Space-efficient algorithms for reachability in surface-embedded graphs

Derrick Stolee* N. V. Vinodchandran

University of Nebraska–Lincoln

s-dstolee1@math.unl.edu
http://www.math.unl.edu/~s-dstolee1/

CCC 2012 June 29, 2012

Supported by NSF grants DMS-0354008, DMS-0914815, and CCF-0916525, and a CCC Student Travel Grant.

Reach for acyclic digraphs is complete for NL.

- Reach for acyclic digraphs is complete for NL.
- Reach for planar digraphs is in UL, but we believe UL = NL. (See Reinhardt and Allender, 2002)

- Reach for acyclic digraphs is complete for NL.
- Reach for planar digraphs is in UL, but we believe UL = NL. (See Reinhardt and Allender, 2002)
- What if we combine acyclic and planar?

- Reach for acyclic digraphs is complete for NL.
- Reach for planar digraphs is in UL, but we believe UL = NL. (See Reinhardt and Allender, 2002)
- What if we combine acyclic and planar?

We also bound number of

UNDIRECTED REACH in L

(Riengold, STOC 2005)

Matter Carton Stand Second

Series-parallel graphs

(Jakoby, Liśkiewicz, Reischuk '06; Jakoby and Tantau '07)

Series-parallel graphs

 (Jakoby, Liśkiewicz, Reischuk '06; Jakoby and Tantau '07)

Single-source Single-Sink Planar DAGs (Allender, Barrington, Chakraborty, Datta, Roy, '09)

Series-parallel graphs

 (Jakoby, Liśkiewicz, Reischuk '06; Jakoby and Tantau '07)

- Single-source Single-Sink Planar DAGs (Allender, Barrington, Chakraborty, Datta, Roy, '09)
- Single-source Multiple-Sink Planar DAGs (Allender, Barrington, Chakraborty, Datta, Roy, '09)

Series-parallel graphs

 (Jakoby, Liśkiewicz, Reischuk '06; Jakoby and Tantau '07)

- Single-source Single-Sink Planar DAGs (Allender, Barrington, Chakraborty, Datta, Roy, '09)
- Single-source Multiple-Sink Planar DAGs (Allender, Barrington, Chakraborty, Datta, Roy, '09)
- Log-source Multiple-Sink Planar DAGs (Stolee, Bourke, Vinodchandran, '10)

Series-parallel graphs

 (Jakoby, Liśkiewicz, Reischuk '06; Jakoby and Tantau '07)

- Single-source Single-Sink Planar DAGs (Allender, Barrington, Chakraborty, Datta, Roy, '09)
- Single-source Multiple-Sink Planar DAGs (Allender, Barrington, Chakraborty, Datta, Roy, '09)
- Log-source Multiple-Sink Planar DAGs (Stolee, Bourke, Vinodchandran, '10)
 - $O(\log n + m)$ -space algorithm for *m* sources.
 - 2 $O(\log n \cdot \log m)$ -space algorithm for *m* sources.

Surface-embedded graphs

We also extend to graphs embedded in *surfaces of low genus*.

(orientable or non-orientable)

Surface-embedded graphs

We also extend to graphs embedded in *surfaces of low genus*.

(orientable or non-orientable)

 $\mathcal{G}(m, g)$ is the class of **acyclic** digraphs with at most *m* **sources** embedded in a surface of **genus at most** *g*.

D. Stolee, N. V. Vinodchandran (UNL)

Space-Efficient Algorithms

Theorem (Sub-Savitch) Reachability for graphs of order n in $\mathcal{G}(m, g)$ is in

$$\mathsf{SPACE}[\log n + \log^2(m+g)].$$

Theorem (Sub-Savitch) Reachability for graphs of order n in $\mathcal{G}(m, g)$ is in

SPACE[log
$$n + \log^2(m+g)$$
].

Theorem (Log-Space) If $m = g = 2^{\sqrt{\log n}}$, reach for $\mathcal{G}(m, g)$ is in L.

Theorem (Sub-Savitch) Reachability for graphs of order *n* in $\mathcal{G}(m, g)$ is in

SPACE[log
$$n + \log^2(m+g)$$
].

Theorem (Log-Space) If $m = g = 2^{\sqrt{\log n}}$, reach for $\mathcal{G}(m, g)$ is in L.

Theorem (Time-Space) Reachability for graphs of order *n* in $\mathcal{G}(m, g)$ is in

$$\mathsf{TISP}[n^{O(1)}, \log n + m + g].$$

Reduction with Compression

Theorem (Stolee, Vinodchandran, '12) Given a graph $G \in \mathcal{G}(m, g)$ and $u, v \in V(G)$, we can compute in **log-space** a graph G' with vertices u', v' so that

- There is a path from u to v in G if and only if there is a path from u' to v' in G'.
- 2 G' has O(m+g) vertices.

Theorem (Sub-Savitch) Reachability for graphs of order n in $\mathcal{G}(m, g)$ is in

SPACE[log
$$n + \log^2(m+g)$$
].

(Run Savitch on G')

Theorem (Log-Space) If $m = g = 2^{\sqrt{\log n}}$, reach for $\mathcal{G}(m, g)$ is in L. $(\log^2(2^{\sqrt{\log n}}) = \log n)$

Theorem (Time-Space) Reachability for graphs of order *n* in $\mathcal{G}(m, g)$ is in

$$\mathsf{TISP}[n^{O(1)}, \log n + m + g].$$

(Run Breadth-First-Search)

Theorem (Sub-Savitch) Reachability for graphs of order n in $\mathcal{G}(m, g)$ is in

SPACE[log
$$n + \log^2(m+g)$$
].

(Run Savitch on G')

Theorem (Log-Space) If $m = g = 2^{\sqrt{\log n}}$, reach for $\mathcal{G}(m, g)$ is in L. $(\log^2(2^{\sqrt{\log n}}) = \log n)$

Theorem (Time-Space) Reachability for graphs of order *n* in $\mathcal{G}(m, g)$ is in $TICP\left[n \mathcal{Q}(1) \log n + \frac{m+g}{2} \right]$

$$\mathsf{TISP}\left[n^{O(1)}, \log n + \frac{m+g}{2^{O(\sqrt{m+g})}}\right]$$

(Run BBRS)

A Note About Embeddings

We take the embedding as input.

If g = 0 (*G* is planar), we can find an embedding in log-space. (Allender and Mahajan 2004; Datta and Prakriya 2011)

A Note About Embeddings

We take the embedding as input.

If g = 0 (*G* is planar), we can find an embedding in log-space. (Allender and Mahajan 2004; Datta and Prakriya 2011)

If g > 0, it is hard to produce an embedding. (Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)
A Note About Embeddings

We take the embedding as input.

- If g = 0 (*G* is planar), we can find an embedding in log-space. (Allender and Mahajan 2004; Datta and Prakriya 2011)
- If g > 0, it is hard to produce an embedding. (Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)
- Kynčl and Vyskočil (2010) reduced reachability on a fixed surface to reachability on a planar graph.

A Note About Embeddings

We take the embedding as input.

- If g = 0 (*G* is planar), we can find an embedding in log-space. (Allender and Mahajan 2004; Datta and Prakriya 2011)
- If g > 0, it is hard to produce an embedding. (Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)
- Kynčl and Vyskočil (2010) reduced reachability on a fixed surface to reachability on a planar graph.
- We can lower number of sources by increasing genus.

Given $G \in \mathcal{G}(m, g)$ with sources s_1, \ldots, s_m and $u, v \in V(G)$:

Given $G \in \mathcal{G}(m, g)$ with sources s_1, \ldots, s_m and $u, v \in V(G)$:

• For every vertex $x \in V(G) \setminus \{s_1, \ldots, s_m, u, v\}$, select an incoming edge.

Given $G \in \mathcal{G}(m, g)$ with sources s_1, \ldots, s_m and $u, v \in V(G)$:

- For every vertex $x \in V(G) \setminus \{s_1, \ldots, s_m, u, v\}$, select an incoming edge.
- 2 These edges are tree edges and form a forest.

Given $G \in \mathcal{G}(m, g)$ with sources s_1, \ldots, s_m and $u, v \in V(G)$:

- For every vertex $x \in V(G) \setminus \{s_1, \ldots, s_m, u, v\}$, select an incoming edge.
- These edges are tree edges and form a forest.
- Solution The connected components are trees rooted at s_1, \ldots, s_m, u, v :

$$T_{s_1}, \ldots, T_{s_m}, T_u, T_v.$$

(We can remove vertices in T_V)

Start with *G* (Here on the torus).

Select Tree Edges.

Remove vertices in v's tree.

Local Edges

An edge $x \rightarrow y$ is **local** if

- x and y are within the same source tree T_{s_i} , and
- The (undirected) tree path from x to y along with the edge xy is a contractible cycle.

Contractible Cycles

A cycle is **contractible** if:

- It partitions s_1, \ldots, s_m, u, v trivially.
- Ine trivial part of the surface is homeomorphic to a disk.

Local Edges

An edge $x \rightarrow y$ is **local** if

- x and y are within the same source tree T_{s_i} , and
- The (undirected) tree path from x to y along with the edge xy is a contractible cycle.

Local Edges

An edge $x \rightarrow y$ is **local** if

- x and y are within the same source tree T_{s_i} , and
- The (undirected) tree path from x to y along with the edge xy is a contractible cycle.

Identify Tree Edges.

Identify **local edges**.

Identify global edges.

Topological Equivalence

Two global edges xy and wz are topologically equivalent if

- The trees xy and wz span are the same, and
- The cycle given by the two tree paths between the endpoints is contractible.

Topological Equivalence

Two global edges xy and wz are topologically equivalent if

- The trees xy and wz span are the same, and
- The cycle given by the two tree paths between the endpoints is contractible.

Topological Equivalence

Two global edges xy and wz are topologically equivalent if

- The trees xy and wz span are the same, and
- The cycle given by the two tree paths between the endpoints is contractible.

Identify global edges.

Mark equivalence class regions $\mathcal{R}[E]$.

A compressed view.

Number of Equivalence Classes

A simple application of **Euler's Formula**:

$$n-e+f=egin{cases} 2-2g & (ext{orientable})\ 2-g & (ext{non-orientable}) \end{cases}$$

shows that the number of equivalence classes is O(m+g).

Number of Equivalence Classes

A simple application of **Euler's Formula**:

$$n-e+f=egin{cases} 2-2g & (ext{orientable})\ 2-g & (ext{non-orientable}) \end{cases}$$

shows that the number of equivalence classes is O(m+g).

We will "blow up" these equivalence classes to form our vertices of G'.

A compressed view.

1. Local reachability within a tree.

2. Global reachability within an equivalence class.

Irreducible Paths

Definition A path *P* is **irreducible** if for all vertices x, y so that *P* visits x before y and x is an ancestor of y (with respect to the forest decomposition), then *P* follows the tree edges from x to y.

Irreducible Paths

- **Definition** A path *P* is **irreducible** if for all vertices x, y so that *P* visits x before y and x is an ancestor of y (with respect to the forest decomposition), then *P* follows the tree edges from x to y.
- Irreducible paths are **nice** because they follow a single **clockwise** or **counterclockwise** direction while traveling through a source tree.

Directional Reachability Within Source Trees

The tree and local edges within a source tree, embedded on the region $\mathcal{R}[T]$ is a *single-source, multiple-sink, planar DAG*.

We can use ABCDR's algorithm as a black box (almost) to find **directional reachability** within source trees.

Directional Reachability Within Source Trees

The tree and local edges within a source tree, embedded on the region $\mathcal{R}[T]$ is a *single-source, multiple-sink, planar DAG*.

We can use ABCDR's algorithm as a black box (almost) to find **directional reachability** within source trees.

Now, what happens in global edges?

Patterns on an Equivalence Class

D. Stolee, N. V. Vinodchandran (UNL)

Patterns on an Equivalence Class

Patterns on an Equivalence Class

Patterns on an Equivalence Class

Pattern Descriptions

$\mathcal{P} = \{ \langle \mathsf{L} \mathsf{X} \mathsf{L} \rangle, \langle \mathsf{R} \mathsf{X} \mathsf{R} \rangle, \langle \mathsf{L} \mathsf{X} \mathsf{R} \rangle, \langle \mathsf{R} \mathsf{X} \mathsf{L} \rangle, \langle \mathsf{L} \mathsf{L} \rangle, \langle \mathsf{R} \mathsf{R} \rangle \}$

A pattern node (denoted x, y, or z) consists of:

- An equivalence class index i (for the ith class)
- **2** A pattern from \mathcal{P}
- An entrance tree (A or B)
- An orientation (+ or -, depending on A-tree)

Pattern Descriptions

$\mathcal{P} = \{ \langle \mathsf{L} \mathsf{X} \mathsf{L} \rangle, \langle \mathsf{R} \mathsf{X} \mathsf{R} \rangle, \langle \mathsf{L} \mathsf{X} \mathsf{R} \rangle, \langle \mathsf{R} \mathsf{X} \mathsf{L} \rangle, \langle \mathsf{L} \mathsf{L} \rangle, \langle \mathsf{R} \mathsf{R} \rangle \}$

A pattern node (denoted x, y, or z) consists of:

- An equivalence class index i (for the ith class)
- **2** A pattern from \mathcal{P}
- An entrance tree (A or B)
- An orientation (+ or -, depending on A-tree)

Subtle: Requires $O(\log(m+g))$ bits to describe a pattern node.

Pattern Descriptions

$\mathcal{P} = \{\underbrace{\langle L X L \rangle, \langle R X R \rangle}_{\text{Nesting}}, \underbrace{\langle L X R \rangle, \langle R X L \rangle, \langle L L \rangle, \langle R R \rangle}_{\text{Full}} \}$

A pattern node (denoted x, y, or z) consists of:

- An equivalence class index i (for the ith class)
- **2** A pattern from \mathcal{P}
- An entrance tree (A or B)
- An orientation (+ or -, depending on A-tree)

Subtle: Requires $O(\log(m+g))$ bits to describe a pattern node.

Structure of Full Patterns

For a pattern node **x** that uses a *full pattern* over an equivalence class E_i , there are two edges:

$e_{\mathbf{x}}^{\text{in}}$ and $e_{\mathbf{x}}^{\text{out}}$

so that a vertex *w* has an irreducible path using tree, local, and E_i edges inducing **x**, then

- w can reach $e_{\mathbf{x}}^{\text{in}}$, and
- 2 everything w can reach with such paths is reachable from $e_{\mathbf{x}}^{\text{out}}$.

Structure of Full Patterns

D. Stolee, N. V. Vinodchandran (UNL)

Space-Efficient Algorithms

CCC 2012 29 / 38

Structure of Full Patterns

D. Stolee, N. V. Vinodchandran (UNL)

Intuition

For two pattern descriptions \mathbf{x} and \mathbf{y} with matching exit-entrance, we want:

Put an edge $\boldsymbol{x} \rightarrow \boldsymbol{y}$

\iff

there is a local path from $e_{\mathbf{x}}^{\text{out}}$ to $e_{\mathbf{y}}^{\text{in}}$.

D. Stolee, N. V. Vinodchandran (UNL)

Intuition

For two pattern descriptions \mathbf{x} and \mathbf{y} with matching exit-entrance, we want:

Put an edge $\boldsymbol{x} \rightarrow \boldsymbol{y}$

\iff

there is a local path from $e_{\mathbf{x}}^{\text{out}}$ to $e_{\mathbf{y}}^{\text{in}}$.

But nesting patterns mess this up!

Structure of Nesting Patterns

For a pattern node **x** that uses a *nesting pattern* over an equivalence class E_i , we have

$$e_{\mathbf{x}}^{\mathsf{in}} = e_{\mathbf{x}}^{\mathsf{out}}$$

BUT: A vertex *w* can use the pattern without reaching e_x^{in} !

Structure of Nesting Patterns

D. Stolee, N. V. Vinodchandran (UNL)

Space-Efficient Algorithms

Structure of Nesting Patterns

W

 $e_{\mathbf{x}}^{\mathrm{in}}=e_{\mathbf{x}}^{\mathrm{out}}$

D. Stolee, N. V. Vinodchandran (UNL)

Structure of Nesting Patterns

W

$$m{e}_{f x}^{
m in}=m{e}_{f x}^{
m ou}$$

D. Stolee, N. V. Vinodchandran (UNL)

Structure of Nesting Patterns

For two pattern descriptions **x**, **y**, place an edge $\mathbf{x} \rightarrow \mathbf{y}$ if and only if there is an **adjacency certificate** $\mathbf{z}_1, \ldots, \mathbf{z}_k$ of nesting patterns so that

- Define $w_0 = \text{Head}(e_{\mathbf{x}}^{\text{out}})$ and $w_{j+1} = \text{Head}(e_{\mathbf{z}_{j+1}}^{\text{int}(w_j)})$.
- Solution For all *j* ∈ {0,..., *k* − 1}, the vertex *w_j* cannot reach $e_{z_{j+1}}^{in}$ via local paths.
- The vertex w_k can reach $e_{\mathbf{v}}^{in}$ via a local path.

Special Vertices

Two special vertices: u' and v'.

- $u' \rightarrow \mathbf{x}$ if and only if \mathbf{x} is a pattern description over an equivalence class incident to T_u and starts on T_u .
- **2** $\mathbf{x} \to \mathbf{v}'$ if and only if \mathbf{x} is a pattern description over an equivalence class incident to T_v and ends on T_v .

Now, there is a path from u to v in G if and only if there is a path from u' to v' in G'!

Main Theorem

Theorem (Stolee, Vinodchandran, '12) Given a graph $G \in \mathcal{G}(m, g)$ and $u, v \in V(G)$, we can compute in **log-space** a graph G' with vertices u', v' so that

- There is a path from u to v in G if and only if there is a path from u' to v' in G'.
- 2 G' has O(m+g) vertices.

Future Directions

Extend this construction:

Future Directions

Extend this construction:

• Length of paths from *u* to *v* in *G*'?

Future Directions

Extend this construction:

- Length of paths from *u* to *v* in *G*'?
- "Smart" forest decomposition?
Future Directions

Extend this construction:

- Length of paths from *u* to *v* in *G*'?
- "Smart" forest decomposition?
- Further compression of G'?

Future Directions

Extend this construction:

- Length of paths from *u* to *v* in *G*'?
- "Smart" forest decomposition?
- Further compression of G'?

Completely new directions?

Space-efficient algorithms for reachability in surface-embedded graphs

Derrick Stolee* N. V. Vinodchandran

University of Nebraska–Lincoln

s-dstolee1@math.unl.edu
http://www.math.unl.edu/~s-dstolee1/

CCC 2012 June 29, 2012

Supported by NSF grants DMS-0354008, DMS-0914815, and CCF-0916525, and a CCC Student Travel Grant.