Derrick Stolee

Joint with Stephen G. Hartke

University of Nebraska-Lincoln s-dstoleel@math.unl.edu http://www.math.unl.edu/~s-dstolee1/

January 6, 2012

Supported by NSF grant DMS-0914815 and a University of Nebraska Presidential Fellowship.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

- G does not contain H as a subgraph. (H-free)
- For every $e \in E(\overline{G})$, G + e contains H as a subgraph.

Turán's Theorem

Theorem (Turán, 1941) Let $r \ge 3$. If *G* is K_r -saturated on *n* vertices, then *G* has at most $(1 - \frac{1}{r-1}) \frac{n^2}{2}$ edges (asymptotically).

Turán's Theorem

Theorem (Turán, 1941) Let $r \ge 3$. If *G* is K_r -saturated on *n* vertices, then *G* has at most $(1 - \frac{1}{r-1}) \frac{n^2}{2}$ edges (asymptotically).

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let $r \ge 2$. If *G* is K_r -saturated on *n* vertices, then *G* has at least $\binom{r-2}{2} + (r-2)(n-r+2)$ edges.

Erdős, Hajnal, and Moon

Theorem (Erdős, Hajnal, Moon, 1964) Let $r \ge 2$. If *G* is K_r -saturated on *n* vertices, then *G* has at least $\binom{r-2}{2} + (r-2)(n-r+2)$ edges.

Definition The **extremal number** ex(H; n) is the **maximum** number of edges in an *n*-vertex *H*-saturated graph.

Definition The **extremal number** ex(H; n) is the **maximum** number of edges in an *n*-vertex *H*-saturated graph.

Definition The **extremal number** ex(H; n) is the **maximum** number of edges in an *n*-vertex *H*-saturated graph.

Definition The **extremal number** ex(H; n) is the **maximum** number of edges in an *n*-vertex *H*-saturated graph.

Definition The **extremal number** ex(H; n) is the **maximum** number of edges in an *n*-vertex *H*-saturated graph.

The Turán graph has **many** copies of K_r when an edge is added. The books have **exactly one** copy of K_r when an edge is added. The Turán graph has **many** copies of K_r when an edge is added.

The books have **exactly one** copy of K_r when an edge is added.

Definition A graph *G* is **uniquely** *H***-saturated** if *G* does not contain *H* as a subgraph and for every edge $e \in \overline{G}$ admits **exactly one** copy of *H* in G + e.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)

The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a **finite number** of Moore graphs of diameter 2 and girth 5.

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) The uniquely C_3 -saturated graphs are either stars or Moore graphs of diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a **finite number** of Moore graphs of diameter 2 and girth 5.

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Wenger, 2010)

The only uniquely C₅-saturated graphs are friendship graphs.

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011) There are a finite number of uniquely C_4 -saturated graphs.

Theorem (Wenger, 2010)

The only uniquely C₅-saturated graphs are friendship graphs.

Theorem (Wenger, 2010)

For $k \in \{6, 7, 8\}$, no uniquely C_k -saturated graph exists.

Conjecture (Wenger, 2010)

For $k \ge 9$, no uniquely C_k -saturated graph exists.

We consider the case where $H = K_r$ (an *r*-clique) for $r \ge 4$.

We consider the case where $H = K_r$ (an *r*-clique) for $r \ge 4$.

 $(K_3 \cong C_3)$

We consider the case where $H = K_r$ (an *r*-clique) for $r \ge 4$. ($K_3 \cong C_3$)

Definition A graph *G* is **uniquely** K_r -**saturated** if *G* does not contain an *r*-**clique** and for every edge $e \in \overline{G}$ there is *exactly one r*-clique in G + e.

- •
- •

Call uniquely K_r -saturated graphs without a dominating vertex

```
r-primitive.
```

2-primitive graphs are empty graphs.

Call uniquely K_r -saturated graphs without a dominating vertex

r-primitive.

Dominating Vertices

Call uniquely K_r -saturated graphs without a dominating vertex

r-primitive.

Dominating Vertices

Call uniquely K_r -saturated graphs without a dominating vertex

r-primitive.

Dominating Vertices

Call uniquely K_r -saturated graphs without a dominating vertex

r-primitive.

Uniquely K₄-Saturated Graphs

Previously known 4-primitive graphs (Collins, Cooper, Kay, 2010)

Two Questions

S. G. Hartke, D. Stolee (UNL)

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

1. Fix $r \ge 3$. Are there a **finite number** of *r*-primitive graphs?

2. Is every *r*-primitive graph regular?

Variables

We search for uniquely K_r -saturated graphs on vertices $\{v_1, \ldots, v_n\}$.

Variables

We search for uniquely K_r -saturated graphs on vertices $\{v_1, \ldots, v_n\}$.

Use variables $x_{i,j} \in \{0, 1, *\}$ where

- $x_{i,j} = 0$ iff $v_i v_j \notin E(G)$.
- $x_{i,j} = 1$ iff $v_i v_j \in E(G)$.
- $x_{i,j} = *$ is **unassigned**.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

are independent of vertex labels.

Symmetries of the System

The constraints

- There is no *r*-clique in *G*.
- Every non-edge e of G has exactly one r-clique in G + e.

are independent of vertex labels.

The permutations in S_n permute the variables $x_{i,j}$ by permuting the indices:

$$\sigma \in S_n, \qquad x_{i,j} \stackrel{\sigma}{\longmapsto} x_{\sigma(i),\sigma(j)}.$$

Orbital branching reduces the number of isomorphic duplicates.

Generalizes branch-and-bound strategy.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007) for **symmetric** optimization problems such as covering and packing.

Branch-and-Bound

x is given Variable $x_{i,j}$ is selected

Branch-and-Bound

Branch-and-Bound

x is given Orbit \mathcal{O} is selected

S. G. Hartke, D. Stolee (UNL)

K_r-Completions

For every non-edge we add, we add a K_r -completion:

 $x_{i,j} = 0$ if and only if there exists a set $S \subset [n]$, |S| = r - 2, so that $x_{i,a} = x_{j,a} = x_{a,b} = 1$ for all $a, b \in S$.

• • • •

Exhaustive Search Times

n	<i>r</i> = 4	<i>r</i> = 5	<i>r</i> = 6	<i>r</i> = 7	<i>r</i> = 8
10	0.10 s	0.37 s	0.13 s	0.01 s	0.01 s
11	0.68 s	5.25 s	1.91 s	0.28 s	0.09 s
12	4.58 s	1.60 m	25.39 s	1.97 s	1.12 s
13	34.66 s	34.54 m	6.53 m	59.94 s	20.03 s
14	4.93 m	10.39 h	5.13 h	20.66 m	2.71 m
15	40.59 m	23.49 d	10.08 d	12.28 h	1.22 h
16	6.34 h	1.58 y	1.74 y	34.53 d	1.88 d
17	3.44 d			8.76 y	115.69 d
18	53.01 d				
19	2.01 y				
20	45.11 y				

Total CPU times using Open Science Grid.

(Recall: $\approx 8.83 \times 10^{18}$ connected graphs of order 20)

Uniquely Kr-Saturated Graphs
$n \setminus r$	2	3	4	5	6	7	8	
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								

4-Primitive Graphs n = 13

Other *r*-Primitive Graphs ($r \in \{4, 5, 6\}$)

Uniquely Kr-Saturated Graphs

Let Γ be a group and $S \subseteq \Gamma$ a set of generators.

The undirected **Cayley graph** $C(\Gamma, S)$ has vertex set Γ and for all $a \in \Gamma$ and $b \in S$, there is an edge between *a* and *ab*.

Let Γ be a group and $S \subseteq \Gamma$ a set of generators.

The undirected **Cayley graph** $C(\Gamma, S)$ has vertex set Γ and for all $a \in \Gamma$ and $b \in S$, there is an edge between *a* and *ab*.

The Cayley complement $\overline{C}(\Gamma, S)$ is the complement of $C(\Gamma, S)$.

Let Γ be a group and $S \subseteq \Gamma$ a set of generators.

The undirected **Cayley graph** $C(\Gamma, S)$ has vertex set Γ and for all $a \in \Gamma$ and $b \in S$, there is an edge between *a* and *ab*.

The **Cayley complement** $\overline{C}(\Gamma, S)$ is the complement of $C(\Gamma, S)$.

For
$$r \ge 1$$
, $\overline{C}(\mathbb{Z}_{2r-1}, \{1\}) \cong \overline{C_{2r-1}}$ is *r*-primitive.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\}$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\}$.
- 2. Select an integer $n > 2a_g$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\}$.
- 2. Select an integer $n > 2a_g$.
- **3**. Compute $r = \omega(\overline{C}(\mathbb{Z}_n, S)) + 1$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\}$.
- 2. Select an integer $n > 2a_g$.
- **3.** Compute $r = \omega(\overline{C}(\mathbb{Z}_n, S)) + 1$.
- 4. Check if $\overline{C}(\mathbb{Z}_n, S) + \{0, a_i\}$ has a unique *r*-clique for all $a_i \in S$.

To search for Cayley complements $\overline{C}(\mathbb{Z}_n, S)$ with |S| = g:

- 1. Select a generator set $S = \{a_1 = 1 < a_2 < a_3 < \cdots < a_g\}$.
- 2. Select an integer $n > 2a_g$.
- **3.** Compute $r = \omega(\overline{C}(\mathbb{Z}_n, S)) + 1$.
- 4. Check if $\overline{C}(\mathbb{Z}_n, S) + \{0, a_i\}$ has a unique *r*-clique for all $a_i \in S$.

Implementation uses Niskanen and Östergård's *cliquer* software to compute $\omega(G)$.

Two or Three Generators

S	r	n	S		r	n	
{1,4}	7	17	{1,5,0	6}	9	31	
$\{1, 6\}$	16	37	{1,8,9	9}	22	73	
$\{1, 8\}$	29	65	{ 1 , 11 , [•]	12}	41	133	
{1,10}	46	101	{ 1 , 14 , ⁻	15}	66	211	
{1,12}	67	145	{1, 17,	18}	97	307	
g= 2				g= 3			

Conjecture (Hartke, Stolee, 2012) Let $t \ge 1$, $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Conjecture (Hartke, Stolee, 2012) Let $t \ge 1$,

 $n = 9t^2 - 3t + 1$ and $r = 3t^2 - 2t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t-1, 3t\})$ is *r*-primitive.

Theorem (Hartke, Stolee, 2012) Let $t \ge 1$,

 $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Proof uses **counting** method.

Conjecture (Hartke, Stolee, 2012) Let $t \ge 1$,

 $n = 9t^2 - 3t + 1$ and $r = 3t^2 - 2t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is *r*-primitive.

Theorem (Hartke, Stolee, 2012) Let $t \ge 1$,

 $n = 4t^2 + 1$, and $r = 2t^2 - t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 2t\})$ is *r*-primitive.

Proof uses **counting** method.

Theorem (Hartke, Stolee, 2012) Let $t \ge 1$,

$$n = 9t^2 - 3t + 1$$
 and $r = 3t^2 - 2t + 1$.

The Cayley complement $\overline{C}(\mathbb{Z}_n, \{1, 3t - 1, 3t\})$ is *r*-primitive.

Proof uses discharging method.

More Experimental Results

Our search for *r*-primitive Cayley complements also found these constructions:

g	S	r	n
4	{1, 5, 8, 34} {1, 11, 18, 34}	28	89
5	{1, 5, 14, 17, 25}	19	71
5	{1,6,14,17,36}	27	101
6	{1, 6, 16, 22, 35, 36}	21	97
7	$\{1, 20, 23, 26, 30, 32, 34\}$	15	71
8	$\{1, 8, 12, 18, 22, 27, 33, 47\}$	20	97

It remains to be seen if these extend to infinite families.

Is there an infinite family of r-primitive graphs for a fixed r?

Is there an infinite family of r-primitive graphs for a fixed r?

② Can one bound $\Delta(G)$ and/or $\delta(G)$ for *r*-primitive *G*?

Is there an infinite family of r-primitive graphs for a fixed r?

- **2** Can one bound $\Delta(G)$ and/or $\delta(G)$ for *r*-primitive *G*?
- Solution Is there an infinite family of **irregular** *r*-primitive graphs? Can $\Delta(G) - \delta(G)$ become **arbitrarily large**?
Open Questions

Is there an infinite family of r-primitive graphs for a fixed r?

- **2** Can one bound $\Delta(G)$ and/or $\delta(G)$ for *r*-primitive *G*?
- Solution Is there an infinite family of **irregular** *r*-primitive graphs? Can $\Delta(G) - \delta(G)$ become **arbitrarily large**?
- Is $\overline{C}(\Gamma, S)$ *r*-primitive for any group $\Gamma \not\cong \mathbb{Z}_n$?

Uniquely K_r-Saturated Graphs

Derrick Stolee

Joint with Stephen G. Hartke

University of Nebraska–Lincoln

s-dstoleel@math.unl.edu
http://www.math.unl.edu/~s-dstoleel/

January 6, 2012

Supported by NSF grant DMS-0914815 and a University of Nebraska Presidential Fellowship.