
Space-efficient algorithms for reachability in
surface-embedded graphs

Derrick Stolee∗ N. V. Vinodchandran

University of Nebraska–Lincoln
s-dstolee1@math.unl.edu

http://www.math.unl.edu/∼s-dstolee1/

CCC 2012
June 29, 2012

Supported by NSF grants DMS-0354008, DMS-0914815, and CCF-0916525,
and a CCC Student Travel Grant.



L

NL



L

Reach
?
=

UL

Planar Reach



L

Reach
?
=

UL

Planar Reach

?



L

Reach
?
=

UL

Planar Reach

?

SPACE[log2 n]

Savitch



L

Reach
?
=

UL

Planar Reach

?

SPACE[log2 n]

Savitch

SPACE[log2−ε n]

?



L

Reach
?
=

UL

Planar Reach

?

SPACE[log2 n]

Savitch

SPACE[log2−ε n]

?

TISP[nO(1),n]

BFS



L

Reach
?
=

UL

Planar Reach

?

SPACE[log2 n]

Savitch

SPACE[log2−ε n]

?

TISP[nO(1), n
2O(
√

log n) ]

BBRS ’97



L

Reach
?
=

UL

Planar Reach

?

SPACE[log2 n]

Savitch

SPACE[log2−ε n]

?

TISP[nO(1), n
2O(
√

log n) ]

BBRS ’97

TISP[nO(1),n1−ε]

?



L

Reach
?
=

UL

Planar Reach

?

SPACE[log2 n]

Savitch

SPACE[log2−ε n]

?

TISP[nO(1), n
2O(
√

log n) ]

BBRS ’97

TISP[nO(1),n1−ε]

SC
?



Reachability in Surface-Embedded Graphs

Planar and Acyclic Restrictions

1 Reach for acyclic digraphs is complete for NL.

2 Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

3 What if we combine acyclic and planar?

We also bound number of

sources sinks

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3 / 38



Reachability in Surface-Embedded Graphs

Planar and Acyclic Restrictions

1 Reach for acyclic digraphs is complete for NL.

2 Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

3 What if we combine acyclic and planar?

We also bound number of

sources sinks

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3 / 38



Reachability in Surface-Embedded Graphs

Planar and Acyclic Restrictions

1 Reach for acyclic digraphs is complete for NL.

2 Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

3 What if we combine acyclic and planar?

We also bound number of

sources sinks

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3 / 38



Reachability in Surface-Embedded Graphs

Planar and Acyclic Restrictions

1 Reach for acyclic digraphs is complete for NL.

2 Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

3 What if we combine acyclic and planar?

We also bound number of

sources sinks

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3 / 38



UNDIRECTED REACH in L

(Riengold, STOC 2005)



Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
(Jakoby, Liśkiewicz, Reischuk ’06; Jakoby and Tantau ’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

1 O(log n + m)-space algorithm for m sources.
2 O(log n · log m)-space algorithm for m sources.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 5 / 38



Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
(Jakoby, Liśkiewicz, Reischuk ’06; Jakoby and Tantau ’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

1 O(log n + m)-space algorithm for m sources.
2 O(log n · log m)-space algorithm for m sources.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 5 / 38



Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
(Jakoby, Liśkiewicz, Reischuk ’06; Jakoby and Tantau ’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

1 O(log n + m)-space algorithm for m sources.
2 O(log n · log m)-space algorithm for m sources.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 5 / 38



Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
(Jakoby, Liśkiewicz, Reischuk ’06; Jakoby and Tantau ’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

1 O(log n + m)-space algorithm for m sources.
2 O(log n · log m)-space algorithm for m sources.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 5 / 38



Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
(Jakoby, Liśkiewicz, Reischuk ’06; Jakoby and Tantau ’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

1 O(log n + m)-space algorithm for m sources.
2 O(log n · log m)-space algorithm for m sources.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 5 / 38



Reachability in Surface-Embedded Graphs

Surface-embedded graphs

We also extend to graphs embedded in surfaces of low genus.

(orientable or non-orientable)

G(m,g) is the class of acyclic digraphs with at most m sources
embedded in a surface of genus at most g.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 6 / 38



Reachability in Surface-Embedded Graphs

Surface-embedded graphs

We also extend to graphs embedded in surfaces of low genus.

(orientable or non-orientable)

G(m,g) is the class of acyclic digraphs with at most m sources
embedded in a surface of genus at most g.
D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 6 / 38



Reachability in Surface-Embedded Graphs

Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order n in G(m,g)
is in

SPACE[log n + log2(m + g)].

(Run Savitch on G′)

Theorem (Log-Space) If m = g = 2
√

log n, reach for G(m,g) is in L.

(log2(2
√

log n) = log n)

Theorem (Time-Space) Reachability for graphs of order n in G(m,g)
is in

TISP[nO(1), log n + m + g].

(Run Breadth-First-Search)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 7 / 38



Reachability in Surface-Embedded Graphs

Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order n in G(m,g)
is in

SPACE[log n + log2(m + g)].

(Run Savitch on G′)

Theorem (Log-Space) If m = g = 2
√

log n, reach for G(m,g) is in L.

(log2(2
√

log n) = log n)

Theorem (Time-Space) Reachability for graphs of order n in G(m,g)
is in

TISP[nO(1), log n + m + g].

(Run Breadth-First-Search)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 7 / 38



Reachability in Surface-Embedded Graphs

Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order n in G(m,g)
is in

SPACE[log n + log2(m + g)].

(Run Savitch on G′)

Theorem (Log-Space) If m = g = 2
√

log n, reach for G(m,g) is in L.

(log2(2
√

log n) = log n)

Theorem (Time-Space) Reachability for graphs of order n in G(m,g)
is in

TISP[nO(1), log n + m + g].

(Run Breadth-First-Search)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 7 / 38



Reachability in Surface-Embedded Graphs

Reduction with Compression

Theorem (Stolee, Vinodchandran, ’12) Given a graph G ∈ G(m,g)
and u, v ∈ V (G), we can compute in log-space a graph G′ with
vertices u′, v ′ so that

1 There is a path from u to v in G if and only if there is a path from
u′ to v ′ in G′.

2 G′ has O(m + g) vertices.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 8 / 38



Reachability in Surface-Embedded Graphs

Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order n in G(m,g)
is in

SPACE[log n + log2(m + g)].

(Run Savitch on G′)

Theorem (Log-Space) If m = g = 2
√

log n, reach for G(m,g) is in L.

(log2(2
√

log n) = log n)

Theorem (Time-Space) Reachability for graphs of order n in G(m,g)
is in

TISP[nO(1), log n + m + g].

(Run Breadth-First-Search)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 9 / 38



Reachability in Surface-Embedded Graphs

Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order n in G(m,g)
is in

SPACE[log n + log2(m + g)].

(Run Savitch on G′)

Theorem (Log-Space) If m = g = 2
√

log n, reach for G(m,g) is in L.

(log2(2
√

log n) = log n)

Theorem (Time-Space) Reachability for graphs of order n in G(m,g)
is in

TISP
[
nO(1), log n +

m + g
2O(
√

m+g)

]
.

(Run BBRS)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 10 / 38















Reachability in Surface-Embedded Graphs

A Note About Embeddings

We take the embedding as input.

1 If g = 0 (G is planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

2 If g > 0, it is hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

3 Kynčl and Vyskočil (2010) reduced reachability on a fixed surface
to reachability on a planar graph.

4 We can lower number of sources by increasing genus.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12 / 38



Reachability in Surface-Embedded Graphs

A Note About Embeddings

We take the embedding as input.

1 If g = 0 (G is planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

2 If g > 0, it is hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

3 Kynčl and Vyskočil (2010) reduced reachability on a fixed surface
to reachability on a planar graph.

4 We can lower number of sources by increasing genus.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12 / 38



Reachability in Surface-Embedded Graphs

A Note About Embeddings

We take the embedding as input.

1 If g = 0 (G is planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

2 If g > 0, it is hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

3 Kynčl and Vyskočil (2010) reduced reachability on a fixed surface
to reachability on a planar graph.

4 We can lower number of sources by increasing genus.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12 / 38



Reachability in Surface-Embedded Graphs

A Note About Embeddings

We take the embedding as input.

1 If g = 0 (G is planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

2 If g > 0, it is hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

3 Kynčl and Vyskočil (2010) reduced reachability on a fixed surface
to reachability on a planar graph.

4 We can lower number of sources by increasing genus.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12 / 38



Forest Decomposition and Edge Classification

Forest Decomposition

Given G ∈ G(m,g) with sources s1, . . . , sm and u, v ∈ V (G):

1 For every vertex x ∈ V (G) \ {s1, . . . , sm,u, v}, select an
incoming edge.

2 These edges are tree edges and form a forest.
3 The connected components are trees rooted at s1, . . . , sm,u, v :

Ts1 , . . . ,Tsm ,Tu,Tv .

(We can remove vertices in Tv )

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13 / 38



Forest Decomposition and Edge Classification

Forest Decomposition

Given G ∈ G(m,g) with sources s1, . . . , sm and u, v ∈ V (G):

1 For every vertex x ∈ V (G) \ {s1, . . . , sm,u, v}, select an
incoming edge.

2 These edges are tree edges and form a forest.
3 The connected components are trees rooted at s1, . . . , sm,u, v :

Ts1 , . . . ,Tsm ,Tu,Tv .

(We can remove vertices in Tv )

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13 / 38



Forest Decomposition and Edge Classification

Forest Decomposition

Given G ∈ G(m,g) with sources s1, . . . , sm and u, v ∈ V (G):

1 For every vertex x ∈ V (G) \ {s1, . . . , sm,u, v}, select an
incoming edge.

2 These edges are tree edges and form a forest.

3 The connected components are trees rooted at s1, . . . , sm,u, v :

Ts1 , . . . ,Tsm ,Tu,Tv .

(We can remove vertices in Tv )

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13 / 38



Forest Decomposition and Edge Classification

Forest Decomposition

Given G ∈ G(m,g) with sources s1, . . . , sm and u, v ∈ V (G):

1 For every vertex x ∈ V (G) \ {s1, . . . , sm,u, v}, select an
incoming edge.

2 These edges are tree edges and form a forest.
3 The connected components are trees rooted at s1, . . . , sm,u, v :

Ts1 , . . . ,Tsm ,Tu,Tv .

(We can remove vertices in Tv )

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13 / 38



Start with G (Here on the torus).

u

v

s1

s2

s3

s4

s5

s6



Select Tree Edges.

u

v

s1

s2

s3

s4

s5

s6



Remove vertices in v ’s tree.

u

v

s1

s2

s3

s4

s5

s6



Forest Decomposition and Edge Classification

Local Edges

An edge x → y is local if

1 x and y are within the same source tree Tsi , and
2 The (undirected) tree path from x to y along with the edge xy is a

contractible cycle.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 15 / 38



Forest Decomposition and Edge Classification

Contractible Cycles

A cycle is contractible if:

1 It partitions s1, . . . , sm,u, v trivially.
2 The trivial part of the surface is homeomorphic to a disk.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 16 / 38



Forest Decomposition and Edge Classification

Local Edges

An edge x → y is local if

1 x and y are within the same source tree Tsi , and
2 The (undirected) tree path from x to y along with the edge xy is a

contractible cycle.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 17 / 38



Forest Decomposition and Edge Classification

Local Edges

An edge x → y is local if

1 x and y are within the same source tree Tsi , and
2 The (undirected) tree path from x to y along with the edge xy is a

contractible cycle.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 17 / 38



Identify Tree Edges.

u

v

s1

s2

s3

s4

s5

s6



Identify local edges.

u

v

s1

s2

s3

s4

s5

s6



Mark tree regions R[T ].

u

v

s1

s2

s3

s4

s5

s6



Identify global edges.

u

v

s1

s2

s3

s4

s5

s6



Topological Equivalence

Topological Equivalence

Two global edges xy and wz are topologically equivalent if

1 The trees xy and wz span are the same, and
2 The cycle given by the two tree paths between the endpoints is

contractible.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 19 / 38



Topological Equivalence

Topological Equivalence

Two global edges xy and wz are topologically equivalent if

1 The trees xy and wz span are the same, and
2 The cycle given by the two tree paths between the endpoints is

contractible.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 19 / 38



Topological Equivalence

Topological Equivalence

Two global edges xy and wz are topologically equivalent if

1 The trees xy and wz span are the same, and
2 The cycle given by the two tree paths between the endpoints is

contractible.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 19 / 38



Identify global edges.

u

v

s1

s2

s3

s4

s5

s6



Mark equivalence class regions R[E ].

u

v

s1

s2

s3

s4

s5

s6



A compressed view.

u

v

s1

s2

s3

s4

s5

s6



Topological Equivalence

Number of Equivalence Classes

A simple application of Euler’s Formula:

n− e + f =

{
2− 2g (orientable)
2− g (non-orientable)

shows that the number of equivalence classes is O(m + g).

We will “blow up” these equivalence classes to form our vertices of G′.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 21 / 38



Topological Equivalence

Number of Equivalence Classes

A simple application of Euler’s Formula:

n− e + f =

{
2− 2g (orientable)
2− g (non-orientable)

shows that the number of equivalence classes is O(m + g).

We will “blow up” these equivalence classes to form our vertices of G′.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 21 / 38



A compressed view.

u

v

s1

s2

s3

s4

s5

s6



1. Local reachability within a tree.

u

v

s1

s2

s3

s4

s5

s6



2. Global reachability within an equivalence class.

u

v

s1

s2

s3

s4

s5

s6



Irreducible Paths and Source Trees

Irreducible Paths

Definition A path P is irreducible if for all vertices x , y so that P visits
x before y and x is an ancestor of y (with respect to the forest
decomposition), then P follows the tree edges from x to y .

Irreducible paths are nice because they follow a single clockwise or
counterclockwise direction while traveling through a source tree.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 23 / 38



Irreducible Paths and Source Trees

Irreducible Paths

Definition A path P is irreducible if for all vertices x , y so that P visits
x before y and x is an ancestor of y (with respect to the forest
decomposition), then P follows the tree edges from x to y .

Irreducible paths are nice because they follow a single clockwise or
counterclockwise direction while traveling through a source tree.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 23 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24 / 38



Irreducible Paths and Source Trees

Directional Reachability Within Source Trees

The tree and local edges within a source tree, embedded on the region
R[T ] is a single-source, multiple-sink, planar DAG.

We can use ABCDR’s algorithm as a black box (almost) to find
directional reachability within source trees.

Now, what happens in global edges?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 25 / 38



Irreducible Paths and Source Trees

Directional Reachability Within Source Trees

The tree and local edges within a source tree, embedded on the region
R[T ] is a single-source, multiple-sink, planar DAG.

We can use ABCDR’s algorithm as a black box (almost) to find
directional reachability within source trees.

Now, what happens in global edges?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 25 / 38



Patterns

Patterns on an Equivalence Class

L

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 26 / 38



Patterns

Patterns on an Equivalence Class

L L

X

L

L X L
D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 26 / 38



Patterns

Patterns on an Equivalence Class

L L

X

L

L X L

L

X

R

L X R
D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 26 / 38



Patterns

Patterns on an Equivalence Class

L L

X

L

L X L

L

X

R

L X R

L L

L L
D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 26 / 38



Patterns

Pattern Descriptions

P = {〈L X L〉, 〈R X R〉, 〈L X R〉, 〈R X L〉, 〈L L〉, 〈R R〉}

A pattern node (denoted x, y, or z) consists of:

1 An equivalence class index i (for the i th class)
2 A pattern from P
3 An entrance tree (A or B)
4 An orientation (+ or −, depending on A-tree)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 27 / 38



Patterns

Pattern Descriptions

P = {〈L X L〉, 〈R X R〉, 〈L X R〉, 〈R X L〉, 〈L L〉, 〈R R〉}

A pattern node (denoted x, y, or z) consists of:

1 An equivalence class index i (for the i th class)
2 A pattern from P
3 An entrance tree (A or B)
4 An orientation (+ or −, depending on A-tree)

Subtle: Requires O(log(m + g)) bits to describe a pattern node.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 27 / 38



Patterns

Pattern Descriptions

P = {〈L X L〉, 〈R X R〉︸ ︷︷ ︸
Nesting

, 〈L X R〉, 〈R X L〉, 〈L L〉, 〈R R〉︸ ︷︷ ︸
Full

}

A pattern node (denoted x, y, or z) consists of:

1 An equivalence class index i (for the i th class)
2 A pattern from P
3 An entrance tree (A or B)
4 An orientation (+ or −, depending on A-tree)

Subtle: Requires O(log(m + g)) bits to describe a pattern node.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 27 / 38



Patterns

Structure of Full Patterns

For a pattern node x that uses a full pattern over an equivalence class
Ei , there are two edges:

ein
x and eout

x

so that a vertex w has an irreducible path using tree, local, and Ei
edges inducing x, then

1 w can reach ein
x , and

2 everything w can reach with such paths is reachable from eout
x .

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 28 / 38



Patterns

Structure of Full Patterns

L X

R

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 29 / 38



Patterns

Structure of Full Patterns

w ein
x

eout
x

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 29 / 38



Patterns

Intuition

For two pattern descriptions x and y with matching exit-entrance, we
want:

Put an edge x→ y

⇐⇒
there is a local path from eout

x to ein
y .

But nesting patterns mess this up!

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 30 / 38



Patterns

Intuition

For two pattern descriptions x and y with matching exit-entrance, we
want:

Put an edge x→ y

⇐⇒
there is a local path from eout

x to ein
y .

But nesting patterns mess this up!

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 30 / 38



Patterns

Structure of Nesting Patterns

For a pattern node x that uses a nesting pattern over an equivalence
class Ei , we have

ein
x = eout

x

BUT: A vertex w can use the pattern without reaching ein
x !

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 31 / 38



Patterns

Structure of Nesting Patterns

R
X

R

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32 / 38



Patterns

Structure of Nesting Patterns

w

ein
x = eout

x

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32 / 38



Patterns

Structure of Nesting Patterns

w

ein
x = eout

x

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32 / 38



Patterns

Structure of Nesting Patterns

w

eint(w)
x

ein
x = eout

x

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32 / 38



The Reduced Graph

Adjacency Certificates

For two pattern descriptions x, y, place an edge x→ y if and only if
there is an adjacency certificate z1, . . . , zk of nesting patterns so that

1 Define w0 = Head(eout
x ) and wj+1 = Head(eint(wj )

zj+1
).

2 For all j ∈ {0, . . . , k − 1}, the vertex wj cannot reach ein
zj+1

via local
paths.

3 The vertex wk can reach ein
y via a local path.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 33 / 38



The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34 / 38



The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34 / 38



The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34 / 38



The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0

w1

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34 / 38



The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0

w1 w2

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34 / 38



The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0

w1 w2

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34 / 38



The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0

w1 w2

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34 / 38



The Reduced Graph

Special Vertices

Two special vertices: u′ and v ′.

1 u′ → x if and only if x is a pattern description over an equivalence
class incident to Tu and starts on Tu.

2 x→ v ′ if and only if x is a pattern description over an equivalence
class incident to Tv and ends on Tv .

Now, there is a path from u to v in G if and only if there is a path from
u′ to v ′ in G′!

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 35 / 38



The Reduced Graph

Main Theorem

Theorem (Stolee, Vinodchandran, ’12) Given a graph G ∈ G(m,g)
and u, v ∈ V (G), we can compute in log-space a graph G′ with
vertices u′, v ′ so that

1 There is a path from u to v in G if and only if there is a path from
u′ to v ′ in G′.

2 G′ has O(m + g) vertices.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 36 / 38



Future Work

Future Directions

Extend this construction:

Length of paths from u to v in G′?
“Smart” forest decomposition?
Further compression of G′?

Completely new directions?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37 / 38



Future Work

Future Directions

Extend this construction:

Length of paths from u to v in G′?

“Smart” forest decomposition?
Further compression of G′?

Completely new directions?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37 / 38



Future Work

Future Directions

Extend this construction:

Length of paths from u to v in G′?
“Smart” forest decomposition?

Further compression of G′?

Completely new directions?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37 / 38



Future Work

Future Directions

Extend this construction:

Length of paths from u to v in G′?
“Smart” forest decomposition?
Further compression of G′?

Completely new directions?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37 / 38



Future Work

Future Directions

Extend this construction:

Length of paths from u to v in G′?
“Smart” forest decomposition?
Further compression of G′?

Completely new directions?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37 / 38



Space-efficient algorithms for reachability in
surface-embedded graphs

Derrick Stolee∗ N. V. Vinodchandran

University of Nebraska–Lincoln
s-dstolee1@math.unl.edu

http://www.math.unl.edu/∼s-dstolee1/

CCC 2012
June 29, 2012

Supported by NSF grants DMS-0354008, DMS-0914815, and CCF-0916525,
and a CCC Student Travel Grant.


