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Reachability in Surface-Embedded Graphs

Planar and Acyclic Restrictions

1 Reach for acyclic digraphs is complete for NL.

2 Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

3 What if we combine acyclic and planar?

We also bound number of

sources sinks
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UNDIRECTED REACH in L

(Riengold, STOC 2005)



Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
(Jakoby, Liśkiewicz, Reischuk ’06; Jakoby and Tantau ’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

1 O(log n + m)-space algorithm for m sources.
2 O(log n · log m)-space algorithm for m sources.
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(Jakoby, Liśkiewicz, Reischuk ’06; Jakoby and Tantau ’07)

2 Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

3 Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, ’09)

4 Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

1 O(log n + m)-space algorithm for m sources.
2 O(log n · log m)-space algorithm for m sources.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 5 / 38



Reachability in Surface-Embedded Graphs

Planar + Acyclic Reachability in Log-Space

1 Series-parallel graphs
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Reachability in Surface-Embedded Graphs

Surface-embedded graphs

We also extend to graphs embedded in surfaces of low genus.

(orientable or non-orientable)

G(m,g) is the class of acyclic digraphs with at most m sources
embedded in a surface of genus at most g.
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Reachability in Surface-Embedded Graphs

Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order n in G(m,g)
is in

SPACE[log n + log2(m + g)].

(Run Savitch on G′)

Theorem (Log-Space) If m = g = 2
√

log n, reach for G(m,g) is in L.

(log2(2
√

log n) = log n)

Theorem (Time-Space) Reachability for graphs of order n in G(m,g)
is in

TISP[nO(1), log n + m + g].

(Run Breadth-First-Search)
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Reachability in Surface-Embedded Graphs

Reduction with Compression

Theorem (Stolee, Vinodchandran, ’12) Given a graph G ∈ G(m,g)
and u, v ∈ V (G), we can compute in log-space a graph G′ with
vertices u′, v ′ so that

1 There is a path from u to v in G if and only if there is a path from
u′ to v ′ in G′.

2 G′ has O(m + g) vertices.
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Reachability in Surface-Embedded Graphs

A Note About Embeddings

We take the embedding as input.

1 If g = 0 (G is planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

2 If g > 0, it is hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

3 Kynčl and Vyskočil (2010) reduced reachability on a fixed surface
to reachability on a planar graph.

4 We can lower number of sources by increasing genus.
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Forest Decomposition and Edge Classification

Forest Decomposition

Given G ∈ G(m,g) with sources s1, . . . , sm and u, v ∈ V (G):

1 For every vertex x ∈ V (G) \ {s1, . . . , sm,u, v}, select an
incoming edge.

2 These edges are tree edges and form a forest.
3 The connected components are trees rooted at s1, . . . , sm,u, v :

Ts1 , . . . ,Tsm ,Tu,Tv .

(We can remove vertices in Tv )
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Start with G (Here on the torus).

u
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Select Tree Edges.
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Remove vertices in v ’s tree.

u

v

s1

s2

s3

s4

s5

s6



Forest Decomposition and Edge Classification

Local Edges

An edge x → y is local if

1 x and y are within the same source tree Tsi , and
2 The (undirected) tree path from x to y along with the edge xy is a

contractible cycle.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 15 / 38



Forest Decomposition and Edge Classification

Contractible Cycles

A cycle is contractible if:

1 It partitions s1, . . . , sm,u, v trivially.
2 The trivial part of the surface is homeomorphic to a disk.
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Identify Tree Edges.
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Identify local edges.
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Mark tree regions R[T ].
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Identify global edges.

u

v
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Topological Equivalence

Topological Equivalence

Two global edges xy and wz are topologically equivalent if

1 The trees xy and wz span are the same, and
2 The cycle given by the two tree paths between the endpoints is

contractible.
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Identify global edges.

u
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Mark equivalence class regions R[E ].
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A compressed view.
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Topological Equivalence

Number of Equivalence Classes

A simple application of Euler’s Formula:

n− e + f =

{
2− 2g (orientable)
2− g (non-orientable)

shows that the number of equivalence classes is O(m + g).

We will “blow up” these equivalence classes to form our vertices of G′.
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A compressed view.
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1. Local reachability within a tree.
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2. Global reachability within an equivalence class.
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Irreducible Paths and Source Trees

Irreducible Paths

Definition A path P is irreducible if for all vertices x , y so that P visits
x before y and x is an ancestor of y (with respect to the forest
decomposition), then P follows the tree edges from x to y .

Irreducible paths are nice because they follow a single clockwise or
counterclockwise direction while traveling through a source tree.
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Irreducible Paths and Source Trees

Irreducible Paths in a Source Tree

s
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Irreducible Paths and Source Trees

Directional Reachability Within Source Trees

The tree and local edges within a source tree, embedded on the region
R[T ] is a single-source, multiple-sink, planar DAG.

We can use ABCDR’s algorithm as a black box (almost) to find
directional reachability within source trees.

Now, what happens in global edges?
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Patterns

Patterns on an Equivalence Class

L
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Patterns

Patterns on an Equivalence Class

L L

X

L

L X L

L

X

R

L X R

L L

L L
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Patterns

Pattern Descriptions

P = {〈L X L〉, 〈R X R〉, 〈L X R〉, 〈R X L〉, 〈L L〉, 〈R R〉}

A pattern node (denoted x, y, or z) consists of:

1 An equivalence class index i (for the i th class)
2 A pattern from P
3 An entrance tree (A or B)
4 An orientation (+ or −, depending on A-tree)
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P = {〈L X L〉, 〈R X R〉︸ ︷︷ ︸
Nesting

, 〈L X R〉, 〈R X L〉, 〈L L〉, 〈R R〉︸ ︷︷ ︸
Full

}

A pattern node (denoted x, y, or z) consists of:

1 An equivalence class index i (for the i th class)
2 A pattern from P
3 An entrance tree (A or B)
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Patterns

Structure of Full Patterns

For a pattern node x that uses a full pattern over an equivalence class
Ei , there are two edges:

ein
x and eout

x

so that a vertex w has an irreducible path using tree, local, and Ei
edges inducing x, then

1 w can reach ein
x , and

2 everything w can reach with such paths is reachable from eout
x .
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Structure of Full Patterns

w ein
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Patterns

Intuition

For two pattern descriptions x and y with matching exit-entrance, we
want:

Put an edge x→ y

⇐⇒
there is a local path from eout

x to ein
y .

But nesting patterns mess this up!
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Patterns

Structure of Nesting Patterns

For a pattern node x that uses a nesting pattern over an equivalence
class Ei , we have

ein
x = eout

x

BUT: A vertex w can use the pattern without reaching ein
x !
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Patterns

Structure of Nesting Patterns

R
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Patterns

Structure of Nesting Patterns

w

eint(w)
x

ein
x = eout

x
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The Reduced Graph

Adjacency Certificates

For two pattern descriptions x, y, place an edge x→ y if and only if
there is an adjacency certificate z1, . . . , zk of nesting patterns so that

1 Define w0 = Head(eout
x ) and wj+1 = Head(eint(wj )

zj+1
).

2 For all j ∈ {0, . . . , k − 1}, the vertex wj cannot reach ein
zj+1

via local
paths.

3 The vertex wk can reach ein
y via a local path.
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The Reduced Graph

Adjacency Certificates

x y1 y2 y3 y4

z1 z2

w0
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The Reduced Graph

Special Vertices

Two special vertices: u′ and v ′.

1 u′ → x if and only if x is a pattern description over an equivalence
class incident to Tu and starts on Tu.

2 x→ v ′ if and only if x is a pattern description over an equivalence
class incident to Tv and ends on Tv .

Now, there is a path from u to v in G if and only if there is a path from
u′ to v ′ in G′!
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The Reduced Graph

Main Theorem

Theorem (Stolee, Vinodchandran, ’12) Given a graph G ∈ G(m,g)
and u, v ∈ V (G), we can compute in log-space a graph G′ with
vertices u′, v ′ so that

1 There is a path from u to v in G if and only if there is a path from
u′ to v ′ in G′.

2 G′ has O(m + g) vertices.
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Future Work

Future Directions

Extend this construction:

Length of paths from u to v in G′?
“Smart” forest decomposition?
Further compression of G′?

Completely new directions?
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