Searching for uniquely saturated and strongly regular graphs with coupled augmentations¹

Stephen G. Hartke Derrick Stolee

University of Nebraska-Lincoln

s-dstolee1@math.unl.edu http://www.math.unl.edu/~s-dstolee1/

October 11, 2011

¹Supported by NSF grant DMS-0914815.

H-Saturated Graphs

Definition A graph G is H-saturated if

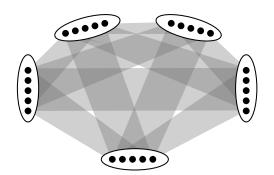
- G does not contain H as a subgraph.
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

Turán's Theorem

Theorem (Turán, 1941) Let $r \ge 3$. If G is K_{r+1} -saturated on n vertices, then G has at most $(1 - \frac{1}{r}) \frac{n^2}{2}$ edges.

Turán's Theorem

Theorem (Turán, 1941) Let $r \ge 3$. If G is K_{r+1} -saturated on n vertices, then G has at most $(1 - \frac{1}{r}) \frac{n^2}{2}$ edges.

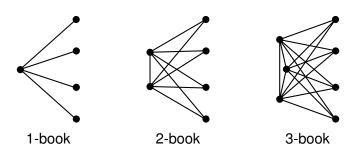


Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let $r \ge 2$. If G is K_r -saturated on n vertices, then G has at least $\binom{r-2}{2} + (r-2)(n-r+2)$ edges.

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let $r \ge 2$. If G is K_r -saturated on n vertices, then G has at least $\binom{r-2}{2} + (r-2)(n-r+2)$ edges.

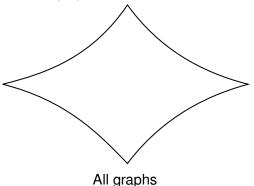


Definition The **extremal number** ex(H; n) is the <u>maximum</u> number of edges in an *n*-vertex *H*-saturated graph.

The **saturation number** sat(H; n) is the <u>minumum</u> number of edges in an *n*-vertex *H*-saturated graph.

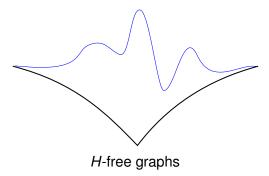
Definition The **extremal number** ex(H; n) is the maximum number of edges in an *n*-vertex *H*-saturated graph.

The **saturation number** sat(H; n) is the minumum number of edges in an *n*-vertex *H*-saturated graph.



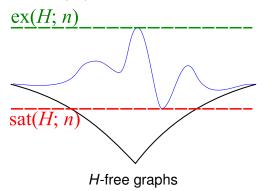
Definition The **extremal number** ex(H; n) is the <u>maximum</u> number of edges in an *n*-vertex *H*-saturated graph.

The **saturation number** sat(H; n) is the <u>minumum</u> number of edges in an *n*-vertex *H*-saturated graph.



Definition The **extremal number** ex(H; n) is the <u>maximum</u> number of edges in an *n*-vertex *H*-saturated graph.

The **saturation number** sat(H; n) is the <u>minumum</u> number of edges in an *n*-vertex *H*-saturated graph.



Definition The **extremal number** ex(H; n) is the <u>maximum</u> number of edges in an *n*-vertex *H*-saturated graph.

The **saturation number** sat(H; n) is the <u>minumum</u> number of edges in an *n*-vertex *H*-saturated graph.

Turán:

$$\operatorname{ex}(K_{r+1},n) pprox \left(1-rac{1}{r}
ight)rac{n^2}{2}.$$

Erdős, Hajnal, Moon:

$$\text{sat}(\textit{K}_{\textit{r}};\textit{n}) = \binom{r-2}{2} + (r-2)(n-r+2).$$

Definition A graph G is uniquely H-saturated if G does not contain H as a subgraph and for every edge $e \in \overline{G}$ admits exactly one copy of H in G + e.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The uniquely C_3 -saturated graphs are either **stars** or **Moore graphs** of diameter 2 and girth 5.

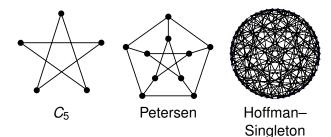
Uniquely C_k-Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Theorem (Hoffman-Singleton, 1964) There are a **finite number** of Moore graphs of diameter 2 and girth 5.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Theorem (Hoffman-Singleton, 1964) There are a **finite number** of Moore graphs of diameter 2 and girth 5.



Order 3250

57-Regular

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Wenger, 2010) The only uniquely C_5 -saturated graphs are friendship graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Wenger, 2010) The only uniquely C_5 -saturated graphs are **friendship graphs**.

Theorem (Wenger, 2010) For $k \in \{6, 7, 8\}$, no uniquely C_k -saturated graph exists.

Conjecture (Wenger, 2010) For $k \ge 6$, no uniquely C_k -saturated graph exists.

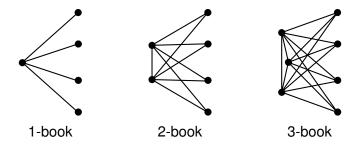
Uniquely C_k-Saturated Graphs

The method of proof is similar for uniquely C_k -saturated graphs:

- Prove that (except for a finite number of counterexamples) these graphs are regular.
- Develop constraints on powers of adjacency matrix using unique saturation.
- Prove the eigenvalues satisfy certain polynomial equations.
- Due to integrality, there are a finite set of possible matrices.

Uniquely K_r-Saturated Graphs

Let's consider $H = K_r$.



The (r-2)-books are uniquely K_r -saturated.

Removing a dominating vertex from a uniquely K_r -saturated graph creates a uniquely K_{r-1} -saturated graph.

Removing a dominating vertex from a uniquely K_r -saturated graph creates a uniquely K_{r-1} -saturated graph.

Call uniquely K_r -saturated graphs without a dominating vertex r-primitive.

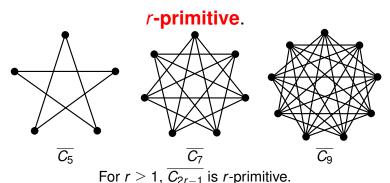
Removing a dominating vertex from a uniquely K_r -saturated graph creates a uniquely K_{r-1} -saturated graph.

Call uniquely K_r -saturated graphs without a dominating vertex r-primitive.

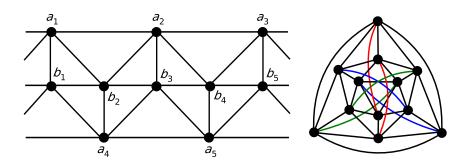
2-primitive graphs are empty graphs.

Removing a dominating vertex from a uniquely K_r -saturated graph creates a uniquely K_{r-1} -saturated graph.

Call uniquely K_r -saturated graphs without a dominating vertex



Uniquely K₄-Saturated Graphs



Previously known 4-primitive graphs (Cooper, unpublished)

Paul Wenger

Joshua Cooper

Paul Wenger

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

Joshua Cooper

Paul Wenger

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

YES (r = 3) Since $C_3 \cong K_3$, 3-primitive \Rightarrow Moore graph.

Joshua Cooper

Paul Wenger

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

YES (r = 3) Since $C_3 \cong K_3$, 3-primitive \Rightarrow Moore graph.

2. Is every *r*-primitive graph **regular**?

Joshua Cooper

Paul Wenger

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

YES (r = 3) Since $C_3 \cong K_3$, 3-primitive \Rightarrow Moore graph.

2. Is every *r*-primitive graph **regular**?

NO! Exists an irregular 5-primitive graph on 16 vertices!

Variables

Consider searching for uniquely K_r -saturated graphs on vertex set $\{v_1, \ldots, v_n\}$.

Variables

Consider searching for uniquely K_r -saturated graphs on vertex set $\{v_1, \ldots, v_n\}$.

Use variables $x_{i,j} \in \{0, 1, *\}$ where

- $x_{i,j} = 0$ fixes $v_i v_j \notin E(G)$.
- $x_{i,j} = 1$ fixes $v_i v_j \in E(G)$.
- $x_{i,i} = *$ is unassigned.

Variables

Consider searching for uniquely K_r -saturated graphs on vertex set $\{v_1, \ldots, v_n\}$.

Use variables $x_{i,j} \in \{0, 1, *\}$ where

- $x_{i,j} = 0$ fixes $v_i v_j \notin E(G)$.
- $x_{i,j} = 1$ fixes $v_i v_j \in E(G)$.
- $x_{i,j} = *$ is unassigned.

If $x_{i,j} = *$ for some i, j, the vector **x** is a partial assignment.

If $x_{i,j} = *$ for all i, j, the vector **x** is the **empty assignment**.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.

Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.

The permutations in S_n permute the variables $x_{i,j}$ by permuting the indices.

Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in G + e.

are label-independent.

The permutations in S_n permute the variables $x_{i,j}$ by permuting the indices.

Value-preserving permutations reflect the automorphisms of a partial assignment.

Generalizes branch-and-bound strategy.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007) for **symmetric** optimization problems such as covering and packing.

Instead of selecting an unassigned variable, select an **orbit** \mathcal{O} of unassigned variables and branch (with some $a \in \{0, 1\}$):

Instead of selecting an unassigned variable, select an **orbit** \mathcal{O} of unassigned variables and branch (with some $a \in \{0, 1\}$):

B1: Select a representative $x_{i',j'} \in \mathcal{O}$ and assign $x_{i',j'} = a$.

Instead of selecting an unassigned variable, select an **orbit** \mathcal{O} of unassigned variables and branch (with some $a \in \{0, 1\}$):

B1: Select a representative $x_{i',j'} \in \mathcal{O}$ and assign $x_{i',j'} = a$.

B2: Assign $x_{i,j} = \overline{a}$ for all $x_{i,j} \in \mathcal{O}$.

K_r-Completions

In addition to the usual constraints, we guarantee:

$$x_{i,j} = 0$$
 if and only if there exists a set $S \subset [n]$ so that $x_{i,a} = x_{j,a} = x_{a,b} = 1$ for all $a, b \in S$.

K_r-Completions

In addition to the usual constraints, we guarantee:

$$x_{i,j}=0$$
 if and only if there exists a set $S\subset [n]$ so that $x_{i,a}=x_{j,a}=x_{a,b}=1$ for all $a,b\in S$.

i.e. for every non-edge we add, we add a K_r -completion.

Also, we set $x_{i,j} = 0$ if it <u>has</u> a K_r -completion.

We branch on an orbit \mathcal{O} of unassigned variables.

We branch on an orbit \mathcal{O} of unassigned variables.

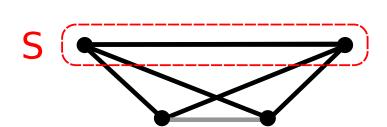
B1: Select a representative $x_{i',j'} \in \mathcal{O}$ and set $x_{i',j'} = 0$.

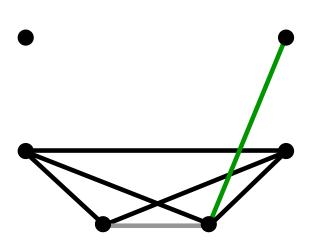
We branch on an orbit \mathcal{O} of unassigned variables.

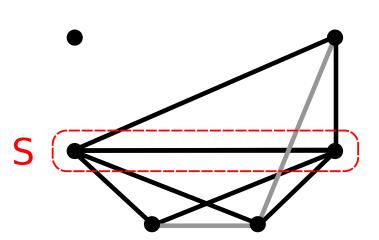
- **B1:** Select a representative $x_{i',j'} \in \mathcal{O}$ and set $x_{i',j'} = 0$.
 - **SB:** For <u>every</u> orbit \mathcal{A} of (r-2)-subsets, select a representative $S \in \mathcal{A}$ and assign $x_{i,a} = x_{i,a} = x_{a,b} = 1$ for all $a, b \in S$.

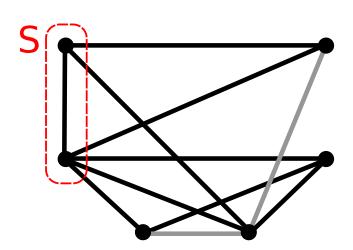
We branch on an orbit \mathcal{O} of unassigned variables.

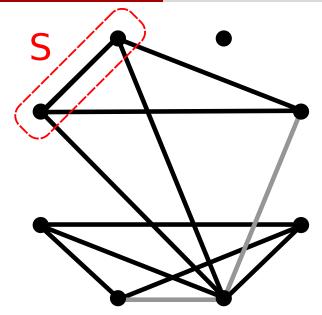
- **B1:** Select a representative $x_{i',j'} \in \mathcal{O}$ and set $x_{i',j'} = 0$.
 - **SB:** For <u>every</u> orbit \mathcal{A} of (r-2)-subsets, select a representative $S \in \mathcal{A}$ and assign $x_{i,a} = x_{i,a} = x_{a,b} = 1$ for all $a, b \in S$.
- **B2:** Set $x_{i,j} = 1$ for all $x_{i,j} \in \mathcal{O}$.

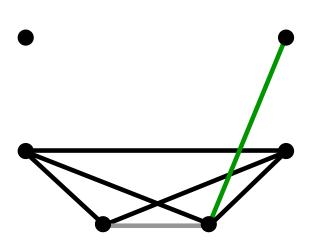


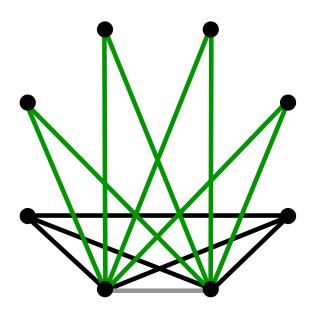


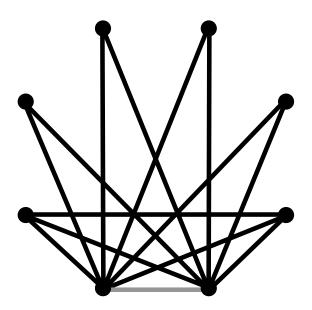


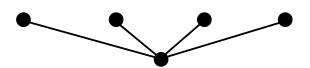


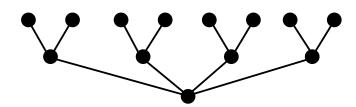




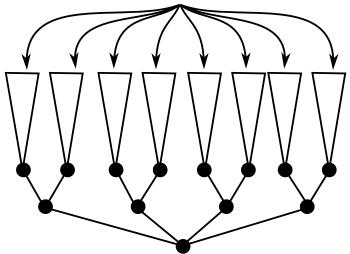




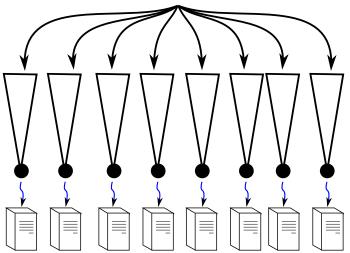




Independent sub-trees



Independent Jobs



Implementation

Implemented in the **TreeSearch** library for parallelization in the Condor scheduler.

Executed on the **Open Science Grid**, a collection of supercomputers around the country.

Results

n	r	Graph List
5	3	$\overline{C_5}$
7	4	$\overline{C_7}$
9	5	$\overline{C_9}$
10	3	Petersen
10	4	<i>M</i> ₁₀
11	6	$\overline{C_{11}}$
12	4	G ₁₂
13	4	G ₁₃ , Payley(13)

n	r	Graph List
13	7	<u>C₁₃</u>
15	6	$G_{15}^{(A)}, G_{15}^{(B)}$
15	8	<u>C₁₅</u>
16	5	$G_{16}^{(A)}, G_{16}^{(B)}$
16	6	$G_{16}^{(C)}$
17	7	$\overline{C}(\mathbb{Z}_{17},\{1,4\})$
17	9	$\overline{C_{17}}$
18	4	$G_{18}^{(A)}, G_{18}^{(B)}$

n	12	3	4	5	6	7	8	
3								
4								
5								
6								
_7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19			•					

n l	2	3	4	5	6	7	8	
2	•							
3	•							
4								
5								
6	•							
7								
8	•							
9	•							
10	•							
11								
12								
13	•							
14								
15								
16								
17	•							
18								
	•							
19	'	'	ļi	1	1	'	1	

n l	2	3	4	5	6	7	8	
2	•							
$\begin{array}{ c c c }\hline 2\\\hline 3\\\hline 4\\\hline \end{array}$								
4								
5	•							
6	•							
7								
8	•							
9	•							
10	•							
11								
12	•							
13	•							
14								
15	•							
16								
17	•							
18								
	•							
19 '	'	'	I	'	1		1	,

n	2	3	4	5	6	7	8	
2	•							
3								
4								
5								
_6	•							
7								
8	•							
9	•							
10	•							
11					•			
12	•							
13	•							
14	•							
15	•							
16	•							
17								
18								
	•							
19 '	1	1	Į.	1	1	1	ı	1

n	2	3	4	5	6	7	8	
2	•							
3								
4	•							
5	•							
_6	•							
_7	•							
8	•							
9	•							
10								
11	•							
12	•							
13	•							
14	•							
_15	•							
16								
17								
18								
	•							
19 '	'	'	1	'	1	1	1	II

n	2	3	4	5	6	7	8	
2								
3								
4								
5								
_6								
_ 7								
8								
9								1
10								
11								
12								
13								1
14								*
15								7
16				••				*
17								*
18								*
								Z
19 '		1	1	1			1	W

Exhaustive Search Times

n	<i>r</i> = 4	<i>r</i> = 5	<i>r</i> = 6	<i>r</i> = 7	<i>r</i> = 8
10	0.10 s	0.37 s	0.13 s	0.01 s	0.01 s
11	0.68 s	5.25 s	1.91 s	0.28 s	0.09 s
12	4.58 s	1.60 m	25.39 s	1.97 s	1.12 s
13	34.66 s	34.54 m	6.53 m	59.94 s	20.03 s
14	4.93 m	10.39 h	5.13 h	20.66 m	2.71 m
15	40.59 m	23.49 d	10.08 d	12.28 h	1.22 h
16	6.34 h	1.58 y	1.74 y	34.53 d	1.88 d
17	3.44 d			8.76 y	115.69 d
18	53.01 d				
19	2.01 y				
20	45.11 y				

Total CPU times using Open Science Grid.

Strongly Regular Graphs

Custom Augmentations

An (n, k, λ, μ) strongly regular graph is a k-regular graph G on n vertices where every vertex pair $u, v \in V(G)$ has

- If uv is an edge, $|N(u) \cap N(v)| = \lambda$.
- If uv is not an edge, $|N(u) \cap N(v)| = \mu$.

Strongly Regular Graphs

Custom Augmentations

An (n, k, λ, μ) strongly regular graph is a k-regular graph G on n vertices where every vertex pair $u, v \in V(G)$ has

- If uv is an edge, $|N(u) \cap N(v)| = \lambda$.
- If uv is not an edge, $|N(u) \cap N(v)| = \mu$.

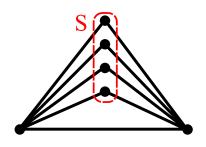
We use the λ and μ constraints for custom augmentations.

Strongly Regular Graphs

Custom Augmentations

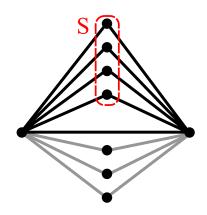
 λ -Augmentation

Custom Augmentations



 λ -Augmentation

Custom Augmentations



 λ -Augmentation

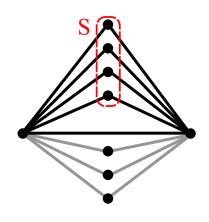
Custom Augmentations



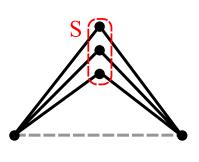
 λ -Augmentation

 μ -Augmentation

Custom Augmentations

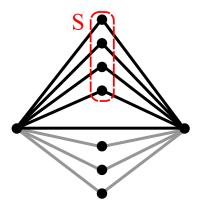


 λ -Augmentation

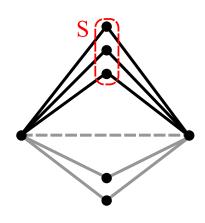


 μ -Augmentation

Custom Augmentations



 λ -Augmentation



 μ -Augmentation

Still a work in progress!

Still a work in progress!

Working on interactions with LP relaxation.

Still a work in progress!

Working on interactions with LP relaxation.

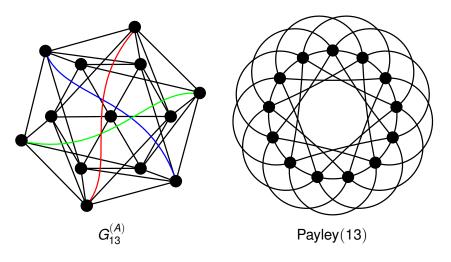
Using standard orbital branching, we found

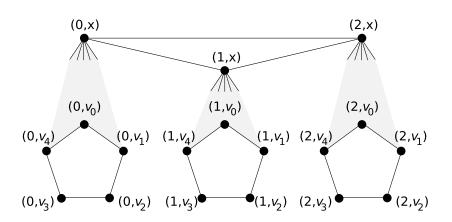
- There does not exist a (28, 6, 3, 2, 1) directed strongly regular graph.
- There are at least 15 non-isomorphic (28, 7, 2, 1, 2) directed strongly regular graphs.

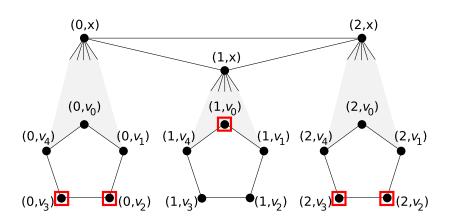
Back to *r*-Primitive Graphs

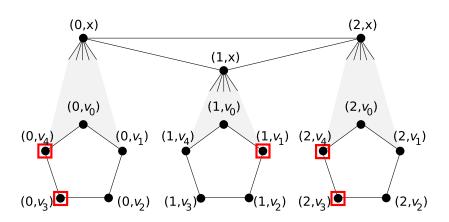
Let's get back to uniquely K_r -saturated graphs.

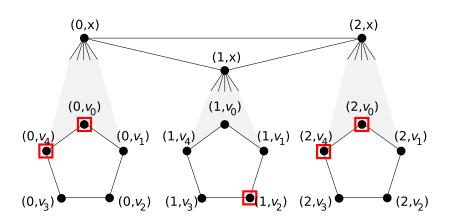
n = 13

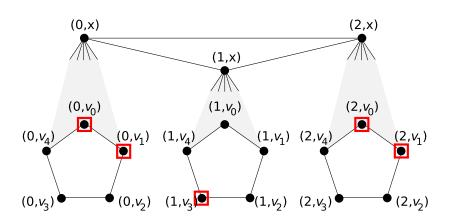


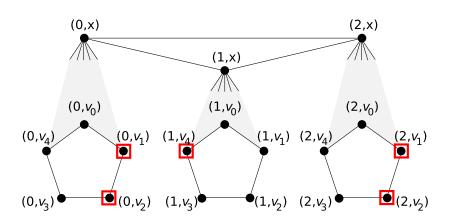


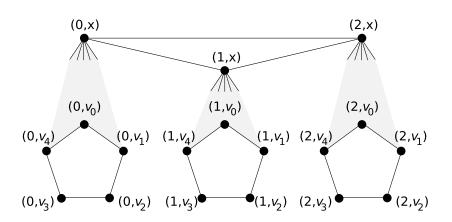


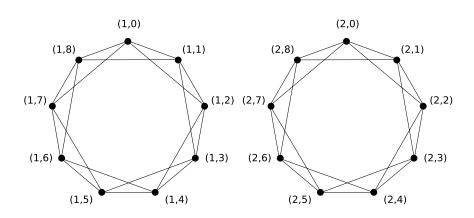


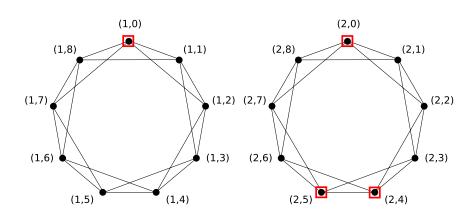


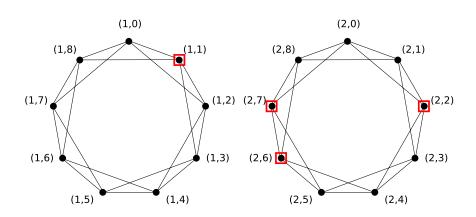


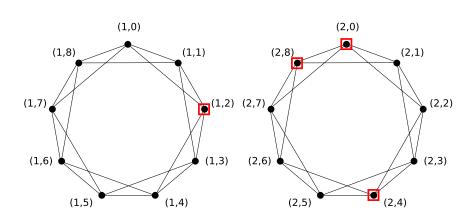


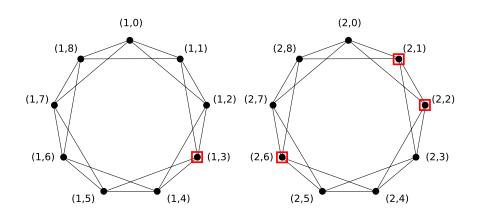


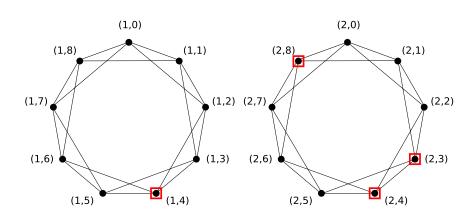


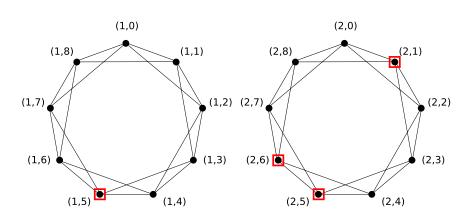


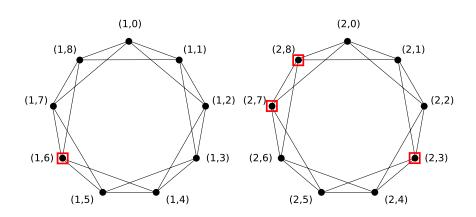


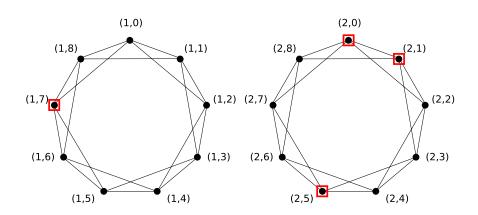


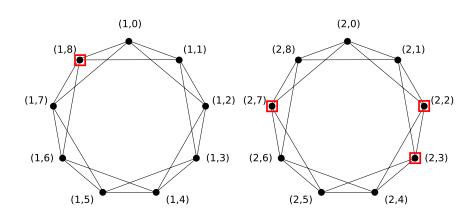


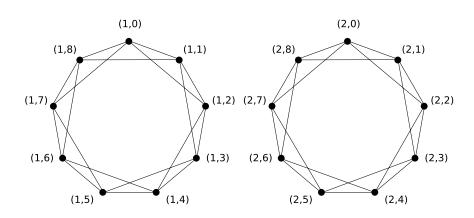


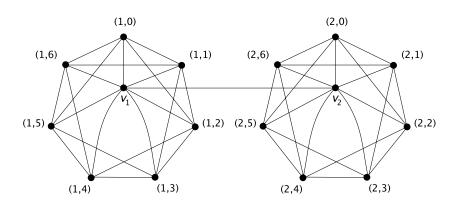


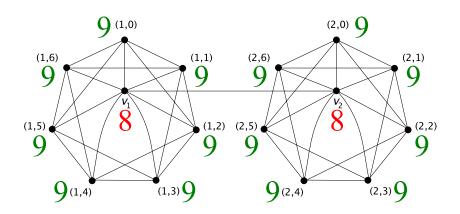


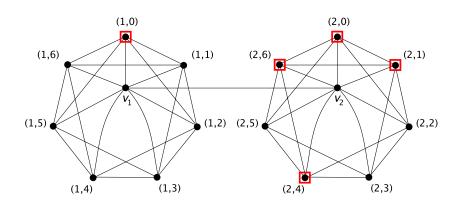


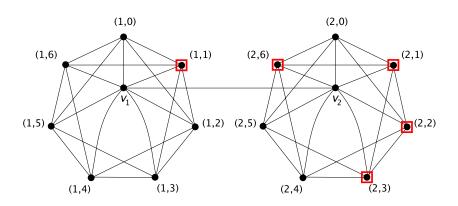


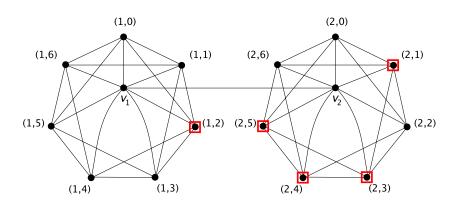


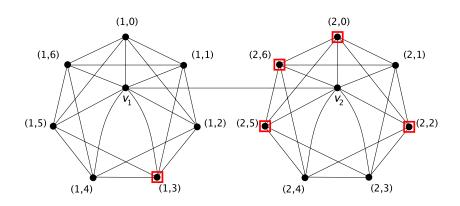


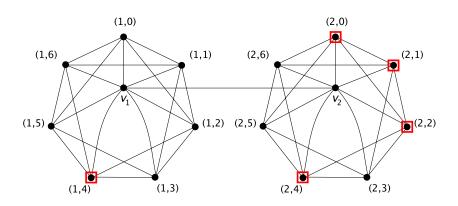


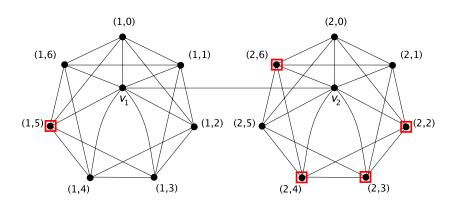


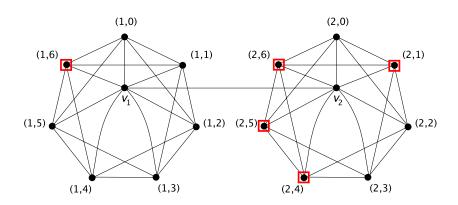


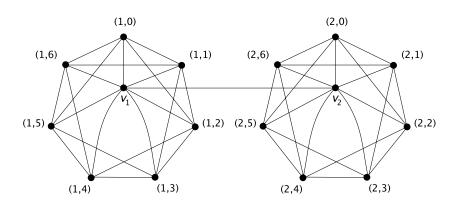


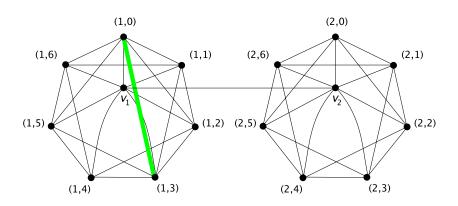


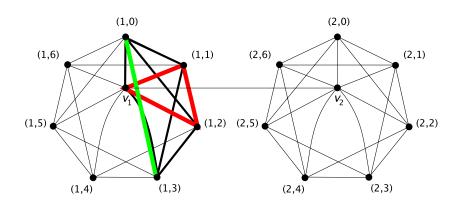


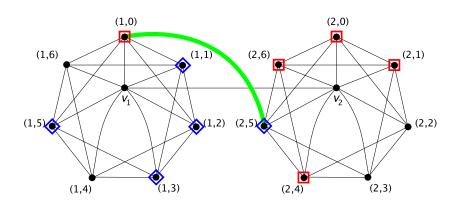


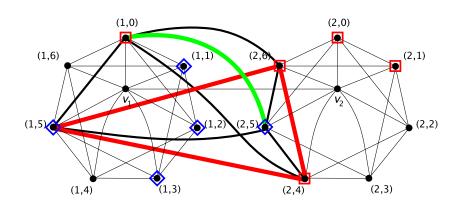


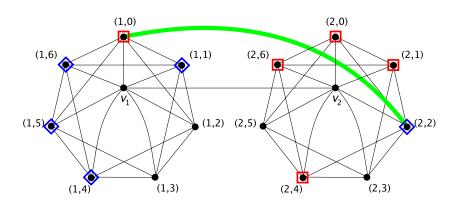


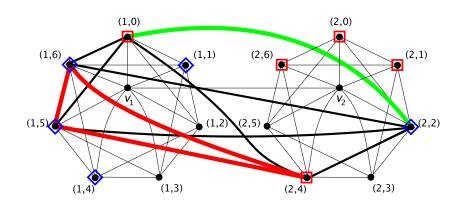


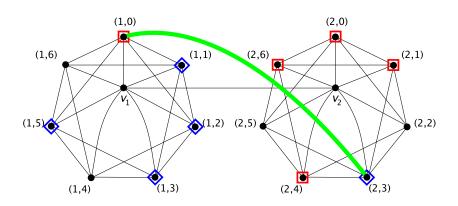


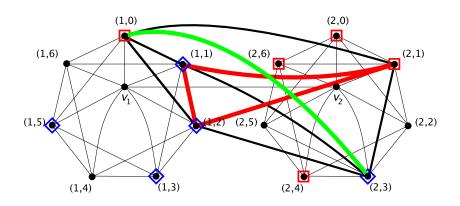




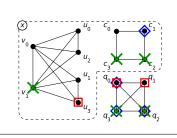


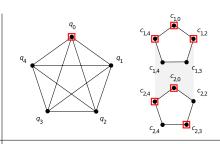


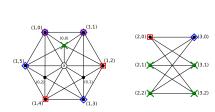


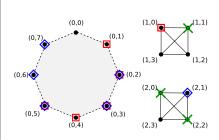


Other *r*-Primitive Graphs

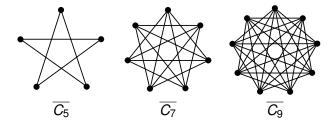




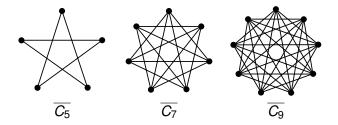




Recall: For $r \ge 1$, $\overline{C_{2r-1}}$ is r-primitive.



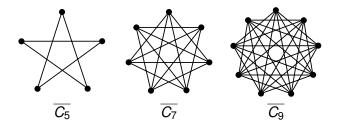
Recall: For $r \ge 1$, $\overline{C_{2r-1}}$ is r-primitive.



Let n be an integer and $S \subseteq \mathbb{Z}_n$. The Cayley complement $\overline{C}(\mathbb{Z}_n, S)$ is the complement of the Cayley graph for \mathbb{Z}_n with generator set S.

34 / 48

Recall: For $r \ge 1$, $\overline{C_{2r-1}}$ is r-primitive.



Let n be an integer and $S \subseteq \mathbb{Z}_n$. The Cayley complement $\overline{C}(\mathbb{Z}_n, S)$ is the complement of the Cayley graph for \mathbb{Z}_n with generator set S.

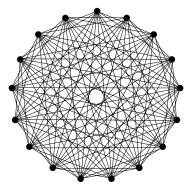
$$\overline{C}(\mathbb{Z}_{2r-1}, \{1\}) \cong \overline{C_{2r-1}}$$
 is *r*-primitive.

Theorem (Hartke, S—) Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is r-primitive.

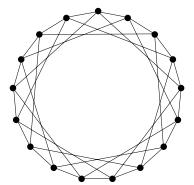
For
$$t = 1$$
, $r = 2$, and $\overline{C}(\mathbb{Z}_n, \{1, 2\}) \cong \overline{K_5}$.

35/48

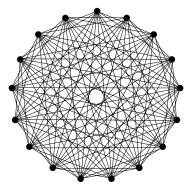
$$t = 2, n = 17, r = 7$$



$$t = 2, n = 17, r = 7$$

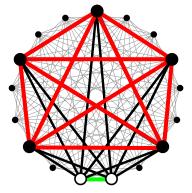


$$t = 2, n = 17, r = 7$$



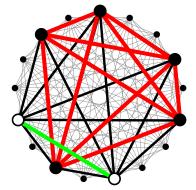
Theorem (Hartke, S—) Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is r-primitive.

$$t = 2, n = 17, r = 7$$



35/48

$$t = 2, n = 17, r = 7$$



Theorem (Hartke, S—) Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is r-primitive.

Conjecture (Hartke, S—) Let $S \subseteq \mathbb{Z}_n$ have |S| = 2. The Cayley complement $\overline{C}(\mathbb{Z}_n, S)$ is *r*-primitive if and only if $\exists t \geq 1, n = 4t^2 + 1, r = 2t^2 - t + 1$, and $\overline{C}(\mathbb{Z}_n, S) \cong \overline{C}(\mathbb{Z}_n, \{1, 2t\})$.

t	S	r	n
1	{1,2}	2	5
2	$\{1, 4\}$	7	17
3	{1,6}	16	37
4	{1,8}	29	65
5	{1, 10}	46	101
6	{1, 12}	67	145
7	$\{1, 14\}$	92	197
8	{1, 16}	121	257
9	{1, 18}	154	325
10	$\{1, 20\}$	191	401

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

Suppose $X \subseteq \mathbb{Z}_n$ is an r-clique in G.

···00000000000000000000

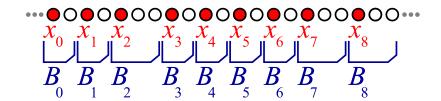
$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

Elements are labeled $x_0, x_1, \ldots, x_i, \ldots$ (*i* modulo *r*).

$$X_0$$
 X_1 X_2 X_3 X_4 X_5 X_6 X_7 X_8

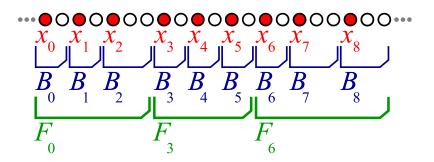
$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

Blocks are sets $B_k = \{x_k, x_k + 1, ..., x_{k+1} - 1\}$ (k modulo r). ("Intervals" closed on element x_k and open on x_{k+1})

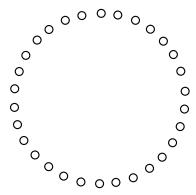


$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

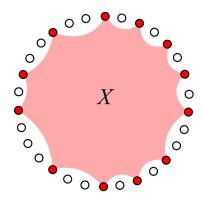
Frames are collections $F_j = \{B_j, B_{j+1}, \dots, B_{j+t-1}\}$ (j modulo r). (There are t blocks in each frame.)



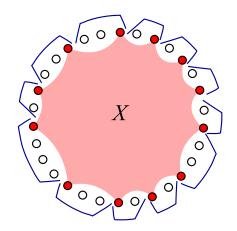
$$n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$$



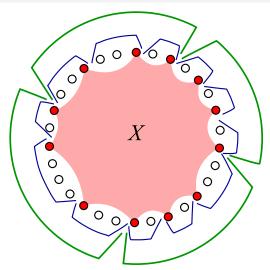
$$n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$$



 $n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$



 $n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$



$$n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$$

(a) Every block B_k has $|B_k| \ge 2$.

$$n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$$

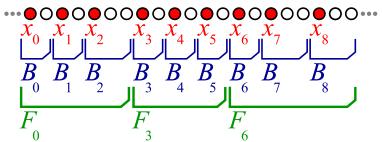
(a) Every block B_k has $|B_k| \ge 2$. (1 is a generator)

Two Generators (Proof)

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

- (a) Every block B_k has $|B_k| \ge 2$. (1 is a generator)
- **(b)** Every frame F_i has a block $B_k \in F_i$ with $|B_k| \ge 3$.

(2*t* is a generator, so $x_{i+t} \neq x_i + 2t$.)



$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1$$
.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1$$
.

$$tn \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(2)}{\geq} r(2t+1) \stackrel{(3)}{=} tn+1.$$

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1$$
.

$$tn \stackrel{(\mathbf{1})}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(\mathbf{2})}{\geq} r(2t+1) \stackrel{(\mathbf{3})}{=} tn+1.$$

(1) Every block is counted t times.

$$n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$$

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1$$
.

$$tn \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(2)}{\geq} r(2t+1) \stackrel{(3)}{=} tn+1.$$

- (1) Every block is counted t times.
- (2) Claim.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1$$
.

$$tn \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(2)}{\geq} r(2t+1) \stackrel{(3)}{=} tn+1.$$

- (1) Every block is counted t times.
- (2) Claim.
- (3) Arithmetic.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

So,
$$\sigma(F_j) := \sum_{B_k \in F_j} |B_k| = d_{\mathbb{Z}_n}(x_j, x_{j+t}) \ge 2t + 1$$
.

$$tn \stackrel{(1)}{=} \sum_{j=0}^{r-1} \sigma(F_j) \stackrel{(2)}{\geq} r(2t+1) \stackrel{(3)}{=} tn+1.$$

- (1) Every block is counted t times.
- (2) Claim.
- (3) Arithmetic.

Contradiction! $:: \omega(G) < r$.

$$n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$$

G is vertex-transitive and there is an automorphism of $G(x \mapsto -2tx)$ that maps $\{0, 2t\}$ to $\{0, 1\}$.

$$n = 4t^2 + 1, r = 2t^2 - t + 1, G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$$

G is vertex-transitive and there is an automorphism of $G(x \mapsto -2tx)$ that maps $\{0, 2t\}$ to $\{0, 1\}$.

For unique saturation, we only need to check $G + \{0, 1\}$.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

Suppose *X* is an *r*-clique in $G + \{0, 1\}$.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

Suppose X is an r-clique in $G + \{0, 1\}$.

$$X = \{x_0 = 0, x_1 = 1, x_2, \dots, x_{r-1}\}.$$

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

Suppose *X* is an *r*-clique in $G + \{0, 1\}$.

$$X = \{x_0 = 0, x_1 = 1, x_2, \dots, x_{r-1}\}.$$

Consider frame family \mathcal{F}

$$\mathcal{F} = \{F_1, F_{t+1}, F_{2t+1}, \dots, F_{r-t}\}, \qquad |\mathcal{F}| = 2t - 1.$$

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

$$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$$

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

$$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$$

So, $\sigma(F_j) = 2t + 1$ for all $F_j \in \mathcal{F}$ but <u>exactly one</u> $F_{j'} \in \mathcal{F}$ where $\sigma(F_{j'}) = 2t + 2$.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

$$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$$

So, $\sigma(F_j)=2t+1$ for all $F_j\in\mathcal{F}$ but <u>exactly one</u> $F_{j'}\in\mathcal{F}$ where $\sigma(F_{j'})=2t+2$.

 $F_{i'}$ has (t-2) 2-blocks and two 3-blocks (4 = 2 + 2).

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

$$n-1 = \sum_{F_j \in \mathcal{F}} \sigma(F_j) \ge (2t-1)(2t+1) = n-2.$$

So, $\sigma(F_j)=2t+1$ for all $F_j\in\mathcal{F}$ but <u>exactly one</u> $F_{j'}\in\mathcal{F}$ where $\sigma(F_{j'})=2t+2$.

 $F_{i'}$ has (t-2) 2-blocks and two 3-blocks (4 = 2 + 2).

All blocks of of X (except B_0) have size 2 or 3.

There are exactly (2t + 1) 3-blocks.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

(a) There are at most (t-1) 2-blocks between 3-blocks.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

- (a) There are at most (t-1) 2-blocks between 3-blocks.
- **(b)** There are at least (t-2) 2-blocks between 3-blocks.

$$(3+3=6)$$

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

- (a) There are at most (t-1) 2-blocks between 3-blocks.
- **(b)** There are at least (t-2) 2-blocks between 3-blocks.

$$(3+3=6)$$

(c) If B_{k_0} , B_{k_1} , ..., $B_{k_{2t}}$ be the 3-blocks.

$$k_0 \ge t-1$$
, $k_{j+1} \in \{k_j+t-2, k_j+t-1\}$, $k_{2t} \le r-t$.

$$n = 4t^2 + 1$$
, $r = 2t^2 - t + 1$, $G = \overline{C}(\mathbb{Z}_n, \{1, 2t\})$

- (a) There are at most (t-1) 2-blocks between 3-blocks.
- **(b)** There are at least (t-2) 2-blocks between 3-blocks.

$$(3+3=6)$$

(c) If B_{k_0} , B_{k_1} , ..., $B_{k_{2t}}$ be the 3-blocks.

$$k_0 \ge t-1$$
, $k_{j+1} \in \{k_j+t-2, k_j+t-1\}$, $k_{2t} \le r-t$.

A unique solution for k_0, \ldots, k_{2t} : $k_{j+1} = k_j + t - 2$.

Defines X which is an r-clique.

Theorem (Hartke, S—) Let $t \ge 1$, $n = 9t^2 - 3t + 1$, and $r = 3t^2 - 2t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is r-primitive.

Theorem (Hartke, S—) Let $t \ge 1$, $n = 9t^2 - 3t + 1$, and $r = 3t^2 - 2t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is r-primitive.

t	S	r	n
1	{1, 2, 3}	2	7
2	$\{1, 5, 6\}$	9	31
3	$\{1, 8, 9\}$	22	73
4	{1, 11, 12}	41	133
5	$\{1, 14, 15\}$	66	211
6	{1, 17, 18}	97	307
7	{1, 20, 21}	134	421
8	{1, 23, 24}	177	553
9	{1, 26, 27}	226	703
10	$\{1, 29, 30\}$	281	871

Theorem (Hartke, S—) Let $t \ge 1$, $n = 9t^2 - 3t + 1$, and $r = 3t^2 - 2t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is r-primitive.

Hardest part: Prove there are no 2-blocks in an *r*-clique.

Theorem (Hartke, S—) Let $t \ge 1$, $n = 9t^2 - 3t + 1$, and $r = 3t^2 - 2t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is r-primitive.

Hardest part: Prove there are no 2-blocks in an r-clique.

Note: Payley(13) = $\overline{C}(\mathbb{Z}_{13}, \{1, 3, 4\})$ doesn't fit this form!

Theorem (Hartke, S—) Let $t \ge 1$, $n = 9t^2 - 3t + 1$, and $r = 3t^2 - 2t + 1$. The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is r-primitive.

Hardest part: Prove there are no 2-blocks in an r-clique.

Note: Payley(13) = $\overline{C}(\mathbb{Z}_{13}, \{1, 3, 4\})$ doesn't fit this form!

Pattern does not extend to $|S| \ge 4!$

More Generators

g	Generators	n	r
4	{1, 5, 8, 34} {1, 11, 18, 34}	89	28
5	{1, 5, 14, 17, 25}	71	19
5	{1, 6, 14, 17, 36}	101	27
6	{1, 6, 16, 22, 35, 36}	97	21
7	{1, 20, 23, 26, 30, 32, 34}	71	15

Is there an infinite family of r-primitive graphs for a fixed r?

Is there an infinite family of r-primitive graphs for a fixed r?

② Can one bound $\Delta(G)$ and/or $\Delta(\overline{G})$ for *r*-primitive *G*?

Is there an infinite family of r-primitive graphs for a fixed r?

② Can one bound $\Delta(G)$ and/or $\Delta(\overline{G})$ for *r*-primitive *G*?

3 Is $\overline{C}(\Gamma, S)$ *r*-primitive for any group $\Gamma \not\cong \mathbb{Z}_n$?

Searching for uniquely saturated and strongly regular graphs with coupled augmentations¹

Stephen G. Hartke Derrick Stolee University of Nebraska–Lincoln

s-dstolee1@math.unl.edu
http://www.math.unl.edu/~s-dstolee1/

University of Nebraska-Lincoln

s-dstolee1@math.unl.edu http://www.math.unl.edu/~s-dstolee1/

October 11, 2011

¹Supported by NSF grant DMS-0914815.