Computational Combinatorics Blog

http://computationalcombinatorics.wordpress.com/

Some topics:

- Using computational software as black box.
- Isomorph-free generation.
- Canonical labelings, orbit calculations.
- Orbital branching. (on the way)
- Flag Algebras. (on the way)
- Local search techniques (on the way)
- More...

Guest authors are requested!

Ordered Ramsey Theory and Track Representations of Graphs

Kevin G. Milans Derrick Stolee* Douglas B. West

University of Illinois stolee@illinois.edu http://www.math.uiuc.edu/~stolee/

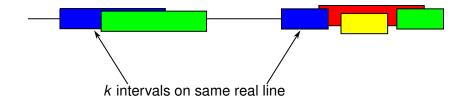
September 22, 2012

Interval Number

Let i(G) be the minimum number k such that G has a k-interval representation.

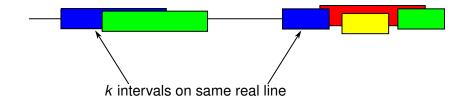
Interval Number

Let i(G) be the minimum number k such that G has a k-interval representation.



Interval Number

Let i(G) be the minimum number k such that G has a k-interval representation.



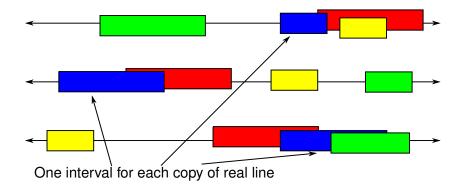
If
$$i(G) = 1$$
, G is an interval graph.

Track Number

Let $\tau(G)$ be the minimum number *t* such that *G* has a *t*-track representation.

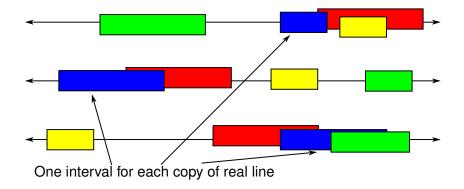
Track Number

Let $\tau(G)$ be the minimum number *t* such that *G* has a *t*-track representation.



Track Number

Let $\tau(G)$ be the minimum number *t* such that *G* has a *t*-track representation.



If $\tau(G) = 1$ then i(G) = 1 and G is an interval graph.

Interval and Numbers

The track number is at least the interval number:

 $i(G) \leq \tau(G)$

Interval and Numbers

The track number is at least the interval number:

$$i(G) \leq \tau(G)$$

The interval number of line graphs is 2:

$$i(L(G)) = 2.$$

Conjecture (Heldt, Knauer, and Ueckerdt, 2011)

• There exist graphs *G* with $\tau(G) - i(G)$ arbitrarily large.

- There exist graphs *G* with $\tau(G) i(G)$ arbitrarily large.
- 2 There exist graphs *G* with $\tau(L(G))$ arbitrarily large (i(L(G)) = 2).

- There exist graphs *G* with $\tau(G) i(G)$ arbitrarily large.
- 2 There exist graphs *G* with $\tau(L(G))$ arbitrarily large (i(L(G)) = 2).
- $\tau(L(K_n))$ is unbounded as *n* grows.

- There exist graphs *G* with $\tau(G) i(G)$ arbitrarily large.
- 2 There exist graphs *G* with $\tau(L(G))$ arbitrarily large (i(L(G)) = 2).
- $\tau(L(K_n))$ is unbounded as *n* grows.
- If $\{G_n\}_{n=1}^{\infty}$ is a sequence of graphs with $\chi(G_n)$ unbounded, then $\tau(L(G_n))$ is unbounded.

- There exist graphs *G* with $\tau(G) i(G)$ arbitrarily large.
- 2 There exist graphs *G* with $\tau(L(G))$ arbitrarily large (i(L(G)) = 2).
- $\tau(L(K_n))$ is unbounded as *n* grows.
- If $\{G_n\}_{n=1}^{\infty}$ is a sequence of graphs with $\chi(G_n)$ unbounded, then $\tau(L(G_n))$ is unbounded.

$$(\mathbf{4}) \Longrightarrow (\mathbf{3}) \Longrightarrow (\mathbf{2}) \Longrightarrow (\mathbf{1})$$

Conjecture (Heldt, Knauer, and Ueckerdt, 2011)

- There exist graphs *G* with $\tau(G) i(G)$ arbitrarily large.
- **2** There exist graphs *G* with $\tau(L(G))$ arbitrarily large (i(L(G)) = 2).
- $\tau(L(K_n))$ is unbounded as *n* grows.
- If $\{G_n\}_{n=1}^{\infty}$ is a sequence of graphs with $\chi(G_n)$ unbounded, then $\tau(L(G_n))$ is unbounded.

$$(4) \Longrightarrow (3) \Longrightarrow (2) \Longrightarrow (1)$$

We prove (3).

Asymptotics of $\tau(L(K_n))$

Theorem (Milans, Stolee, West, 2012+)

$$\Omega\left(\frac{\lg \lg n}{\lg \lg \lg n}\right) \leq \tau(L(\mathcal{K}_n)) \leq O\left(\lg \lg n\right).$$

Let $R_t(K_6^3)$ denote the *t*-color Ramsey number for the 3-uniform hypergraph of order 6.

Let $R_t(K_6^3)$ denote the *t*-color Ramsey number for the 3-uniform hypergraph of order 6.

We will prove that if $n \ge R_t(K_6^3)$, then $\tau(L(K_n)) > t$.

Let $R_t(K_6^3)$ denote the *t*-color Ramsey number for the 3-uniform hypergraph of order 6.

We will prove that if $n \ge R_t(K_6^3)$, then $\tau(L(K_n)) > t$.

By Conlon, Fox, and Sudakov, $R_t(K_6^3) \le 2^{2^{(4+o(1))t \lg t}}$ and therefore when $\lg \lg n \ge 5t \lg t$, we have $\tau(L(K_n)) > t$.

Suppose $\tau(L(K_n)) \leq t$ and fix a *t*-track embedding of $L(K_n)$.

Suppose $\tau(L(K_n)) \leq t$ and fix a *t*-track embedding of $L(K_n)$.

For a triple x < y < z, the edges xy and yz are adjacent in $L(K_n)$, so some track *i* has the intervals for xy and yz intersecting.

Suppose $\tau(L(K_n)) \leq t$ and fix a *t*-track embedding of $L(K_n)$.

For a triple x < y < z, the edges xy and yz are adjacent in $L(K_n)$, so some track *i* has the intervals for xy and yz intersecting.

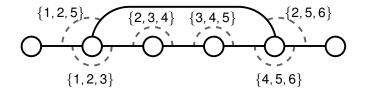
This presents a *t*-coloring of the triples over [n].

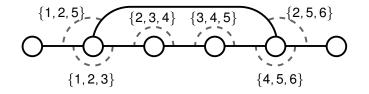
Suppose $\tau(L(K_n)) \leq t$ and fix a *t*-track embedding of $L(K_n)$.

For a triple x < y < z, the edges xy and yz are adjacent in $L(K_n)$, so some track *i* has the intervals for xy and yz intersecting.

This presents a *t*-coloring of the triples over [n].

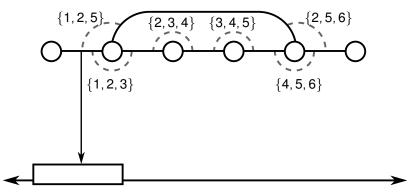
Since $n > R_t(K_6^3)$, there is a set of 6 elements $v_1 < \cdots < v_6$ that induce a monochromatic copy of K_6^3 .

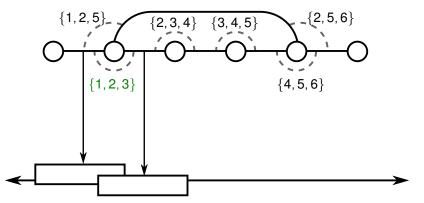


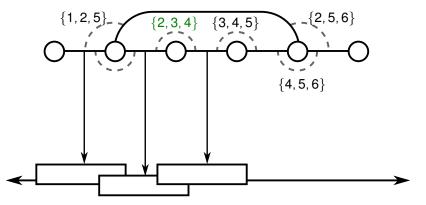


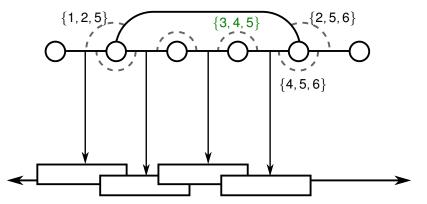
Milans, Stolee, West (UIUC)

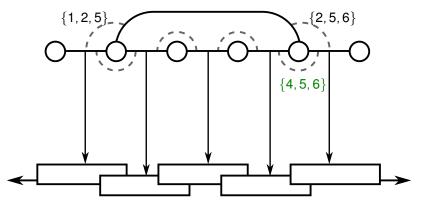
Sept. 22, 2012 10 / 24

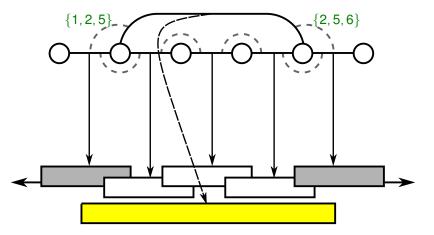






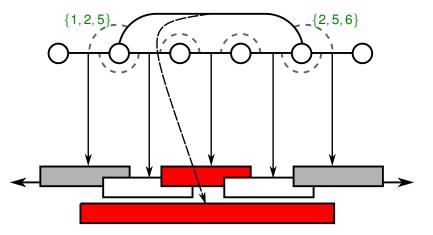






Milans, Stolee, West (UIUC)

Sept. 22, 2012 10 / 24



Milans, Stolee, West (UIUC)

Ordered Ramsey Theory

Sept. 22, 2012 10 / 24

Ordered Ramsey Theory

An ordered hypergraph has a total order on the vertex set.

Let G_1, \ldots, G_t be *k*-uniform ordered hypergraphs. Define the **ordered Ramsey number** $OR(G_1, \ldots, G_t)$ to be the minimum *N* such that all *t*-colorings of $\binom{[n]}{k}$ contains an *i*-colored ordered copy of G_i for some $i \in [t]$. If $G_i = G$ for all $i \in [t]$, we write $OR_t(G) = OR(G, \ldots, G)$.

Since the complete *k*-uniform hypergraph K_n^k contains all ordered hypergraphs on *n* vertices, $OR_t(K_n^k)$

Choudum and Ponnusamy (2002) defined **directed Ramsey theory** which involves coloring the acyclic tournament while avoiding monochromatic copies of **directed acyclic graphs**.

Their concept is different, but their results apply to 2-uniform ordered Ramsey theory.

Ordered Hyperpaths

Definition For $k \ge 2$ and $r \ge k$, the *k*-uniform ordered path P_r^k is the ordered graph on vertices $\{1, ..., r\}$ with edges $\{i, i + 1, ..., i + k - 1\}$ for all $i \in \{1, ..., r - k + 1\}$.

Ordered Hyperpaths

Definition For $k \ge 2$ and $r \ge k$, the *k*-uniform ordered path P_r^k is the ordered graph on vertices $\{1, ..., r\}$ with edges $\{i, i + 1, ..., i + k - 1\}$ for all $i \in \{1, ..., r - k + 1\}$.

Uniformity: *k*.

Number of Vertices: r.

Number of Edges: m = r - k + 1.

Ordered Ramsey Numbers of Hyperpaths

Theorem (Folklore) $OR(P_{r_1}^2, ..., P_{r_2}^2) = 1 + \prod_{i=1}^t (r_i - 1).$ $OR_t(P_r^2) = (r - 1)^t + 1 = m^t + 1.$

Ordered Ramsey Numbers of Hyperpaths

Theorem (Folklore) $OR(P_{r_1}^2, ..., P_{r_2}^2) = 1 + \prod_{i=1}^t (r_i - 1).$ $OR_t(P_r^2) = (r - 1)^t + 1 = m^t + 1.$

In particular, $OR_t(P_3^2) = 2^t + 1$.

In ordinary Ramsey theory, $R_t(P_3) \le t + 2$.

Ordered Ramsey Numbers of Hyperpaths

Theorem (Milans, Stolee, West, 2012+)

$$m^{\operatorname{tow}(k-2,t-O(\lg t))} \leq \operatorname{OR}_t(P_r^k) \leq \operatorname{tow}(k-1,t\lg m)+1.$$

$$\operatorname{tow}(\ell, x) = \begin{cases} 2^{\operatorname{tow}(\ell-1, x)} & \ell \ge 1\\ x & \ell = 0 \end{cases}.$$

Lemma (MSW12+) If $r > k \ge 2$, then $OR_t(P_{r+1}^{k+1}) \ge OR_{\binom{t}{|t/2|}}(P_r^k)$.

Lemma (MSW12+) If $r > k \ge 2$, then $OR_t(P_{r+1}^{k+1}) \ge OR_{\binom{t}{|t/2|}}(P_r^k)$.

Proof: Set
$$n = OR_{\binom{t}{|t/2|}}(P_r^k) - 1$$
.

Let $c: \binom{[n]}{k} \to \binom{[t]}{\lfloor t/2 \rfloor}$ be a coloring of K_n^k that avoids monochromatic copies of P_r^k .

Let $c: \binom{[n]}{k} \to \binom{[t]}{\lfloor t/2 \rfloor}$ be a coloring of K_n^k that avoids monochromatic copies of P_r^k .

Let $c: \binom{[n]}{k} \to \binom{[t]}{\lfloor t/2 \rfloor}$ be a coloring of K_n^k that avoids monochromatic copies of P_r^k .

Define $c': {[n] \choose k+1} \to [t]$ as follows for all $I \in {[n] \choose k+1}$ with

$$J = I - \max I, \qquad J' = I - \min I.$$

If c(J) = c(J'), then select c'(I) ∈ c(J).
If c(J) ≠ c(J'), then select c'(I) ∈ c(J) − c(J').

If *Q* is the vertex set of an ordered copy of P_{r+1}^{k+1} , then $\hat{Q} = Q - \max Q$ is the vertex set of an ordered copy of P_r^k .

Some consecutive *k*-intervals $J, J' \subset \hat{Q}$ have distinct colors under *c*.

If Q is the vertex set of an ordered copy of P_{r+1}^{k+1} , then $\hat{Q} = Q - \max Q$ is the vertex set of an ordered copy of P_r^k .

Some consecutive *k*-intervals $J, J' \subset \hat{Q}$ have distinct colors under *c*.

Let $I = J \cup J'$ and I' be the next (k + 1)-interval in Q.

If Q is the vertex set of an ordered copy of P_{r+1}^{k+1} , then $\hat{Q} = Q - \max Q$ is the vertex set of an ordered copy of P_r^k .

Some consecutive *k*-intervals $J, J' \subset \hat{Q}$ have distinct colors under *c*.

Let $I = J \cup J'$ and I' be the next (k + 1)-interval in Q.

 $c'(I) \in c(J) - c(J')$ and $c'(I') \in c(J')$. Therefore, $c'(I) \neq c'(I')$, and the path on Q is not monochromatic.

If Q is the vertex set of an ordered copy of P_{r+1}^{k+1} , then $\hat{Q} = Q - \max Q$ is the vertex set of an ordered copy of P_r^k .

Some consecutive *k*-intervals $J, J' \subset \hat{Q}$ have distinct colors under *c*.

Let $I = J \cup J'$ and I' be the next (k + 1)-interval in Q.

 $c'(I) \in c(J) - c(J')$ and $c'(I') \in c(J')$. Therefore, $c'(I) \neq c'(I')$, and the path on Q is not monochromatic.

$$OR_t(P_{r+1}^{k+1}) > n = OR_{\binom{t}{|t/2|}}(P_r^k) - 1.$$

Step-Up Upper Bounds

Lemma (MSW12+) If $k \ge 2$, then

- (Two Edges) $OR_t(P_{k+2}^{k+1}) \le OR_{2^t}(P_{k+1}^k)$, and
- (Three Edges) $OR_t(P_{k+3}^{k+1}) \le OR_{2^{2t}}(P_{k+1}^k)$.

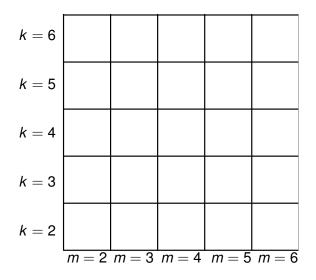
Step-Up Upper Bounds

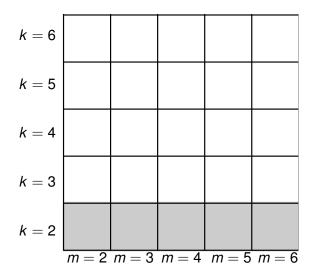
Lemma (MSW12+) If $k \ge 2$, then

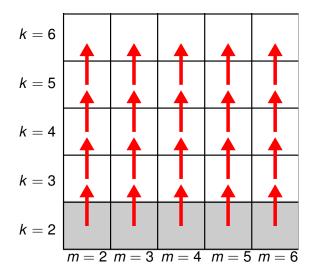
- (Two Edges) $OR_t(P_{k+2}^{k+1}) \leq OR_{2^t}(P_{k+1}^k)$, and
- (Three Edges) $OR_t(P_{k+3}^{k+1}) \le OR_{2^{2t}}(P_{k+1}^k)$.

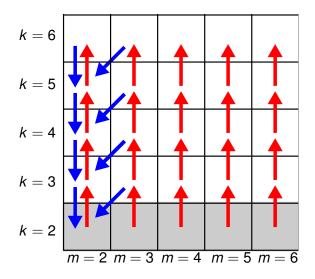
Lemma (MSW12+) If $r \ge k + 2 \ge 4$, then

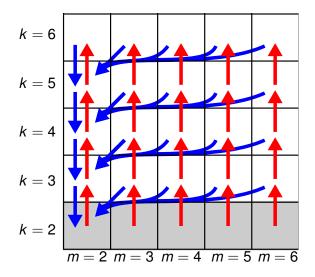
$$\mathsf{OR}_t(P_r^{k+1}) \le \mathsf{OR}_{(r-k)^t}(P_{k+1}^k).$$

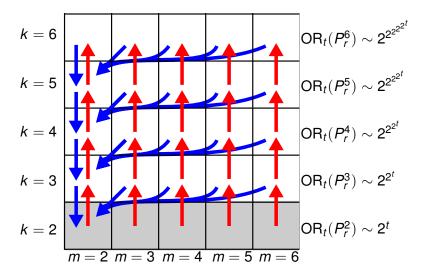










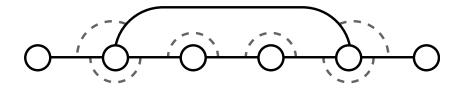


Asymptotics of $\tau(L(K_n))$

Theorem (Milans, Stolee, West, 2012+) If $\tau(L(K_n)) = t$, then

$$\mathsf{OR}_{t-3}(P_4^3) \le n < \mathsf{OR}_t(P'),$$

where P' is the 3-uniform hypergraph formed from P_6^3 by adding the edges $\{1, 2, 5\}$ and $\{2, 5, 6\}$.



Asymptotics of $\tau(L(K_n))$

If $\tau(L(K_n)) = t$, then

$$2^{2^{t-O(\lg t)}} \leq \mathsf{OR}_{t-3}(P_4^3) \leq n < \mathsf{OR}_t(P') \leq 2^{2^{(4+o(1))t\lg t}}.$$

Theorem (Milans, Stolee, West, 2012+)

$$\Omega\left(\frac{\lg \lg n}{\lg \lg \lg n}\right) \leq \tau(L(K_n)) \leq O\left(\lg \lg n\right).$$

Previous Work in Erdős-Szekeres Generalizations

Theorem (Fox, Pach, Sudakov, 2012)

$$2^{\frac{2}{3}m^{t-1}/\sqrt{t}} \le \mathsf{OR}_t(P_r^3) \le 2^{2m^{t-1}}.$$

Previous Work in Erdős-Szekeres Generalizations

Theorem (Fox, Pach, Sudakov, 2012)

$$2^{\frac{2}{3}m^{t-1}/\sqrt{t}} \le OR_t(P_r^3) \le 2^{2m^{t-1}}$$

Theorem (Moshkovitz, Shapira, 2012+)

$$tow(k-2, m^{t-1}/2\sqrt{t}) \le OR_t(P_r^k) \le tow(k-1, (t-1) \lg m).$$

Previous Work in Erdős-Szekeres Generalizations

Theorem (Fox, Pach, Sudakov, 2012)

$$2^{\frac{2}{3}m^{t-1}/\sqrt{t}} \leq \mathsf{OR}_t(P_r^3) \leq 2^{2m^{t-1}}$$

Theorem (Moshkovitz, Shapira, 2012+)

$$tow(k-2, m^{t-1}/2\sqrt{t}) \le OR_t(P_r^k) \le tow(k-1, (t-1) \lg m).$$

Theorem (Milans, Stolee, West, 2012+)

$$m^{\operatorname{tow}(k-2,t-O(\lg t))} \leq \operatorname{OR}_t(P_r^k) \leq \operatorname{tow}(k-1,t\lg m) + 1.$$

Ordered Ramsey Theory and Track Representations of Graphs

Kevin G. Milans Derrick Stolee* Douglas B. West

University of Illinois stolee@illinois.edu http://www.math.uiuc.edu/~stolee/

September 22, 2012