 11/48



Uniquely K;-Saturated Graphs
Uniquely Ky-Saturated Graphs

Previously known 4-primitive graphs (Cooper, unpublished)
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Two Questions of Cooper and Wenger

Joshua Cooper Paul Wenger
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Two Questions of Cooper and Wenger

b

Joshua Cooper Paul Wenger

1. Fix r > 3. Are there a finite number of r-primitive graphs?
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1. Fix r > 3. Are there a finite number of r-primitive graphs?

YES (r = 3) Since C3 = K3, 3-primitive = Moore graph.
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1. Fix r > 3. Are there a finite number of r-primitive graphs?
YES (r = 3) Since C3 = K3, 3-primitive = Moore graph.

2. Is every r-primitive graph regular?
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Two Questions of Cooper and Wenger

g %
ey

Joshua Cooper Paul Wenger

1. Fix r > 3. Are there a finite number of r-primitive graphs?
YES (r = 3) Since C3 = K3, 3-primitive = Moore graph.
2. Is every r-primitive graph regular?

NO! Exists an irregular 5-primitive graph on 16 vertices!
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Data Management
Variables

Consider searching for uniquely K -saturated graphs on vertex set
{vi,..., va}.
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Data Management
Variables

Consider searching for uniquely K -saturated graphs on vertex set
{vi,..., va}.

Use variables x;; € {0, 1, *} where
x;j = 0 fixes v;v; ¢ E(G).

- x;; = 1fixes v;v; € E(G).
- X;j = * is unassigned.
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Data Management
Variables

Consider searching for uniquely K -saturated graphs on vertex set
{vi,..., va}.

Use variables x;; € {0, 1, *} where
x;j = 0 fixes v;v; ¢ E(G).

- x;; = 1fixes v;v; € E(G).
- X;j = * is unassigned.

If x;; = = for some /, j, the vector x is a partial assignment.

If x;; = = for all /, j, the vector x is the empty assignment.

. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs October 11, 2011 14/48



Symmetries of the System
The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.
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are label-independent.

The permutations in S, permute the variables Xx; ; by permuting the
indices.
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Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.

The permutations in S, permute the variables Xx; ; by permuting the
indices.

Value-preserving permutations reflect the automorphisms of a partial
assignment.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr-Saturated Graphs October 11, 2011 15/48



Computational Method Orbital Branching

Orbital Branching

Generalizes branch-and-bound strategy.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007) for
symmetric optimization problems such as covering and packing.
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Orbital Branching

Instead of selecting an unassigned variable, select an orbit O of
unassigned variables and branch (with some a € {0, 1}):
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Orbital Branching

Instead of selecting an unassigned variable, select an orbit O of
unassigned variables and branch (with some a € {0, 1}):

B1: Select a representative x; € O and assign x; ; = a.
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Orbital Branching

Instead of selecting an unassigned variable, select an orbit O of
unassigned variables and branch (with some a € {0, 1}):

B1: Select a representative x; € O and assign x; ; = a.
B2: Assign x;; = aforall x;; € O.
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K;-Completions

In addition to the usual constraints, we guarantee:

x;; = 0 if and only if there exists a set S C [n] so that
Xia = Xja= Xap = 1foralla, beS.

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs October 11, 2011

18/48



K;-Completions

In addition to the usual constraints, we guarantee:

x;; = 0 if and only if there exists a set S C [n] so that
Xia = Xja= Xap = 1foralla, beS.

i.e. for every non-edge we add, we add a K.-completion.

Also, we set x;; = 0 if it has a K;-completion.
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Orbital Branching with K;-Completions

We branch on an orbit O of unassigned variables.
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We branch on an orbit O of unassigned variables.

B1: Select a representative xy € O and set x; j = 0.
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Orbital Branching with K,-Completions

We branch on an orbit O of unassigned variables.

B1: Select a representative xy € O and set x; j = 0.

SB: For every orbit A of (r — 2)-subsets, select a representative S € A
and assign x; ; = Xj 5 = Xap = 1foralla, b e S.
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Orbital Branching with K,-Completions

We branch on an orbit O of unassigned variables.

B1: Select a representative xy € O and set x; j = 0.

SB: For every orbit A of (r — 2)-subsets, select a representative S € A
and assign x; ; = Xj 5 = Xap = 1foralla, b e S.

B2: Set x;; =1forall x;; € O.
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Computational Method Orbital Branching
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Computational Method Orbital Branching
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Computational Method Orbital Branching
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Computational Method Orbital Branching
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The Search Tree
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The Search Tree

Independent sub-trees
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Orbital Branching
The Search Tree
Independent Jobs

o]
o]
i e—_]
T e—_
Ce—_
Ce—_
T e—_]
i e—]
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£l Bzl
Implementation

Implemented in the TreeSearch library for parallelization in the Condor
scheduler.

Executed on the Open Science Grid, a collection of supercomputers
around the country.
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Computational Method Orbital Branching

Results

n | r | Graph List
53| Cs

7 14]C

9 |5|Cy

10 | 3 | Petersen

10 | 4 | My

116 Cn

12 | 4 | Gyo

13 | 4 | Gy, Payley(13)

S. G. Hartke, D. Stolee (UNL)

n | r | Graph List
13 7| Cia

156 | G\ G2
15|18 | Cis

16 |5 | G2, G2
16 6| G\Y

17 | 7 | C(Z47.{1,4})
1719 | Ci7

18| 4| G G2
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Computational Method Orbital Branching

Exhaustive Search Times

n r=4 r=5 r==6 r= r=28
10| 0.10s 0.37s 0.13s 0.01s 0.01s
11 0.68s 525s 1.91s 0.28 s 0.09s
12| 4.58s 1.60m | 25.39 s 1.97s 1.12s
13| 3466s | 3454m | 6.53m | 59.94s 20.03 s
14| 493 m | 10.39h 5.13h | 20.66 m 2.71m
151 40.59m | 23.49d | 10.08d | 12.28 h 1.22 h
16 | 6.34h 1.58y 1.74y | 34.53d 1.88d
17 | 3.44d 8.76y | 115.69d
18 | 53.01d

19| 201y

20 | 4511y

Total CPU times using Open Science Grid.
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Computational Method Strongly Regular Graphs

Strongly Regular Graphs

Custom Augmentations
An (n, k, A, u) strongly regular graph is a k-regular graph G on n ver-
tices where every vertex pair u, v € V(G) has

- Ifuvisanedge, IN(u)yNN(v)| = A.
- Ifuvisnotanedge, IN(u)NN(v)| = u.

S. G. Hartke, D. Stolee (UNL)

Uniquely Kr-Saturated Graphs October 11, 2011 26/48



Computational Method Strongly Regular Graphs

Strongly Regular Graphs

Custom Augmentations

An (n, k, A, u) strongly regular graph is a k-regular graph G on n ver-
tices where every vertex pair u, v € V(G) has

- Ifuvisanedge, IN(u)yNN(v)| = A.
- Ifuvisnotanedge, IN(u)NN(v)| = u.

We use the A and u constraints for custom augmentations.
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Strongly Regular Graphs

Custom Augmentations

A-Augmentation
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Strongly Regular Graphs

Custom Augmentations

S

A-Augmentation
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Strongly Regular Graphs

Custom Augmentations

S

A-Augmentation p-Augmentation
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Strongly Regular Graphs

Custom Augmentations

S N S Y
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A-Augmentation u-Augmentation
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Strongly Regular Graphs

Custom Augmentations

S N S Y
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A-Augmentation u-Augmentation
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Strongly Regular Graphs

Still a work in progress!
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Strongly Regular Graphs

Still a work in progress!

Working on interactions with LP relaxation.
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Strongly Regular Graphs

Still a work in progress!
Working on interactions with LP relaxation.

Using standard orbital branching, we found

@ There does not exist a (28, 6, 3,2, 1) directed strongly regular
graph.

@ There are at least 15 non-isomorphic (28,7,2,1,2) directed
strongly regular graphs.
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Back to r-Primitive Graphs

Let’s get back to uniquely Ky-saturated graphs.
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4-Primitive Graphs
n=13
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4-Primitive Graphs

n—=18: G2
(0,x) (2,x)
(1,x)
(0,v%) (1,v%) (2,v%)
(0,vy) (0,vy) (1,vy) (1vy) (2,v) (2,1)
(0,%) (0,%) (1,%) (1,v) (2,4) (2,%)
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5-Primitive Graphs

n=16: Gg'é‘) is irregular!
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Sporadic Graphs

5-Primitive Graphs

n=16: Ggé) is irregular!
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Sporadic Graphs

Other r-Primitive Graphs
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One Generator
Infinite Families

Recall: For r > 1, Cy,_1 is r-primitive.
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Recall: For r > 1, Cy,_1 is r-primitive.

Cs Cr

Let nbe an integer and S C Z,,. The Cayley complement C(Z,, S) is
the complement of the Cayley graph for Z, with generator set S.
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One Generator
Infinite Families

Recall: For r > 1, Cy,_1 is r-primitive.

Cs Cr

Let nbe an integer and S C Z,,. The Cayley complement C(Z,, S) is
the complement of the Cayley graph for Z, with generator set S.

C(Zar-1,{1}) = Cyoy_1 is r-primitive.
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Two Generators

Theorem (Hartke, S—) Lett>1,n=42+1,andr =22 —t +1.
The Cayley complement C(Z,, {1,2t}) is r-primitive.

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs October 11, 2011 35/48



Two Generators

Theorem (Hartke, S—) Lett>1,n=42+1,andr =22 —t +1.
The Cayley complement C(Z,, {1,2t}) is r-primitive.

Fort=1,r=2,and C(Zp {1,2}) & K.
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Infinite Families Two Generators

Two Generators

Theorem (Hartke, S—) Lett>1,n=42+1,andr =22 —t +1.
The Cayley complement C(Z,, {1,2t}) is r-primitive.
t=2n=17,r=7
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Infinite Families Two Generators

Two Generators

Theorem (Hartke, S—) Lett>1,n=42+1,andr =22 —t +1.
The Cayley complement C(Z,, {1,2t}) is r-primitive.

Conjecture (Hartke, S—) Let S C Z, have |S| = 2. The Cayley
complement C(Zp, S) is r-primitive if and only if 3t > 1,n = 412 +
1,r=2t2 —t+1,and C(Zp, S) = C(Zn, {1,2t}).

S. G. Hartke, D. Stolee (UNL)
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Infinite Families Two Generators

Two Generators

Theorem (Hartke, S—) Lett>1,n=4t2+1,andr =212 —t + 1.
The Cayley complement G = C(Zp, {1, 2t}) is r-primitive.

S. G. Hartke, D. Stolee (UNL)

t S r n
1 {1,2} 2 5
2 {14y 7 17
3 {1,6} 16 37
4 {1,84 29 65
5 {1,10} 46 101
6 {1,12} 67 145
7 {1,14} 92 197
8 {1,16} 121 257
9 {1,18} 154 325
10 {1,20} 191 401

Uniquely K, -Saturated Graphs

October 11, 2011
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

Suppose X C Z, is an r-clique in G.

*=c0O00000000O000O0OO0O0OOO0O0O:"
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

Elements are labeled xg, X1, ..., X;, ... (f modulo r).

- @00000000000000000000 """
X, X, X, X X, X, X X, X
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

Blocks are sets By = {xx, xx +1,..., Xk+1 — 1} (k modulo r).
(“Intervals” closed on element x, and open on Xk 1)

- @00000000000000000000 """

X X X X, X, X, X, X X

N

B BB BBBBB B
0 1 2 37475 767 T8
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

Frames are collections F; = {B;, Bj,1, ..., Bjyt—1} (j modulo r).
(There are t blocks in each frame.)

m.0.0.00.000.0Q0.00.00m

X, X, X, s X X X
L JI JI JI L)
BBB BBBBB B
R IR I )
F F F

0 3 6
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

o 0o
) e)
) )
) e}
o) o)

o) o)
O o)
@) o)
o) o)
o) o)
O )

o o
© 00009
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

0O @0
®) @
) ®)

o) )
o) o)
) )
© X o
) )
O 0]
O (0]
O )
@ 0]
Coe0®

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs October 11, 2011

38/48



Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

OOLO/:/O/Q

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs

October 11, 2011

38/48
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n=4r +1,r=212 —t+1, G= C(Zn {1,2t})
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

(a) Every block By has |Bx| > 2.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

(a) Every block Bk has |Bx| > 2. (1 is a generator)
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

(a) Every block Bk has |Bx| > 2. (1 is a generator)

(b) Every frame F; has a block By € F; with [By| > 3.

(2t is a generator, s0 Xj; # X; + 2t.)

"-.0.0.00.0.0.0.0.00.00"-
x .X X )C .X

I_)I_)I_)I_)I_)I_)I_)I_)I_)
B BB BBBBB B

IO 1 2J|3 4 5J|6 7 8J
F F F

0 3 6
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

So, 0(Fj) == Lp,cF, |Bk| = 0z, (X, Xjst) = 2t + 1.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

So, o(Fj) := Lper |Bk| = dz, (X, Xjst) = 2t + 1.

<2 3)
tn—Za ) > r(2t+1) =tn+1.

~—
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

So, o(Fj) := Lper |Bk| = dz, (X, Xjst) = 2t + 1.

<2 3)
tn—Za ) > r(2t+1) =tn+1.

~—

(1) Every block is counted t times.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

So, o(Fj) := Lper |Bk| = dz, (X, Xjst) = 2t + 1.

<2 3)
tn—Za ) > r(2t+1) =tn+1.

~—

(1) Every block is counted t times.
(2) Claim.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

So, o(Fj) := Lper |Bk| = dz, (X, Xjst) = 2t + 1.

<2 3)
tn—Za ) > r(2t+1) =tn+1.

~—

(1) Every block is counted t times.
(2) Claim.
(3) Arithmetic.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

So, o(Fj) := Lper |Bk| = dz, (X, Xjst) = 2t + 1.

(2

~—

tn Za ) > ret+1) it

(1) Every block is counted t times.
(2) Claim.

(3) Arithmetic. Contradiction! -

w(G) <r.

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs October 11, 2011 40/ 48



Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

G is vertex-transitive and there is an automorphism of G (x — —21x)
that maps {0, 2t} to {0, 1}.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

G is vertex-transitive and there is an automorphism of G (x — —21x)
that maps {0, 2t} to {0, 1}.

For unique saturation, we only need to check G+ {0, 1}.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

Suppose X is an r-clique in G+ {0, 1}.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

Suppose X is an r-clique in G+ {0, 1}.

X:{X():O,X1 =1,X2,...,Xr_1}.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

Suppose X is an r-clique in G+ {0, 1}.

XI{XQIO,X1=1,X2 ..... Xr_1}.

Consider frame family F

F={F1 Fer1, FPoryt, oo Froth, | F| =2t—1.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

n—1=Y o(Ff)>@t—-1)2t+1)=n-2.
FieF
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

n—1=Y o(Ff)>@t—-1)2t+1)=n-2.
FieF

So, o(F;) = 2t + 1 for all F; € F but exactly one F; € F where
o(Fy) =2t+2.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

n—1=Y o(Ff)>@t—-1)2t+1)=n-2.

FieF

So, o(F;) = 2t + 1 for all F; € F but exactly one F; € F where
o(Fy) =2t+2.

F; has (t — 2) 2-blocks and two 3-blocks (4 = 2 + 2).
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

n—1=Y o(Ff)>@t—-1)2t+1)=n-2.

FieF
So, o(F;) = 2t + 1 for all F; € F but exactly one F; € F where
o(Fy) =2t+2.
F; has (t — 2) 2-blocks and two 3-blocks (4 = 2 + 2).
All blocks of of X (except By) have size 2 or 3.

There are exactly (2t + 1) 3-blocks.
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Infinite Families Two Generators

Two Generators (Proof)
n=4r +1,r=212 —t+1, G= C(Zn {1,2t})

(a) There are at most (t — 1) 2-blocks between 3-blocks.
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Two Generators (Proof)

n=4r +1,r=212 —t+1, G= C(Zn {1,2t})
(a) There are at most (t — 1) 2-blocks between 3-blocks.
(b) There are at least (t — 2) 2-blocks between 3-blocks.

(3+3=6)
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Two Generators (Proof)

n=4t2+1,r=22 —t+1, G= C(Zp, {1,2t})
(a) There are at most (t — 1) 2-blocks between 3-blocks.
(b) There are at least (t — 2) 2-blocks between 3-blocks.
(3+3=6)
(c) If By, By, - .., By, be the 3-blocks.

kg >t—1, /(j+1€{kj—|—t—2,kj+t—1}, Koy < r—t.
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Two Generators (Proof)

n=4r +1,r=212 —t+1, G= C(Zn {1,2t})
(a) There are at most (t — 1) 2-blocks between 3-blocks.
(b) There are at least (t — 2) 2-blocks between 3-blocks.
(3+3=6)
(c) If By, By, - .., By, be the 3-blocks.

kg >t—1, /(j+1€{kj—|—t—2,kj+t—1}, Koy < r—t.

A unique solution for kg, . .., Kot: Kiy1 = K+t —2.

Defines X which is an r-clique. O
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Infinite Families Three Generators

Three Generators

Theorem (Hartke, S—) Lett>1,n=9t> —3t+ 1, and

r = 3t> — 2t + 1. The Cayley complement C(Z,, {1,3t —1,3t}) is
r-primitive.
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Three Generators

Theorem (Hartke, S—) Lett>1,n=9t> —3t+ 1, and

r = 3t> — 2t + 1. The Cayley complement C(Z,, {1,3t —1,3t}) is

r-primitive.

t S r n
1 {1238 2 7
2 {1,5,6} 9 31
3 {1,8,9} 22 73
4 {1,11,12} 41 133
5 {1,14,15} 66 211
6 {1,17,18} 97 307
7 {1,20,21} 134 421
8 {1,23,24} 177 553
9 {1,26,27} 226 703
10 {1,29,30} 281 871
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Infinite Families Three Generators

Three Generators

Theorem (Hartke, S—) Lett>1,n=9t> —3t+ 1, and

r = 3t> — 2t + 1. The Cayley complement C(Z,, {1,3t —1,3t}) is
r-primitive.

Hardest part: Prove there are no 2-blocks in an r-clique.
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Infinite Families Three Generators

Three Generators

Theorem (Hartke, S—) Lett > 1, n=9t* —3t+ 1, and

r = 3t> — 2t + 1. The Cayley complement C(Z,, {1,3t —1,3t}) is
r-primitive.

Hardest part: Prove there are no 2-blocks in an r-clique.

Note: Payley(13) = C(Z43, {1,3,4}) doesn't fit this form!
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Infinite Families Three Generators

Three Generators

Theorem (Hartke, S—) Lett > 1, n=9t* —3t+ 1, and

r = 3t> — 2t + 1. The Cayley complement C(Z,, {1,3t —1,3t}) is
r-primitive.

Hardest part: Prove there are no 2-blocks in an r-clique.

Note: Payley(13) = C(Z43, {1,3,4}) doesn't fit this form!

Pattern does not extend to |S| > 4!

S. G. Hartke, D. Stolee (UNL)
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More Generators

S. G. Hartke, D. Stolee (UNL)

Uniquely K, -Saturated Graphs

g | Generators | n | r
{1,5,8,34}

4 {1,11,18,34) 89 | 28

5 {1,5,14,17,25} 71 | 19

5 {1,6,14,17,36} 101 | 27

6 {1,6,16,22,35,36} 97 | 21

7 1 {1,20,23,26,30,32,34} | 71 | 15
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Open Questions
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Open Questions

@ Is there an infinite family of r-primitive graphs for a fixed r?
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Open Questions

@ Is there an infinite family of r-primitive graphs for a fixed r?

@ Can one bound A(G) and/or A(G) for r-primitive G?
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Open Questions

@ Is there an infinite family of r-primitive graphs for a fixed r?

@ Can one bound A(G) and/or A(G) for r-primitive G?

@ Is C(T, S) r-primitive for any group T % Z,?
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