
Uniquely Kr -Saturated Graphs

Derrick Stolee

Joint with Stephen G. Hartke

University of Nebraska–Lincoln
s-dstolee1@math.unl.edu

http://www.math.unl.edu/∼s-dstolee1/

January 6, 2012

Supported by NSF grant DMS-0914815 and a University of Nebraska Presidential Fellowship.



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)
- For every e ∈ E(G), G + e contains H as a subgraph.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 2 / 35



Turán’s Theorem

Theorem (Turán, 1941) Let r ≥ 3. If G is Kr -saturated on n vertices,
then G has at most

(
1− 1

r−1

) n2

2 edges (asymptotically).
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Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let r ≥ 2. If G is Kr -saturated
on n vertices, then G has at least (r−2

2 ) + (r − 2)(n− r + 2) edges.

1-book 2-book 3-book
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Extremal and Saturation Numbers

Definition The extremal number ex(H; n) is the maximum number
of edges in an n-vertex H-saturated graph.

The saturation number sat(H; n) is the minimum number of edges in
an n-vertex H-saturated graph.
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Uniquely H-Saturated Graphs

The Turán graph has many copies of Kr when an edge is added.

The books have exactly one copy of Kr when an edge is added.

Definition A graph G is uniquely H-saturated if G does not contain
H as a subgraph and for every edge e ∈ G admits exactly one copy of
H in G + e.
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Uniquely Ck -Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)
The uniquely C3-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a finite number of
Moore graphs of diameter 2 and girth 5.

?
C5 Petersen Hoffman– 57-Regular

Singleton Order 3250
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Uniquely Ck -Saturated Graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)
There are a finite number of uniquely C4-saturated graphs.

Theorem (Wenger, 2010)
The only uniquely C5-saturated graphs are friendship graphs.

Theorem (Wenger, 2010)
For k ∈ {6, 7, 8}, no uniquely Ck -saturated graph exists.

Conjecture (Wenger, 2010)
For k ≥ 9, no uniquely Ck -saturated graph exists.
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Uniquely Kr -Saturated Graphs

We consider the case where H = Kr (an r -clique) for r ≥ 4.

(K3
∼= C3)

Definition A graph G is uniquely Kr -saturated if G does not contain
an r -clique and for every edge e ∈ G there is exactly one r -clique in
G + e.
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Dominating Vertices

Adding a dominating vertex to a uniquely Kr -saturated graph creates a
uniquely Kr+1-saturated graph.
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Dominating Vertices

Call uniquely Kr -saturated graphs without a dominating vertex

r -primitive.

2-primitive graphs are empty graphs.
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Dominating Vertices

Call uniquely Kr -saturated graphs without a dominating vertex

r -primitive.

For r ≥ 1, C2r−1 is r -primitive.

C5 C7 C9
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Uniquely K4-Saturated Graphs

10 vertices 12 vertices

Previously known 4-primitive graphs (Collins, Cooper, Kay, 2010)
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Two Questions

1. Fix r ≥ 3. Are there a finite number of r -primitive graphs?

2. Is every r -primitive graph regular?
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Variables

We search for uniquely Kr -saturated graphs on vertices {v1, . . . , vn}.

Use variables xi,j ∈ {0, 1, ∗} where

- xi,j = 0 iff vivj /∈ E(G).
- xi,j = 1 iff vivj ∈ E(G).
- xi,j = ∗ is unassigned.
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Symmetries of the System

The constraints

- There is no r -clique in G.
- Every non-edge e of G has exactly one r -clique in G + e.

are independent of vertex labels.

The permutations in Sn permute the variables xi,j by permuting the
indices:

σ ∈ Sn, xi ,j
σ7−→ xσ(i),σ(j).
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Orbital Branching

Orbital branching reduces the number of isomorphic duplicates.

Generalizes branch-and-bound strategy.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007) for
symmetric optimization problems such as covering and packing.
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Branch-and-Bound

x is given
Variable xi,j is selected
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Orbital Branching

x is given
Orbit O is selected
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Orbital Branching

x is given
Orbit O is selected

in orbit
xi,j = 1

for all {i , j} ∈ O
xi1,j1
= 0

xi2,j2
= 0

xi3,j3
= 0

xik ,jk
= 0
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Kr -Completions

For every non-edge we add, we add a Kr -completion:

xi,j = 0 if and only if there exists a set S ⊂ [n], |S| = r − 2,
so that xi,a = xj,a = xa,b = 1 for all a, b ∈ S.

S S S

r = 4 r = 5 r = 6

S. G. Hartke, D. Stolee (UNL) Uniquely Kr -Saturated Graphs January 6, 2012 20 / 35



Orbital Branching with Kr -Completions

x is given
Orbit O is selected
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Exhaustive Search Times

n r = 4 r = 5 r = 6 r = 7 r = 8
10 0.10 s 0.37 s 0.13 s 0.01 s 0.01 s
11 0.68 s 5.25 s 1.91 s 0.28 s 0.09 s
12 4.58 s 1.60 m 25.39 s 1.97 s 1.12 s
13 34.66 s 34.54 m 6.53 m 59.94 s 20.03 s
14 4.93 m 10.39 h 5.13 h 20.66 m 2.71 m
15 40.59 m 23.49 d 10.08 d 12.28 h 1.22 h
16 6.34 h 1.58 y 1.74 y 34.53 d 1.88 d
17 3.44 d 8.76 y 115.69 d
18 53.01 d
19 2.01 y
20 45.11 y

Total CPU times using Open Science Grid.

(Recall: ≈ 8.83× 1018 connected graphs of order 20)
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4-Primitive Graphs
n = 13

G(A)
13 Payley(13)
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5-Primitive Graph
n = 16 : G(A)

16
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Other r -Primitive Graphs (r ∈ {4, 5, 6})
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7-Primitive Graph
n = 17 : G(A)

17
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Let Γ be a group and S ⊆ Γ a set of generators.

The undirected Cayley graph C(Γ, S) has vertex set Γ and for all
a ∈ Γ and b ∈ S, there is an edge between a and ab.

The Cayley complement C(Γ, S) is the complement of C(Γ, S).

For r ≥ 1, C(Z2r−1, {1}) ∼= C2r−1 is r -primitive.

C5 C7 C9
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Searching for r -Primitive Cayley Complements

To search for Cayley complements C(Zn, S) with |S| = g:

1. Select a generator set S = {a1 = 1 < a2 < a3 < · · · < ag}.

2. Select an integer n > 2ag .

3. Compute r = ω(C(Zn, S)) + 1.

4. Check if C(Zn, S) + {0, ai} has a unique r -clique for all ai ∈ S.

Implementation uses Niskanen and Östergård’s cliquer software to
compute ω(G).
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Two or Three Generators

S r n
{1, 4} 7 17

{1, 6} 16 37

{1, 8} 29 65

{1, 10} 46 101

{1, 12} 67 145

g = 2

S r n
{1, 5, 6} 9 31

{1, 8, 9} 22 73

{1, 11, 12} 41 133

{1, 14, 15} 66 211

{1, 17, 18} 97 307

g = 3
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Infinite Families

Conjecture (Hartke, Stolee, 2012) Let t ≥ 1,

n = 4t2 + 1, and r = 2t2 − t + 1.

The Cayley complement C(Zn, {1, 2t}) is r -primitive.

Conjecture (Hartke, Stolee, 2012) Let t ≥ 1,

n = 9t2 − 3t + 1 and r = 3t2 − 2t + 1.

The Cayley complement C(Zn, {1, 3t − 1, 3t}) is r -primitive.
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More Experimental Results

Our search for r -primitive Cayley complements also found these
constructions:

g S r n

4
{1, 5, 8, 34}

28 89{1, 11, 18, 34}
5 {1, 5, 14, 17, 25} 19 71
5 {1, 6, 14, 17, 36} 27 101
6 {1, 6, 16, 22, 35, 36} 21 97
7 {1, 20, 23, 26, 30, 32, 34} 15 71
8 {1, 8, 12, 18, 22, 27, 33, 47} 20 97

It remains to be seen if these extend to infinite families.
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Open Questions

1 Is there an infinite family of r -primitive graphs for a fixed r?

2 Can one bound ∆(G) and/or δ(G) for r -primitive G?

3 Is there an infinite family of irregular r -primitive graphs?
Can ∆(G)− δ(G) become arbitrarily large?

4 Is C(Γ, S) r -primitive for any group Γ 6∼= Zn?
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