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The Conjecture Nonnegative Sums

The Question

Q: For a nonnegative sum ∑n
i=1 xi ≥ 0, how many partial sums are

nonnegative?
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The Conjecture Nonnegative Sums

The Answer

Theorem (Bier–Manickam, ’87) If ∑n
i=1 xi ≥ 0, then there are at least 2n−1

nonnegative partial sums ∑i∈S xi ≥ 0.

Example: x1 = n, x2 = · · · = xn = −1.
S has nonnegative sum if and only if it contains 1.

Theorem. If F ⊆ 2[n] is an intersecting family, then |F | ≤ 2n−1.
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The Conjecture Nonnegative k -Sums

The Question

Q: For a nonnegative sum ∑n
i=1 xi ≥ 0, how many partial k -sums

are nonnegative?
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The Conjecture Nonnegative k -Sums

The Answer?

Conjecture (Manickam–Miklós–Singhi, ’88) If n ≥ 4k and ∑n
i=1 xi ≥ 0, then

there are at least (n−1
k−1) nonnegative partial k -sums ∑i∈S xi ≥ 0, where |S| = k .

Example: x1 = n, x2 = · · · = xn = −1.
S has nonnegative sum if and only if it contains 1.

Theorem (Erdős–Ko–Rado, ’61) If n ≥ 2k and F ⊆ ([n]k ) is an intersecting
family, then |F | ≤ (n−1

k−1).
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The Conjecture Nonnegative k -Sums

Why n ≥ 4k?

Good Question!

For k ≥ 2 and n = 3k + 1, we have (n−3
k ) < (n−1

k−1), and

x1 = · · · = xn−3 = 3, xn−2 = xn−1 = xn = −(n− 3)

has (n−3
k ) nonnegative k -sums.

A: 4 is the next integer.
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The Conjecture Previous Results

It works eventually!

Definition Let g(n, k) be the minimum number of nonnegative k -sums in a nonnegative
sum ∑n

i=1 xi ≥ 0.

Theorem (Bier–Manickam, ’87) There exists a minimum integer f (k) such that
g(n, k) = (n−1

k−1) for all n ≥ f (k).
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The Conjecture Previous Results

...eventually...

Bier–Manickam, ’87: f (k) ≤ k(k − 1)k (k − 2)k + k(k − 1)2(k − 2) + k2

Manickam–Miklós, ’88: f (k) ≤ (k − 1)(kk + k2) + k

Bhattacharya, ’03: f (k) ≤ 2k+1ekkk+1

Tyomkyn, ’12: f (k) ≤ k2(4e log k)k

Alon, Huang, Sudakov, ’12: f (k) ≤ min{33k2,2k3}

Pokrovskiy ’13: f (k) ≤ 1046k
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The Conjecture Previous Results

Fixed k

f (1) = 1 (trivial)

f (2) = 8 (exercise)

f (3) ≤ 12 (Marino, Chiaselotti, ’02)

f (3) = 11 (Chowdhury, ’13)

f (4) ≤ 24 (Chowdhury, ’13)
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The Conjecture Previous Results

Our Results

f (4) = 14

f (5) = 17

f (6) = 20

f (7) = 23

f (k) = 3k + 2 for 2 ≤ k ≤ 7.
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The Conjecture Previous Results

Our Method

For a given n and k , we verify g(n, k) ≥ t by looking for a vector x1, . . . , xn with

1. ∑n
i=1 xi ≥ 0,

2. x1 ≥ x2 ≥ · · · ≥ xn. (Say x = (x1, . . . , xn) ∈ Fn)

3. strictly less than t nonnegative k -sums,

Lemma (Chowdhury, ’12) If g(n, k) = (n−1
k−1), then g(n + k , k) = (n+k−1

k−1 ).
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The Conjecture Previous Results

The Endgame

If we find g(n, k) = (n−1
k−1) for k consecutive values of n, then we are done!

Theorem (Bier–Manickam, ’87) If k divides n, then g(n, k) = (n−1
k−1).
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The Conjecture Previous Results

Multiples of k

Theorem (Bier–Manickam, ’87) If k divides n, then g(n, k) = (n−1
k−1).

Theorem (Baranyai, ’75) If k divides n, then K k
n decomposes into (n−1

k−1) perfect
matchings M1, . . . ,M(n−1

k−1)
.

∑
S∈Mj

∑
i∈S

xi =
n

∑
i=1

xi ≥ 0.
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The Poset

Our Method (Again)

x1 ≥ x2 ≥ x3 ≥ x4 ≥ x5 ≥ x6 ≥ x7 ≥ x8
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The Poset

Our Method (Again)

x1 ≥ x2 ≥ x3 ≥ x4 ≥ x5 ≥ x6 ≥ x7 ≥ x8

S S T T S T

Define S � T (S is to the left of T ) if

S = {i1 ≤ i2 ≤ · · · ≤ ik},T = {j1 ≤ j2 ≤ · · · ≤ jk},

and
i` ≤ j` for all ` ∈ {1, . . . , k}.

Equivalently:
xi` ≥ xj` for all ` ∈ {1, . . . , k} and all x ∈ Fn.
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{1, . . . , k}

{n− k + 1, . . . ,n}



S
Lk(S) Rk(S)



C+x C−x



The Algorithm

Branch-and-Cut Strategy

MMSSearch(n,k ,t , A+, A−):
Determine if there is an x ∈ Fn with C+x ⊇ A+, C−x ⊇ A−,

and fewer than t nonnegative k-sums

if |Lk (A+)| ≥ t then
return Null

end if

if Lk (A+) ∪Rk (A−) = ([n]k ) then
output (A+,A−)

end if

Select S /∈ Lk (A+) ∪Rk (A−)
call MMSSearch(n, k , t ,A+ ∪ {S},A−)
call MMSSearch(n, k , t ,A+,A− ∪ {S})
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Lk(A+) Rk(A−)



S

Lk(A+) Rk(A−)



S

Lk(A+) Rk(A−)



The Algorithm

Refining the Algorithm

Of course, just because Lk (A+) ∪Rk (A−) is a partition of the k -sets does not
necessarily imply there exists an x ∈ Fn with C+x = Lk (A+).

We need a connection between the discrete and continuous!
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The Algorithm

The Linear Program

P(k ,n,A+,A−) :
minimize x1

subject to
n

∑
i=1

xi ≥ 0

xi − xi+1 ≥ 0 ∀i ∈ {1, . . . ,n− 1}
∑
i∈S

xi ≥ 0 ∀S ∈ A+

∑
i∈T

xi ≤ −1 ∀T ∈ A−

x1, . . . , xn ∈ R
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The Algorithm

Revised Algorithm

MMSSearch(n,k ,t , A+, A−):
Determine if there is an x ∈ Fn with C+x ⊇ A+, C−x ⊇ A−,

and fewer than t nonnegative k-sums

if |Lk (A+)| ≥ t or P(n, k ,A+,A−) is infeasible then
return Null

end if

if solution to P(n, kA+,A−) has fewer than t nonnegative k -sums then
output solution to P(n, k ,A+,A−)

end if

Select S /∈ Lk (A+) ∪Rk (A−)
call MMSSearch(n, k , t ,A+ ∪ {S},A−)
call MMSSearch(n, k , t ,A+,A− ∪ {S})
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The Algorithm

Learning a little about A−

Assume x ∈ Fn has fewer than t nonnegative k -sums.

Lemma. If |Lk (S)| ≥ t , then ∑i∈S xi < 0.

Lemma. If t ≤ (n−1
k−1), 1 ∈ S, and |Lk (S)|+ g(n− k , k) ≥ t , then ∑i∈S xi < 0.

Proof.

Let T = {1,n− k + 2, . . . ,n}. |Lk (T )| = (n−1
k−1), so ∑i∈T xi < 0.

Thus ∑n−k+1
i=2 xi > 0. So there are at least g(n− k , k) nonnegative k -sums with minimum

element at least 2.
Thus, if ∑i∈S xi ≥ 0, then all sets in Lk (S) have nonnegative sum.With those nonnegative
k -sums in {2, . . . ,n− k + 1}, we have at least |Lk (S)|+ g(n− k , k) ≥ t nonnegative
k -sums!
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The Algorithm

Learning more about A−

Define L∗(S) = |Lk (S) \ Lk (A+)|.

Lemma. If L∗(S) + |Lk (A+)| ≥ t , then ∑i∈S xi < 0 for all x ∈ Fn with C+x ⊇ A+.
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The Algorithm

Learning More About A+

If P(n, k ,A+,A− ∪ {S}) is infeasible, then all vectors x ∈ Fn with C+x ⊇ A+ and
C− ⊇ A− have ∑i∈S xi < 0.

So, we can add such sets S to A+.

We randomly sample a set S to test.
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The Results

Our Results

After executing our full algorithm, we discover g(n, k) for all k ∈ {3,4,5,6,7} and all n.

We also know of sharp examples: x ∈ Fn with exactly g(n, k) nonnegative k -sums!
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The Results

Sharp Examples

All of our examples have the form

x = ab (−b)a

for a + b = n, where x is given as

x1 = · · · = xb = a︸ ︷︷ ︸
b copies of a

, xb+1 = · · · = xn = −b︸ ︷︷ ︸
a copies of −b
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The Results

Sharp Examples

(n− 1)1 (−1)n−1

w has (n−1
k−1) nonnegative k -sums.

3n−3 (−(n− 3))3

has (n−3
k ) nonnegative k -sums when n > 3k .
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The Results

Sharp Examples

k n g(n, k) Sharp Example
6 7 1 16 (−6)1

6 8 7 17 (−7)1

6 9 28 18 (−8)1

6 10 70 82 (−2)8

6 11 126 92 (−2)9

6 12 462
6 13 462 211 (−11)2

6 14 924 212 (−12)2

6 15 1705 123 (−3)12

6 16 2431 133 (−3)13

6 17 3367 143 (−3)14

6 18 6188
6 19 8008 316 (−16)3
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The Results

Strong Examples

A vector is strong if x1 + ∑n
i=n−k+2 xi < 0.

k n Strong Example
6 20 317 (−17)3

6 21 174 (−4)17

6 22 184 (−4)18

6 23 194 (−4)19

6 24 331 116 (−7)7

6 25 1041 416 (−21)8
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The Results Our Conjecture

Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all k ≥ 2, and n < 4k , the least number of
nonnegative k -sums in a strong vector x ∈ Fn is achieved by a vector of the form
ab (−b)a.

Conjecture (Hartke, Stolee, ’13+) For k ≥ 2, let Nk be the least integer such that

(Nk−3
k ) ≥ (Nk−1

k−1 ). f (k) = Nk , and hence

lim
k→∞

f (k)
k

= lim
k→∞

Nk

k
= 3.147899...
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The Results Our Conjecture

Our Conjecture
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The Results Our Conjecture

MMSSearch(n,k ,t , A+, A−):
Determine if there is an x ∈ Fn with C+x ⊇ A+, C−x ⊇ A−,

and fewer than t nonnegative k-sums

if |Lk (A+)| ≥ t or P(n, k ,A+,A−) is infeasible then
return Null

end if

if solution to P(n, kA+,A−) has fewer than t nonnegative k -sums then
output solution to P(n, k ,A+,A−)

end if
Propagate to build A−.
Randomly sample to build A+.

Select S /∈ Lk (A+) ∪Rk (A−)
call MMSSearch(n, k , t ,A+ ∪ {S},A−)
call MMSSearch(n, k , t ,A+,A− ∪ {S})
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