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H-Saturated Graphs

Definition A graph G is H-saturated if

- G does not contain H as a subgraph. (H-free)

- Forevery e € E(G), G+ e contains H as a subgraph.
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Turan’s Theorem

Theorem (Turan, 1941) Let r > 3. If G is K;-saturated on n vertices,
then G has at most (1 — 1) Z edges (asymptotically).
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Erdds, Hajnal, and Moon

Theorem (Erdos, Hajnal, Moon, 1964) Letr > 2. If G is K;-saturated
on n vertices, then G has at least (",?) + (r — 2)(n— r + 2) edges.
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Erdds, Hajnal, and Moon

Theorem (Erdos, Hajnal, Moon, 1964) Letr > 2. If G is K;-saturated
on n vertices, then G has at least (",?) + (r — 2)(n— r + 2) edges.
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Extremal and Saturation Numbers

Definition The extremal number ex(H; n) is the maximum number
of edges in an n-vertex H-saturated graph.

The saturation number sat(H; n) is the minimum number of edges in
an n-vertex H-saturated graph.
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Uniquely H-Saturated Graphs

The Turan graph has many copies of K. when an edge is added.

The books have exactly one copy of K, when an edge is added.
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Uniquely H-Saturated Graphs

The Turan graph has many copies of K. when an edge is added.
The books have exactly one copy of K, when an edge is added.
Definition A graph G is uniquely H-saturated if G does not contain

H as a subgraph and for every edge e € G admits exactly one copy of
Hin G+e.
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Uniquely Ck-Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)

The uniquely Csz-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.
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Uniquely Ck-Saturated Graphs

Lemma (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)

The uniquely Csz-saturated graphs are either stars or Moore graphs of
diameter 2 and girth 5.

Theorem (Hoffman, Singleton, 1964) There are a finite number of
Moore graphs of diameter 2 and girth 5.

Cs Petersen Hoffman— 57-Regular
Singleton Order 3250
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Uniquely Ck-Saturated Graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)
There are a finite number of uniquely C4-saturated graphs.
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Uniquely Ck-Saturated Graphs

Theorem (Cooper, Lenz, LeSaulnier, Wenger, West, 2011)
There are a finite number of uniquely C4-saturated graphs.

Theorem (Wenger, 2010)
The only uniquely Cs-saturated graphs are friendship graphs.

Theorem (Wenger, 2010)
For k € {6,7,8}, no uniquely Ck-saturated graph exists.

Conjecture (Wenger, 2010)
For k > 9, no uniquely Ck-saturated graph exists.
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Uniquely K;-Saturated Graphs

We consider the case where H = K; (an r-clique) for r > 4.
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Uniquely K;-Saturated Graphs

We consider the case where H = K; (an r-clique) for r > 4.
(Ks = Cg)

Definition A graph G is uniquely K;-saturated if G does not contain

an r-clique and for every edge e € G there is exactly one r-clique in
G+e.
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Dominating Vertices

Adding a dominating vertex to a uniquely K;-saturated graph creates a
uniquely K., 1-saturated graph.
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Dominating Vertices

Adding a dominating vertex to a uniquely K;-saturated graph creates a
uniquely K., 1-saturated graph.

R R

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs January 6, 2012 10/35



Dominating Vertices

Call uniquely K -saturated graphs without a dominating vertex

r-primitive.

2-primitive graphs are empty graphs.
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Dominating Vertices

Call uniquely K;-saturated graphs without a dominating vertex

r-primitive.

Forr > 1, Cor_1 is r-primitive.
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Uniquely K;-Saturated Graphs

e a
d b
c c
b d
a e
10 vertices 12 vertices

Previously known 4-primitive graphs (Collins, Cooper, Kay, 2010)
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Two Questions
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Two Questions

1. Fix r > 3. Are there a finite number of r-primitive graphs?

2. Is every r-primitive graph regular?
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Variables

We search for uniquely K;-saturated graphs on vertices {v, ..., vn}.
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Variables

We search for uniquely K;-saturated graphs on vertices {vi, ...

Use variables x;; € {0, 1, *} where
Xij = 0 iff ViVj ¢ E(G)

- Xij = 1 iff Vivj € E(G)
- X;j = * is unassigned.
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Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in G + e.

are independent of vertex labels.

S. G. Hartke, D. Stolee (UNL) Uniquely Kr-Saturated Graphs January 6, 2012

16/35



Symmetries of the System

The constraints

- There is no r-clique in G.
- Every non-edge e of G has exactly one r-clique in G + e.

are independent of vertex labels.

The permutations in S, permute the variables Xx; ; by permuting the
indices:

TESn  Xij = Xe(ho()-
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Orbital Branching

Orbital branching reduces the number of isomorphic duplicates.

Generalizes branch-and-bound strategy.

Introduced by Ostrowski, Linderoth, Rossi, and Smriglio (2007) for
symmetric optimization problems such as covering and packing.
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Branch-and-Bound

[ X is given J

Variable x; ; is selected
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Orbital Branching

[ X is given ]
Orbit O is selected
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Orbital Branching

X is given
Orblt Qis selected
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Orbital Branching

[ X is given ]
Orbit O is selected
in orbit
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Orbital Branching

[ X is given ]
Orbit O is selected
in orbit

f \ Xjj=1
®.“® for all {l jteo
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K--Completions

For every non-edge we add, we add a K,-completion:

x;j = 0 if and only if there exists aset S C [n], |S| =r — 2,

sothat X;, = Xj o = Xap = 1foralla, b e S.

S

~=N
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Orbital Branching with K.-Completions

[ X is given ]
Orbit O is selected
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Orbital Branching with K.-Completions

[ X is given ]
Orbit O is selected

in orbit

forall {i,j} € O
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Orbital Branching with K.-Completions

[ X is given ]
Orbit O is selected

in orbit §
[ X N ] Xi’j =1
forall {i,j} € O
X,'1’a=1 X,‘1'a=1 X,'1’a=1
Xj1ra=1 Xj1va=1 X X ) )(j1,a=1
Xa,b=1 Xa,b=1 Xa,b=1
(a, bin S4] [a,bin Sy (a, bin St
Si So S3 Sy Ss St
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Orbital Branching with K.-Completions

[ X is given ]
Orbit O is selected

in orbit

P
forall {i,j} € O

in orbit
Xi,.a=1| [Xi,, a=11[Xi, a=1
)(/1,\91:1 )(1'1”91:‘I )(!'1,6‘1=1

in orbit
M

Xa,b=1 Xa,b=1
a,bin Sp) [a bin S;
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Orbital Branching with K.-Completions

[ X is given ]
Orbit O is selected

in orbit

P
forall {i,j} € O

in orbit in orbit
N\ M
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Exhaustive Search Times

n r=4 r=>5 r==6 r=7 r==8
10| 0.10s 0.37s 0.13s 0.01s 0.01s
11 0.68 s 525s 1.91s 0.28 s 0.09s
12| 4.58s 1.60m | 25.39s 1.97s 1.12s
13 | 3466s | 34.54m | 6.53m | 59.94 s 20.08 s
14| 493 m | 10.39 h 5.13h | 20.66 m 2.71m
151 40.59m | 23.49d | 10.08d | 12.28 h 1.22 h
16 | 6.34h 1.58y 1.74y | 34.53d 1.88d
17 | 3.44d 8.76y | 115.69d
18 | 53.01d

19| 201y

20 | 4511y

Total CPU times using Open Science Grid.

(Recall: ~ 8.83 x 10'® connected graphs of order 20)
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4-Primitive Graphs
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5-Primitive Graph
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Other r-Primitive Graphs (r € {4,5,6})
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7-Primitive Graph
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LetI' be a group and S C T a set of generators.

The undirected Cayley graph C(T', S) has vertex set I and for all
ac T and b € S, there is an edge between a and ab.
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LetI' be a group and S C T a set of generators.

The undirected Cayley graph C(T', S) has vertex set I and for all
ac T and b € S, there is an edge between a and ab.

The Cayley complement C(T, S) is the complement of C(T, S).

Forr > 1, C(Zar—1,{1}) = Cor_1 is r-primitive.
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Searching for r-Primitive Cayley Complements

To search for Cayley complements C(Z,, S) with |S| = g:

1. Selectageneratorset S={a;=1<a <az <--- < ag}.
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Searching for r-Primitive Cayley Complements

To search for Cayley complements C(Z,, S) with |S| = g:

1. Selectageneratorset S={aj =1<a <az<--- < ag}.

2. Select an integer n > 2ay.

3. Compute r = w(C(Zn, S)) + 1.

4. Check if C(Zp, S) + {0, a;} has a unique r-clique for all a; € S.

Implementation uses Niskanen and Ostergard’s cliquer software to
compute w(G).
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Two or Three Generators

S r n S r n
1,4y 7 17 {1,56} 9 31
{1.6} 16 37 {1,8,9} 22 73
{1,8} 29 65 {1,11,12} 41 133
{1,101 46 101 {1,14,15} 66 211
{1,12} 67 145 {1,17,18} 97 307

g=2 g=3
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Infinite Families

Conjecture (Hartke, Stolee, 2012) Lett > 1,
n=4t2+1, and r=2f—t+1.

The Cayley complement C(Z,, {1,2t}) is r-primitive.

Conjecture (Hartke, Stolee, 2012) Lett > 1,
n=9-3t+1 and r=3f—-2t+1.

The Cayley complement C(Z, {1,3t — 1,3t}) is r-primitive.
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Infinite Families
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Theorem (Hartke, Stolee, 2012) Lett > 1,
n=4t +1, and r=2 —t+1.

The Cayley complement C(Z,, {1,2t}) is r-primitive.
Proof uses counting method.

Theorem (Hartke, Stolee, 2012) Lett > 1,
n=09t>—3t+1 and r=3—2t+1.

The Cayley complement C(Z,, {1,3t — 1,3t}) is r-primitive.

Proof uses discharging method.

S. G. Hartke, D. Stolee (UNL) Uniquely K, -Saturated Graphs January 6, 2012

32/35



More Experimental Results

Our search for r-primitive Cayley complements also found these

constructions:
g S r n
{1,5,8,34}
4 {1,11,18,34) 28 89
5 {1,5,14,17,25} 19 71
5 {1,6,14,17,36} 27 101
6 {1,6,16,22,35,36} 21 97
7 {1,20,23,26,30,32,34} 15 71
8 {1,8,12,18,22,27,33,47} 20 97

It remains to be seen if these extend to infinite families.
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@ Can one bound A(G) and/or §(G) for r-primitive G?

© Is there an infinite family of irregular r-primitive graphs?
Can A(G) — 6(G) become arbitrarily large?

@ Is C(T, S) r-primitive for any group T % Z,?
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