A linear programming approach to the Manickam-Miklós-Singhi Conjecture

Stephen G. Hartke Derrick Stolee*

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

October 5, 2013

The Question

Q: For a nonnegative sum $\sum_{i=1}^{n} x_i \ge 0$, how many partial sums are nonnegative?

The Answer

Theorem (Bier–Manickam, '87) If $\sum_{i=1}^{n} x_i \ge 0$, then there are at least 2^{n-1} nonnegative partial sums $\sum_{i \in S} x_i \ge 0$.

The Answer

Theorem (Bier–Manickam, '87) If $\sum_{i=1}^{n} x_i \ge 0$, then there are at least 2^{n-1} nonnegative partial sums $\sum_{i \in S} x_i \ge 0$.

Example: $x_1 = n$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

The Answer

Theorem (Bier–Manickam, '87) If $\sum_{i=1}^{n} x_i \ge 0$, then there are at least 2^{n-1} nonnegative partial sums $\sum_{i \in S} x_i \ge 0$.

Example: $x_1 = n$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

Theorem. If $\mathcal{F} \subseteq 2^{[n]}$ is an intersecting family, then $|\mathcal{F}| \leq 2^{n-1}$.

The Question

Q: For a nonnegative sum $\sum_{i=1}^{n} x_i \ge 0$, how many partial *k*-sums are nonnegative?

The Answer?

Conjecture (Manickam–Miklós–Singhi, '88) If $n \ge 4k$ and $\sum_{i=1}^{n} x_i \ge 0$, then there are at least $\binom{n-1}{k-1}$ nonnegative partial *k*-sums $\sum_{i \in S} x_i \ge 0$, where |S| = k.

The Answer?

Conjecture (Manickam–Miklós–Singhi, '88) If $n \ge 4k$ and $\sum_{i=1}^{n} x_i \ge 0$, then there are at least $\binom{n-1}{k-1}$ nonnegative partial *k*-sums $\sum_{i \in S} x_i \ge 0$, where |S| = k.

Example: $x_1 = n$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

The Answer?

Conjecture (Manickam–Miklós–Singhi, '88) If $n \ge 4k$ and $\sum_{i=1}^{n} x_i \ge 0$, then there are at least $\binom{n-1}{k-1}$ nonnegative partial *k*-sums $\sum_{i \in S} x_i \ge 0$, where |S| = k.

Example: $x_1 = n$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

Theorem (Erdős–Ko–Rado, '61) If $n \ge 2k$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is an intersecting family, then $|\mathcal{F}| \le {\binom{n-1}{k-1}}$.

Nonnegative k-Sums

Why $n \ge 4k$?

Why $n \ge 4k$?

Good Question!

For $k \ge 2$ and n = 3k + 1, we have $\binom{n-3}{k} < \binom{n-1}{k-1}$, and

$$x_1 = \cdots = x_{n-3} = 3$$
, $x_{n-2} = x_{n-1} = x_n = -(n-3)$

has $\binom{n-3}{k}$ nonnegative *k*-sums.

Why $n \ge 4k$?

Good Question!

For $k \ge 2$ and n = 3k + 1, we have $\binom{n-3}{k} < \binom{n-1}{k-1}$, and

$$x_1 = \cdots = x_{n-3} = 3$$
, $x_{n-2} = x_{n-1} = x_n = -(n-3)$

has $\binom{n-3}{k}$ nonnegative *k*-sums.

A: 4 is the next integer.

It works eventually!

Definition Let g(n, k) be the minimum number of nonnegative *k*-sums in a nonnegative sum $\sum_{i=1}^{n} x_i \ge 0$.

Theorem (Bier–Manickam, '87) There exists a minimum integer f(k) such that $g(n, k) = \binom{n-1}{k-1}$ for all $n \ge f(k)$.

Previous Results

...eventually...

Bier-Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Previous Results

...eventually...

Bier-Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam-Miklós, '88:

 $f(k) \le (k-1)(k^k + k^2) + k$

...eventually...

Bier-Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam-Miklós, '88:

 $f(k) \le (k-1)(k^k + k^2) + k$

Bhattacharya, '03:

 $f(k) \leq 2^{k+1} e^k k^{k+1}$

...eventually...

Bier–Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam-Miklós, '88:

 $f(k) \le (k-1)(k^k + k^2) + k$

Bhattacharya, '03:

Tyomkyn, '12:

 $f(k) \leq 2^{k+1} e^k k^{k+1}$

 $f(k) \le k^2 (4e\log k)^k$

...eventually...

Bier–Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam–Miklós, '88: Bhattacharya, '03: $f(k) \le (k-1)(k^k + k^2) + k$ $f(k) \le 2^{k+1}e^kk^{k+1}$

Tyomkyn, '12:

Alon, Huang, Sudakov, '12:

 $f(k) \leq k^2 (4e\log k)^k$

 $f(k) \le \min\{33k^2, 2k^3\}$

Previous Results

...eventually...

Bier-Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam-Miklós, '88:

Bhattacharya, '03:

Tyomkyn, '12:

Alon, Huang, Sudakov, '12:

Pokrovskiy '13:

 $f(k) \leq 2^{k+1} e^k k^{k+1}$

 $f(k) < (k-1)(k^k + k^2) + k$

 $f(k) < k^2 (4e\log k)^k$

 $f(k) < \min\{33k^2, 2k^3\}$

 $f(k) \le 10^{46} k$

f(1) = 1

(trivial)

f(1) = 1f(2) = 8

(trivial)

(exercise)

(trivial)	<i>f</i> (1) = 1
(exercise)	<i>f</i> (2) = 8
(Marino, Chiaselotti, '02)	<i>f</i> (3) ≤ 12

f(1) = 1	(trivial)
<i>f</i> (2) = 8	(exercise)
<i>f</i> (3) ≤ 12	(Marino, Chiaselotti, '02)
<i>f</i> (3) = 11	(Chowdhury, '13)

The Conjecture Previous Results

Fixed k

(trivial)	f(1) = 1
(exercise)	<i>f</i> (2) = 8
(Marino, Chiaselotti, '02)	<i>f</i> (3) ≤ 12
(Chowdhury, '13)	<i>f</i> (3) = 11
(Chowdhury, '13)	<i>f</i> (4) ≤ 24

Previous Results

Our Results

f(4) = 14f(5) = 17

f(6) = 20

f(7) = 23

Previous Results

Our Results

f(4) = 14f(5) = 17f(6) = 20f(7) = 23

$$f(k) = 3k + 2$$
 for $2 \le k \le 7$.

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector x_1, \ldots, x_n with

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector x_1, \ldots, x_n with

1.
$$\sum_{i=1}^{n} x_i \ge 0$$
,

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector x_1, \ldots, x_n with

1.
$$\sum_{i=1}^{n} x_i \ge 0$$
,
2. $x_1 \ge x_2 \ge \cdots \ge x_n$. (Say $\mathbf{x} = (x_1, \dots, x_n) \in F_n$)

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector x_1, \ldots, x_n with

1. $\sum_{i=1}^{n} x_i \ge 0$, 2. $x_1 \ge x_2 \ge \cdots \ge x_n$. (Say $\mathbf{x} = (x_1, \dots, x_n) \in F_n$)

3. strictly less than t nonnegative k-sums,

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector x_1, \ldots, x_n with

1.
$$\sum_{i=1}^{n} x_i \ge 0$$
,
2. $x_1 \ge x_2 \ge \cdots \ge x_n$. (Say $\mathbf{x} = (x_1, \dots, x_n) \in F_n$)

3. strictly less than *t* nonnegative *k*-sums,

Lemma (Chowdhury, '12) If
$$g(n, k) = \binom{n-1}{k-1}$$
, then $g(n+k, k) = \binom{n+k-1}{k-1}$.

The Endgame

If we find $g(n, k) = \binom{n-1}{k-1}$ for k consecutive values of n, then we are done!

The Endgame

If we find $g(n, k) = \binom{n-1}{k-1}$ for k consecutive values of n, then we are done!

Theorem (Bier–Manickam, '87) If k divides n, then $g(n, k) = \binom{n-1}{k-1}$.

Multiples of *k*

Theorem (Bier–Manickam, '87) If k divides n, then $g(n, k) = \binom{n-1}{k-1}$.

Theorem (Baranyai, '75) If *k* divides *n*, then K_n^k decomposes into $\binom{n-1}{k-1}$ perfect matchings $M_1, \ldots, M_{\binom{n-1}{k-1}}$.

$$\sum_{S\in M_j}\sum_{i\in S}x_i=\sum_{i=1}^n x_i\geq 0.$$

Our Method (Again)

$x_1 \hspace{0.1in} \geq \hspace{0.1in} x_2 \hspace{0.1in} \geq \hspace{0.1in} x_3 \hspace{0.1in} \geq \hspace{0.1in} x_4 \hspace{0.1in} \geq \hspace{0.1in} x_5 \hspace{0.1in} \geq \hspace{0.1in} x_6 \hspace{0.1in} \geq \hspace{0.1in} x_7 \hspace{0.1in} \geq \hspace{0.1in} x_8$

Our Method (Again)

Our Method (Again)

Our Method (Again)

Define $S \succeq T$ (S is to the left of T) if

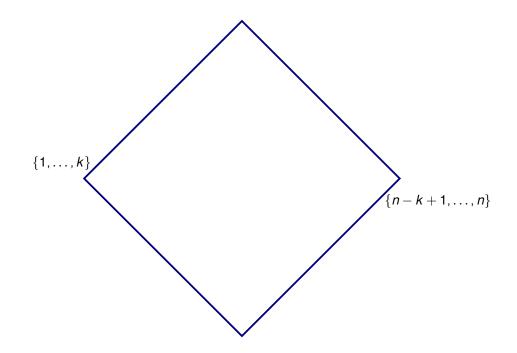
$$S = \{i_1 \leq i_2 \leq \cdots \leq i_k\}, T = \{j_1 \leq j_2 \leq \cdots \leq j_k\},\$$

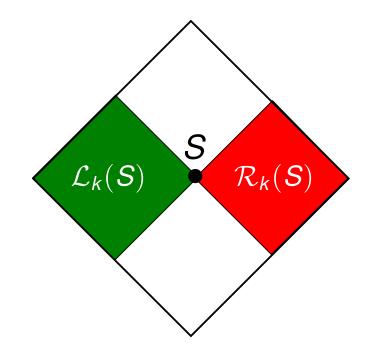
and

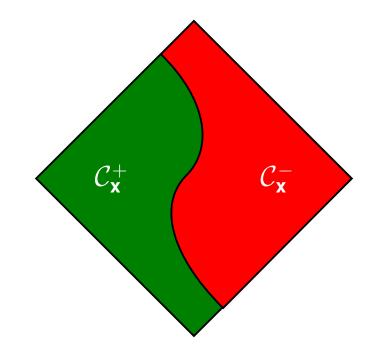
$$i_{\ell} \leq \underline{j}_{\ell}$$
 for all $\ell \in \{1, \ldots, k\}$.

Equivalently:

$$x_{i_{\ell}} \geq x_{j_{\ell}}$$
 for all $\ell \in \{1, \ldots, k\}$ and all $\mathbf{x} \in F_{n}$.







Branch-and-Cut Strategy

MMSSearch($n,k,t, \mathcal{A}^+, \mathcal{A}^-$): Determine if there is an $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ \supseteq \mathcal{A}^+, \mathcal{C}_{\mathbf{x}}^- \supseteq \mathcal{A}^-$, and fewer than t nonnegative k-sums

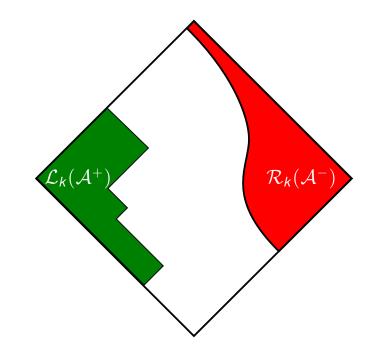
if $|\mathcal{L}_k(\mathcal{A}^+)| \ge t$ then return Null end if

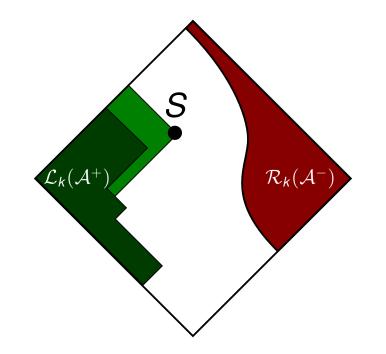
if
$$\mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-) = \binom{[n]}{k}$$
 then output $(\mathcal{A}^+, \mathcal{A}^-)$ end if

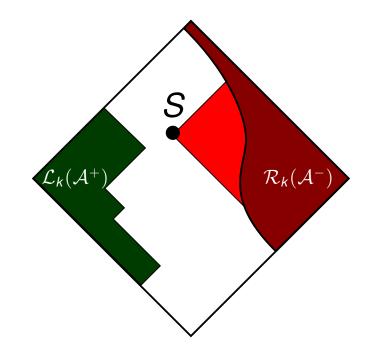
Select $S \notin \mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$

call MMSSearch($n, k, t, A^+ \cup \{S\}, A^-$)

call MMSSearch($n, k, t, A^+, A^- \cup \{S\}$)







Refining the Algorithm

Of course, just because $\mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$ is a partition of the *k*-sets **does not necessarily imply** there exists an $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ = \mathcal{L}_k(\mathcal{A}^+)$.

Refining the Algorithm

Of course, just because $\mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$ is a partition of the *k*-sets **does not necessarily imply** there exists an $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ = \mathcal{L}_k(\mathcal{A}^+)$.

We need a connection between the discrete and continuous!

The Linear Program

$$\begin{aligned} \mathcal{P}(k, n, \mathcal{A}^+, \mathcal{A}^-) &: \\ \text{minimize} & x_1 \\ \text{subject to} & \sum_{i=1}^n x_i \geq 0 \\ & x_i - x_{i+1} \geq 0 \qquad \forall i \in \{1, \dots, n-1\} \\ & \sum_{i \in \mathcal{S}} x_i \geq 0 \qquad \forall \mathcal{S} \in \mathcal{A}^+ \\ & \sum_{i \in \mathcal{T}} x_i \leq -1 \quad \forall \mathcal{T} \in \mathcal{A}^- \\ & x_1, \dots, x_n \in \mathbb{R} \end{aligned}$$

Revised Algorithm

MMSSearch(n,k,t, A^+, A^-): Determine if there is an $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ \supseteq A^+, \mathcal{C}_{\mathbf{x}}^- \supseteq A^-$, and fewer than t nonnegative k-sums

if $|\mathcal{L}_k(\mathcal{A}^+)| \ge t$ or $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^-)$ is infeasible then return Null end if

if solution to \$\mathcal{P}(n, k\mathcal{A}^+, \mathcal{A}^-)\$ has fewer than *t* nonnegative *k*-sums then output solution to \$\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^-)\$ end if

Select $S \notin \mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$

call MMSSearch($n, k, t, A^+ \cup \{S\}, A^-$)

call MMSSearch($n, k, t, A^+, A^- \cup \{S\}$)

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(S)| \ge t$, then $\sum_{i \in S} x_i < 0$.

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(S)| \ge t$, then $\sum_{i \in S} x_i < 0$.

Lemma. If $t \leq \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k, k) \geq t$, then $\sum_{i \in S} x_i < 0$. Proof.

Let $T = \{1, n - k + 2, ..., n\}.$

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(S)| \ge t$, then $\sum_{i \in S} x_i < 0$. **Lemma.** If $t \le \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k,k) \ge t$, then $\sum_{i \in S} x_i < 0$. Proof.

Let $T = \{1, n - k + 2, ..., n\}$. $|\mathcal{L}_k(T)| = \binom{n-1}{k-1}$, so $\sum_{i \in T} x_i < 0$.

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_{k}(S)| \geq t$, then $\sum_{i \in S} x_{i} < 0$. Lemma. If $t \leq \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_{k}(S)| + g(n-k,k) \geq t$, then $\sum_{i \in S} x_{i} < 0$. Proof. Let $T = \{1, n-k+2, ..., n\}$. $|\mathcal{L}_{k}(T)| = \binom{n-1}{k-1}$, so $\sum_{i \in T} x_{i} < 0$.

Thus $\sum_{i=2}^{n-k+1} x_i > 0$.

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(S)| \ge t$, then $\sum_{i \in S} x_i < 0$.

Lemma. If $t \leq \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k, k) \geq t$, then $\sum_{i \in S} x_i < 0$.

Proof.

Let $T = \{1, n - k + 2, ..., n\}$. $|\mathcal{L}_k(T)| = \binom{n-1}{k-1}$, so $\sum_{i \in T} x_i < 0$. Thus $\sum_{i=2}^{n-k+1} x_i > 0$. So there are at least g(n - k, k) nonnegative *k*-sums with minimum element at least 2.

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(S)| \ge t$, then $\sum_{i \in S} x_i < 0$.

Lemma. If $t \leq \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k,k) \geq t$, then $\sum_{i \in S} x_i < 0$.

Proof.

Let $T = \{1, n - k + 2, ..., n\}$. $|\mathcal{L}_k(T)| = \binom{n-1}{k-1}$, so $\sum_{i \in T} x_i < 0$. Thus $\sum_{i=2}^{n-k+1} x_i > 0$. So there are at least g(n - k, k) nonnegative *k*-sums with minimum element at least 2. Thus, if $\sum_{i=2}^{n-k+1} x_i > 0$, then all acts in $\mathcal{L}_k(S)$ have perpendicular sum.

Thus, if $\sum_{i \in S} x_i \ge 0$, then all sets in $\mathcal{L}_k(S)$ have nonnegative sum.

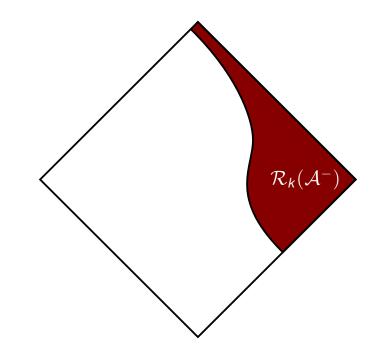
Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(S)| \ge t$, then $\sum_{i \in S} x_i < 0$.

Lemma. If $t \leq \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k,k) \geq t$, then $\sum_{i \in S} x_i < 0$.

Proof.

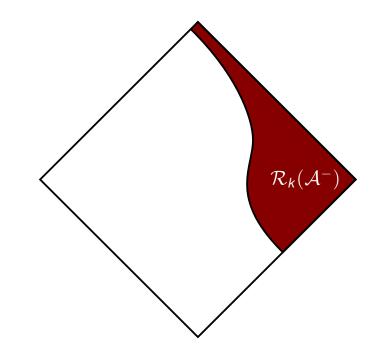
Let $T = \{1, n - k + 2, ..., n\}$. $|\mathcal{L}_k(T)| = \binom{n-1}{k-1}$, so $\sum_{i \in T} x_i < 0$. Thus $\sum_{i=2}^{n-k+1} x_i > 0$. So there are at least g(n - k, k) nonnegative *k*-sums with minimum element at least 2. Thus, if $\sum_{i \in S} x_i \ge 0$, then all sets in $\mathcal{L}_k(S)$ have nonnegative sum.With those nonnegative *k*-sums in $\{2, ..., n - k + 1\}$, we have at least $|\mathcal{L}_k(S)| + g(n - k, k) \ge t$ nonnegative *k*-sums!

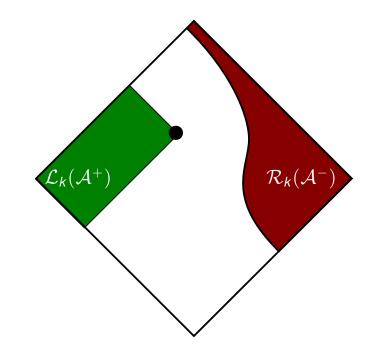


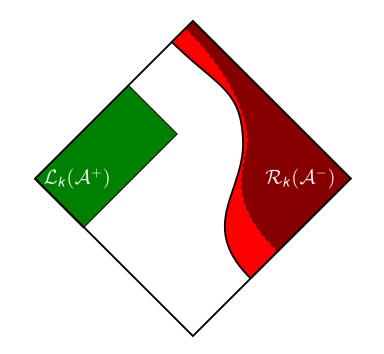
```
Learning more about \mathcal{A}^-
```

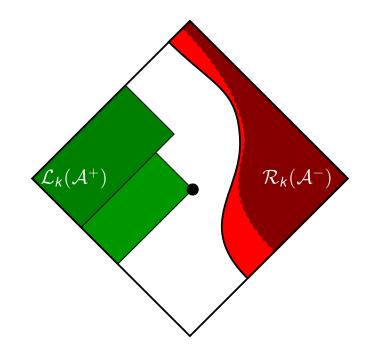
Define $L^*(S) = |\mathcal{L}_k(S) \setminus \mathcal{L}_k(\mathcal{A}^+)|$.

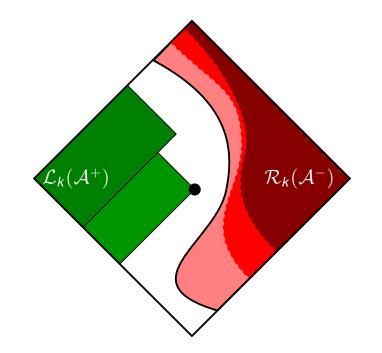
Lemma. If $L^*(S) + |\mathcal{L}_k(\mathcal{A}^+)| \ge t$, then $\sum_{i \in S} x_i < 0$ for all $\mathbf{x} \in F_n$ with $\mathcal{C}^+_{\mathbf{x}} \supseteq \mathcal{A}^+$.

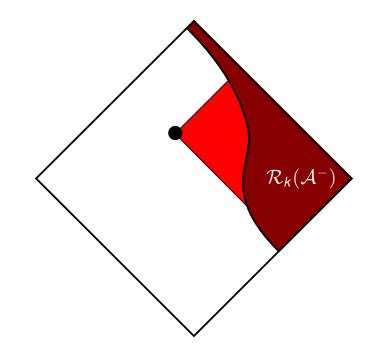


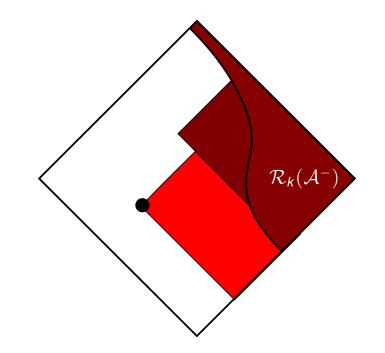


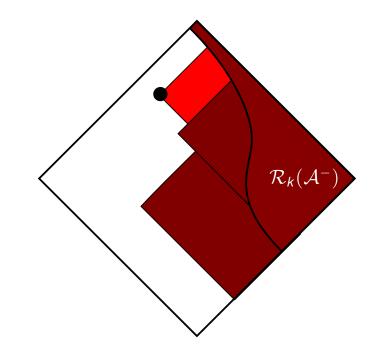












Learning More About \mathcal{A}^+

If $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^- \cup \{S\})$ is infeasible, then all vectors $\mathbf{x} \in F_n$ with $\mathcal{C}^+_{\mathbf{x}} \supseteq \mathcal{A}^+$ and $\mathcal{C}^- \supseteq \mathcal{A}^-$ have $\sum_{i \in S} x_i < 0$.

Learning More About \mathcal{A}^+

If $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^- \cup \{S\})$ is infeasible, then all vectors $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ \supseteq \mathcal{A}^+$ and $\mathcal{C}^- \supseteq \mathcal{A}^-$ have $\sum_{i \in S} x_i < 0$.

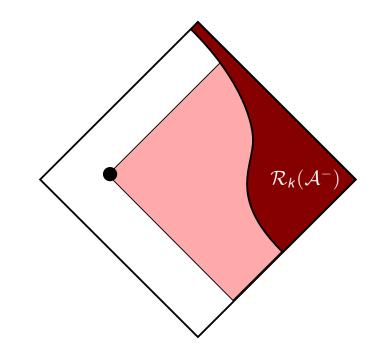
So, we can add such sets S to \mathcal{A}^+ .

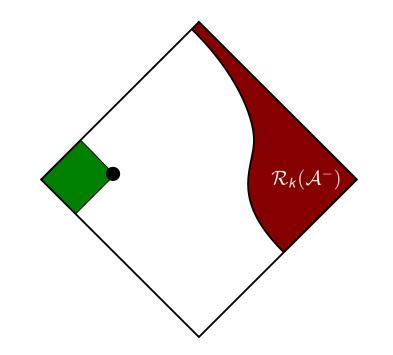
Learning More About \mathcal{A}^+

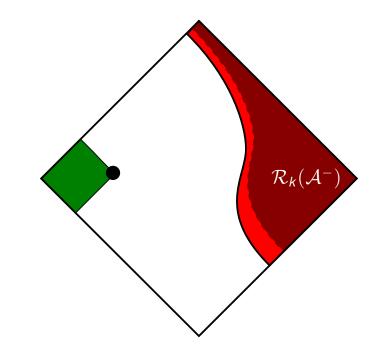
If $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^- \cup \{S\})$ is infeasible, then all vectors $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ \supseteq \mathcal{A}^+$ and $\mathcal{C}^- \supseteq \mathcal{A}^-$ have $\sum_{i \in S} x_i < 0$.

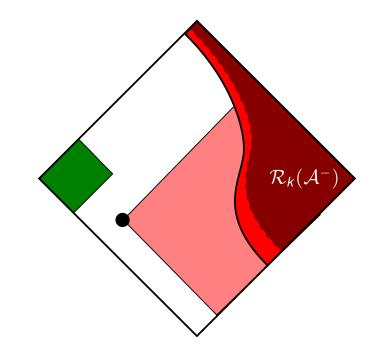
So, we can add such sets S to \mathcal{A}^+ .

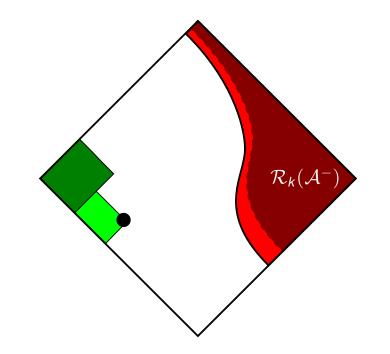
We randomly sample a set S to test.

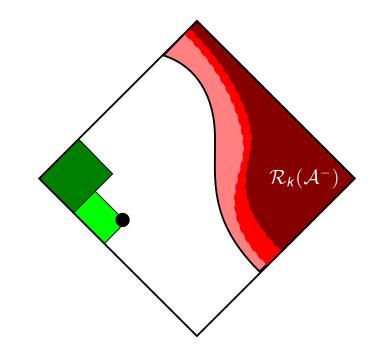












Our Results

After executing our full algorithm, we discover g(n, k) for all $k \in \{3, 4, 5, 6, 7\}$ and all n.

Our Results

After executing our full algorithm, we discover g(n, k) for all $k \in \{3, 4, 5, 6, 7\}$ and all n.

We also know of **sharp examples**: $\mathbf{x} \in F_n$ with exactly g(n, k) nonnegative k-sums!

Sharp Examples

All of our examples have the form

$$\mathbf{x} = a^b \; (-b)^a$$

for
$$a + b = n$$
, where **x** is given as

$$\underbrace{x_1 = \cdots = x_b = a}_{b \text{ copies of } a}, \qquad \underbrace{x_{b+1} = \cdots = x_n = -b}_{a \text{ copies of } -b}$$

Sharp Examples

 $(n-1)^1 (-1)^{n-1}$ W has $\binom{n-1}{k-1}$ nonnegative *k*-sums.

$$3^{n-3} (-(n-3))^3$$

has $\binom{n-3}{k}$ nonnegative *k*-sums when $n > 3k$.

The Results

Sharp Examples

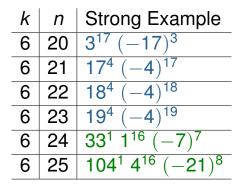
k	n	g (n , k)	Sharp Example
6	7	1	1 ⁶ (-6) ¹
6	8	7	$1^7 (-7)^1$
6	9	28	1 ⁸ (-8) ¹
6	10	70	8 ² (-2) ⁸
6	11	126	9 ² (-2) ⁹
6	12	462	
6	13	462	$2^{11} (-11)^2$
6	14	924	2 ¹² (-12) ²
6	15	1705	$12^3 (-3)^{12}$
6	16	2431	$13^3 (-3)^{13}$
6	17	3367	$14^3 (-3)^{14}$
6	18	6188	
6	19	8008	3 ¹⁶ (-16) ³

Hartke, Stolee (UNL and ISU)

46 / 52

Strong Examples

A vector is strong if $x_1 + \sum_{i=n-k+2}^n x_i < 0$.



Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a strong vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a strong vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a strong vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a strong vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a strong vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

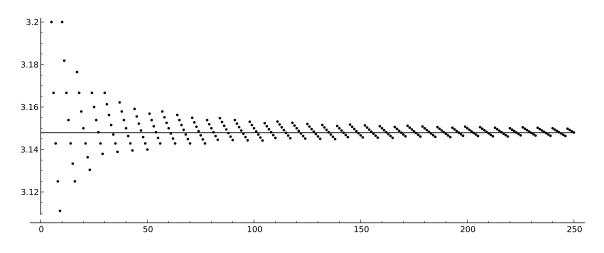
$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.1$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a strong vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.14$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a strong vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.147899...$$



Values of N_k / k for $k \in \{5, ..., 250\}$.

Hartke, Stolee (UNL and ISU)

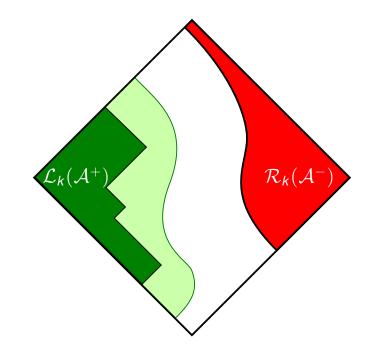
A linear programming approach to the Manickam-Miklós-Singhi Conjecture

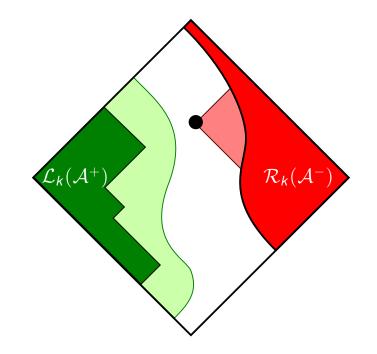
Stephen G. Hartke Derrick Stolee*

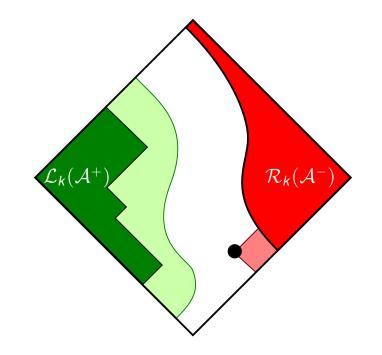
Iowa State University

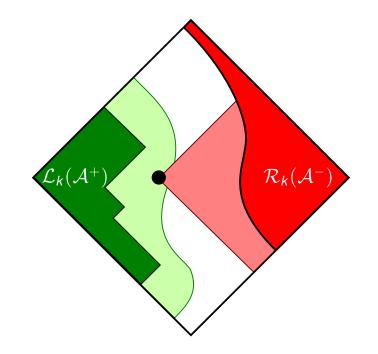
dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

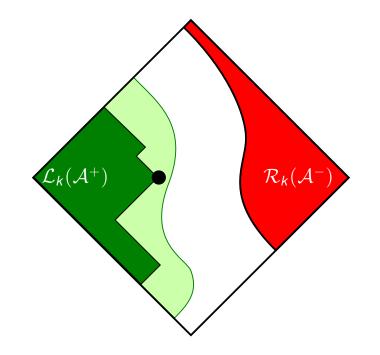
October 5, 2013

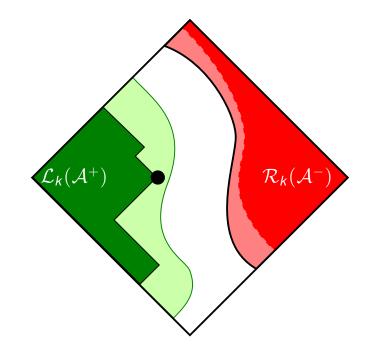


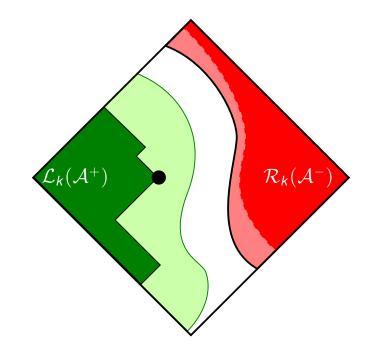












```
MMSSearch(n,k,t, \mathcal{A}^+, \mathcal{A}^-):
```

Determine if there is an $\mathbf{x} \in F_n$ with $\mathcal{C}^+_{\mathbf{x}} \supset \mathcal{A}^+, \mathcal{C}^-_{\mathbf{x}} \supset \mathcal{A}^-$, and fewer than t nonnegative k-sums

```
if |\mathcal{L}_k(\mathcal{A}^+)| \geq t or \mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^-) is infeasible then
    return Null
end if
```

```
if solution to \mathcal{P}(n, k\mathcal{A}^+, \mathcal{A}^-) has fewer than t nonnegative k-sums then
   output solution to \mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^-)
end if
Propagate to build \mathcal{A}^-.
```

Randomly sample to build \mathcal{A}^+ .

Select $S \notin \mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$

```
call MMSSearch(n, k, t, A^+ \cup \{S\}, A^-)
```

```
call MMSSearch(n, k, t, A^+, A^- \cup \{S\})
```