Space-efficient algorithms for reachability in

surface-embedded graphs

Derrick Stolee* N. V. Vinodchandran

University of Nebraska—Lincoln
s-dstoleel@math.unl.edu
http://www.math.unl.edu/~s-dstoleel/

CCC 2012
June 29, 2012

Supported by NSF grants DMS-0354008, DMS-0914815, and CCF-0916525,
and a CCC Student Travel Grant.



NL




Planar Reach

L



Planar Reach

D9



SPACE(log? n]

Savitch

Planar Reach

D9



SPACE(log? n]

SPACE[log® * n]

Planar Reach

D9



SPACE(log? n] TISP[n°"), n]

BFS

SPACE[log® * n]

Planar Reach

D9



SPACE[log? ] TISP[n°"), o]

Savitch BBRS 97

SPACE(log® © n]

Planar Reach

D9



SPACE(log? n] TISP[n°0)

Savitch BBRS 97

SPACE[log® * n] TISP[n®

Reach

Planar Reach

D9

n‘l e]



SPACE[log? TISP[n°Y), 5

Savitch BBRS 97

SPACE[log® * n] TISP[n®M), n'—¢]

Reach

9
] Planar Riﬁ/;
2



_ Reachability in Surface-Embedded Graphs
Planar and Acyclic Restrictions

@ Reach for acyclic digraphs is complete for NL.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3/38



_ Reachability in Surface-Embedded Graphs
Planar and Acyclic Restrictions

@ Reach for acyclic digraphs is complete for NL.

© Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3/38



_ Reachability in Surface-Embedded Graphs
Planar and Acyclic Restrictions

@ Reach for acyclic digraphs is complete for NL.

© Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

© What if we combine acyclic and planar?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3/38



_ Reachability in Surface-Embedded Graphs
Planar and Acyclic Restrictions

@ Reach for acyclic digraphs is complete for NL.

© Reach for planar digraphs is in UL, but we believe UL = NL.
(See Reinhardt and Allender, 2002)

© What if we combine acyclic and planar?

We also bound number of

sources sinks

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 3/38



UNDIRECTED REACH in L




_ Reachability in Surface-Embedded Graphs
Planar + Acyclic Reachability in Log-Space

@ Series-parallel graphs
(Jakoby, Liskiewicz, Reischuk '06; Jakoby and Tantau ’'07)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 5/38



_ Reachability in Surface-Embedded Graphs
Planar + Acyclic Reachability in Log-Space

@ Series-parallel graphs
(Jakoby, Liskiewicz, Reischuk '06; Jakoby and Tantau ’'07)

@ Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, '09)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012

5/38



_ Reachability in Surface-Embedded Graphs
Planar + Acyclic Reachability in Log-Space

@ Series-parallel graphs
(Jakoby, Liskiewicz, Reischuk '06; Jakoby and Tantau ’'07)

@ Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, '09)

© Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, '09)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012

5/38



_ Reachability in Surface-Embedded Graphs
Planar + Acyclic Reachability in Log-Space

@ Series-parallel graphs
(Jakoby, Liskiewicz, Reischuk '06; Jakoby and Tantau ’'07)

@ Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, '09)

© Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, '09)

© Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012

5/38



_ Reachability in Surface-Embedded Graphs
Planar + Acyclic Reachability in Log-Space

@ Series-parallel graphs
(Jakoby, Liskiewicz, Reischuk '06; Jakoby and Tantau ’'07)

@ Single-source Single-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, '09)

© Single-source Multiple-Sink Planar DAGs
(Allender, Barrington, Chakraborty, Datta, Roy, '09)

© Log-source Multiple-Sink Planar DAGs
(Stolee, Bourke, Vinodchandran, ’10)

(log n+ m)-space algorithm for m sources.
(log n - log m)-space algorithm for m sources.

Q0
@ 0

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012

5/38



_ Reachability in Surface-Embedded Graphs
Surface-embedded graphs

We also extend to graphs embedded in surfaces of low genus.

(orientable or non-orientable)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 6/38



_ Reachability in Surface-Embedded Graphs
Surface-embedded graphs

We also extend to graphs embedded in surfaces of low genus.

(orientable or non-orientable)

G(m, g) is the class of acyclic digraphs with at most m sources
embedded in a surface of genus at most g.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 6/38



_ Reachability in Surface-Embedded Graphs
Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order nin G(m, g)
is in

SPACE(log n + log?(m + g)].

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 7138



_ Reachability in Surface-Embedded Graphs
Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order nin G(m, g)
is in
SPACE(log n + log?(m + g)].

Theorem (Log-Space) If m = g = 2v/°9" reach for G(m, g) is in L.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 7138



_ Reachability in Surface-Embedded Graphs
Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order nin G(m, g)
is in
SPACE(log n + log?(m + g)].

Theorem (Log-Space) If m = g = 2v/°9" reach for G(m, g) is in L.

Theorem (Time-Space) Reachability for graphs of order nin G(m, g)
is in

TISP[n°") logn+ m+ g.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 7138



_ Reachability in Surface-Embedded Graphs
Reduction with Compression

Theorem (Stolee, Vinodchandran, '12) Given a graph G € G(m, g)
and u, v € V(G), we can compute in log-space a graph G’ with
vertices U', v/ so that

@ There is a path from u to v in G if and only if there is a path from
utovin@G.
@ G’ has O(m+ g) vertices.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 8/38



_ Reachability in Surface-Embedded Graphs
Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order nin G(m, g)
is in
SPACE(log n + log?(m + g)].
(Run Savitch on G')
Theorem (Log-Space) If m = g = 2v/°9" reach for G(m, g) is in L.
(log?(2v"°97™) = log )
Theorem (Time-Space) Reachability for graphs of order nin G(m, g)
is in
TISP[n°™") logn+ m+ g.
(Run Breadth-First-Search)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 9/38



_ Reachability in Surface-Embedded Graphs
Our Results (Stolee, Vinodchandran, ’12)

Theorem (Sub-Savitch) Reachability for graphs of order nin G(m, g)
o SPACE(log n+ log?(m + g)].
(Run Savitch on G')
Theorem (Log-Space) If m = g = 2V°9" reach for G(m, g) is in L.
(log*(2V1°97) = log n)
Theorem (Time-Space) Reachability for graphs of order nin G(m, g)
is in ng

o(1) 0Ty
TISP |n ,Iogn+20(m) .

(Run BBRS)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 10/38


















s

Y s
':é
=AW\



_ Reachability in Surface-Embedded Graphs
A Note About Embeddings

We take the embedding as input.

@ If g =0 (Gis planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12/38



_ Reachability in Surface-Embedded Graphs
A Note About Embeddings

We take the embedding as input.

@ If g =0 (Gis planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

@ If g > 0, itis hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12/38



_ Reachability in Surface-Embedded Graphs
A Note About Embeddings

We take the embedding as input.

@ If g =0 (Gis planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

@ If g > 0, itis hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

© Kyncl and Vyskocil (2010) reduced reachability on a fixed surface
to reachability on a planar graph.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12/38



_ Reachability in Surface-Embedded Graphs
A Note About Embeddings

We take the embedding as input.

@ If g =0 (Gis planar), we can find an embedding in log-space.
(Allender and Mahajan 2004; Datta and Prakriya 2011)

@ If g > 0, itis hard to produce an embedding.
(Thomassen 1989; Chen, Kanchi, and Kanevsky 1997)

© Kyncl and Vyskocil (2010) reduced reachability on a fixed surface
to reachability on a planar graph.

© We can lower number of sources by increasing genus.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 12/38



Forest Decomposition

Given G € G(m, g) with sources s1,...,spand u, v € V(G):

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13/38



Forest Decomposition

Given G € G(m, g) with sources s1,...,spand u, v € V(G):

@ Forevery vertex x € V(G) \ {s1,...,Sm, u, v}, select an
incoming edge.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13/38



Forest Decomposition

Given G € G(m, g) with sources s, ..., smand u,v € V(G):
@ Forevery vertex x € V(G) \ {s1,..., Sm, U, v}, select an

incoming edge.
© These edges are tree edges and form a forest.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13/38



Forest Decomposition

Given G € G(m, g) with sources s1,...,spand u, v € V(G):

@ Forevery vertex x € V(G) \ {s1,...,Sm, u, v}, select an
incoming edge.

© These edges are tree edges and form a forest.
© The connected components are trees rooted at sy, ..., Sy, U, V:

Tsyo oo Tsyn Ty, Ty

(We can remove vertices in Ty)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 13/38



S1

Start with G (Here on the torus).




Select Tree Edges.







Local Edges

An edge x — y is local if

@ x and y are within the same source tree T, and

@ The (undirected) tree path from x to y along with the edge xy is a
contractible cycle.

-

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 15/38



Contractible Cycles

A cycle is contractible if:

@ |t partitions sy, ..., sm, u, v trivially.
@ The trivial part of the surface is homeomorphic to a disk.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 16/38



Local Edges

An edge x — y is local if

@ x and y are within the same source tree T, and

@ The (undirected) tree path from x to y along with the edge xy is a
contractible cycle.

-

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 17/38



Local Edges

An edge x — y is local if
@ x and y are within the same source tree T, and

@ The (undirected) tree path from x to y along with the edge xy is a
contractible cycle.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 17/38












Identify global edges.




Topological Equivalence

Two global edges xy and wz are topologically equivalent if

@ The trees xy and wz span are the same, and

© The cycle given by the two tree paths between the endpoints is
contractible.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 19/38



Topological Equivalence

Two global edges xy and wz are topologically equivalent if

@ The trees xy and wz span are the same, and

© The cycle given by the two tree paths between the endpoints is
contractible.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 19/38



Topological Equivalence

Two global edges xy and wz are topologically equivalent if

@ The trees xy and wz span are the same, and

© The cycle given by the two tree paths between the endpoints is
contractible.

\— /

|

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 19/38



Identify global edges.




class regions R[E].

Mark equivalence







Number of Equivalence Classes

A simple application of Euler’s Formula:

2 —2g (orientable)
n—e+f= )
2—g (non-orientable)

shows that the number of equivalence classes is O(m + g).

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012

21/38



Number of Equivalence Classes

A simple application of Euler’s Formula:

2 —2g (orientable)
n—e+f= )
2—g (non-orientable)

shows that the number of equivalence classes is O(m + g).

We will “blow up” these equivalence classes to form our vertices of G'.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 21/38









2. Global reachability within an equivalence class.




Irreducible Paths

Definition A path P is irreducible if for all vertices x, y so that P visits
x before y and x is an ancestor of y (with respect to the forest
decomposition), then P follows the tree edges from x to y.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 23/38



Irreducible Paths

Definition A path P is irreducible if for all vertices x, y so that P visits
x before y and x is an ancestor of y (with respect to the forest
decomposition), then P follows the tree edges from x to y.

Irreducible paths are nice because they follow a single clockwise or
counterclockwise direction while traveling through a source tree.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 23/38



Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL Space-Efficient Algorithms CCC 2012 24/38



Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL Space-Efficient Algorithms CCC 2012 24/38



Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24/38



Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24/38



Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24/38



Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 24/38



Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL Space-Efficient Algorithms CCC 2012 24/38




Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL Space-Efficient Algorithms CCC 2012 24/38




Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL Space-Efficient Algorithms CCC 2012 24/38




Irreducible Paths in a Source Tree

D. Stolee, N. V. Vinodchandran (UNL Space-Efficient Algorithms CCC 2012 24/38




Directional Reachability Within Source Trees

The tree and local edges within a source tree, embedded on the region
R|[T] is a single-source, multiple-sink, planar DAG.

We can use ABCDR’s algorithm as a black box (almost) to find
directional reachability within source trees.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 25/38



Directional Reachability Within Source Trees

The tree and local edges within a source tree, embedded on the region
R|[T] is a single-source, multiple-sink, planar DAG.

We can use ABCDR’s algorithm as a black box (almost) to find
directional reachability within source trees.

Now, what happens in global edges?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 25/38



Patterns on an Equivalence Class

l

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 26/38




Patterns on an Equivalence Class

L L
X
L

LXL

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms

CCC 2012

26/38



Patterns on an Equivalence Class

L L L
X X
L R

LXL LXR

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 26/38




Patterns on an Equivalence Class

LXL LXR LL

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012

L L L L L
X X
L R

26/38



Pattern Descriptions

P = {(LXL), (RXR),(LXR), (RXL),(LL), (RR)}

A pattern node (denoted x, y, or z) consists of:

@ An equivalence class index i (for the ith class)
@ A pattern from P

© An entrance tree (A or B)

© An orientation (+ or —, depending on A-tree)

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 27/38



Pattern Descriptions

P = {(LXL), (RXR),(LXR), (RXL),(LL), (RR)}

A pattern node (denoted x, y, or z) consists of:

@ An equivalence class index i (for the ith class)
@ A pattern from P

© An entrance tree (A or B)

© An orientation (+ or —, depending on A-tree)

Subtle: Requires O(log(m+ g)) bits to describe a pattern node.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 27/38



Pattern Descriptions

P ={{LXL), (RXR), (LXR), (RXL),(LL), (RR)}

)
7 7

Ne;?ing FKII

A pattern node (denoted x, y, or z) consists of:

@ An equivalence class index i (for the ith class)
@ A pattern from P

© An entrance tree (A or B)

© An orientation (+ or —, depending on A-tree)

Subtle: Requires O(log(m + g)) bits to describe a pattern node.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 27/38



Structure of Full Patterns

For a pattern node x that uses a full pattern over an equivalence class
E;, there are two edges:

e and e

so that a vertex w has an irreducible path using tree, local, and E;
edges inducing x, then

@ w can reach €/, and
@ everything w can reach with such paths is reachable from e3".

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 28/38



Structure of Full Patterns

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 29/38



Structure of Full Patterns

eout

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 29/38



Intuition

For two pattern descriptions x and y with matching exit-entrance, we
want:

Putanedgex — vy
<~

there is a local path from e to e‘;‘.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 30/38



Intuition

For two pattern descriptions x and y with matching exit-entrance, we
want:

Putanedgex — vy
<~

there is a local path from e to e‘;‘.

But nesting patterns mess this up!

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 30/38



Structure of Nesting Patterns

For a pattern node x that uses a nesting pattern over an equivalence

class E;j, we have

el = eut

BUT: A vertex w can use the pattern without reaching elf'!

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 31/38



Structure of Nesting Patterns

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32/38



Structure of Nesting Patterns

w

el = eQut

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32/38



Structure of Nesting Patterns

w

el = eQut

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32/38



Structure of Nesting Patterns

w
int(w)

el = eQut

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 32/38



Adjacency Certificates

For two pattern descriptions x, y, place an edge x — vy if and only if

there is an adjacency certificate z4, . . ., z, of nesting patterns so that
. i t .
@ Define wy = Head(eg") and w1 = Head(e'zr;+(1m))

Q Forallje{o0,..., k — 1}, the vertex w; cannot reach e‘zrj‘.+1 via local
paths.

© The vertex wy can reach e{}‘ via a local path.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 33/38



Adjacency Certificates

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34/38



Adjacency Certificates

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34/38



Adjacency Certificates

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34/38



Adjacency Certificates

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34/38



Adjacency Certificates

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34/38



Adjacency Certificates

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34/38



Adjacency Certificates

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 34/38



Special Vertices

Two special vertices: v’ and v'.

@ U — xifand only if x is a pattern description over an equivalence
class incident to T, and starts on T,.

@ x — V' ifand only if x is a pattern description over an equivalence
class incident to T, and ends on T,.

Now, there is a path from u to v in G if and only if there is a path from
utov'in G

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 35/38



Main Theorem

Theorem (Stolee, Vinodchandran, '12) Given a graph G € G(m, g)
and u, v € V(G), we can compute in log-space a graph G’ with
vertices U', v/ so that

@ There is a path from u to v in G if and only if there is a path from
utovin@G.
@ G’ has O(m+ g) vertices.

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 36/38



Future Directions

Extend this construction:

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37/38



Future Directions

Extend this construction:

@ Length of paths from uto vin G'?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms

CCC 2012

37/38



Future Directions

Extend this construction:

@ Length of paths from uto vin G'?
@ “Smart” forest decomposition?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37/38



Future Directions

Extend this construction:

@ Length of paths from uto vin G'?
@ “Smart” forest decomposition?
@ Further compression of G'?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37/38



Future Directions

Extend this construction:

@ Length of paths from uto vin G'?
@ “Smart” forest decomposition?
@ Further compression of G'?

Completely new directions?

D. Stolee, N. V. Vinodchandran (UNL) Space-Efficient Algorithms CCC 2012 37/38



Space-efficient algorithms for reachability in

surface-embedded graphs

Derrick Stolee* N. V. Vinodchandran

University of Nebraska—Lincoln
s-dstoleel@math.unl.edu
http://www.math.unl.edu/~s-dstoleel/

CCC 2012
June 29, 2012

Supported by NSF grants DMS-0354008, DMS-0914815, and CCF-0916525,
and a CCC Student Travel Grant.



