A Linear Programming Approach to the Manickam-Miklós-Singhi Conjecture

Derrick Stolee

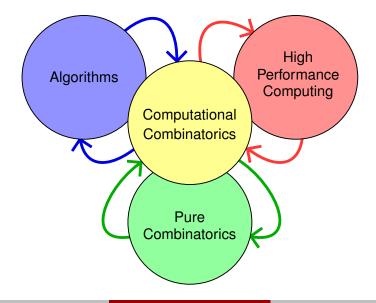
Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

November 7, 2013 Rochester Institute of Technology

S. G. Hartke, D. Stolee, A linear programming approach to the Manickam-Miklós-Singhi Conjecture, the European Journal of Combinatorics (2014).

Computational Combinatorics



Computational Combinatorics

Computational Combinatorics is using a combination of

- pure mathematics,
- algorithms, and
- computational resources

to solve problems in pure combinatorics by

- providing evidence for conjectures,
- finding examples and counterexamples, and
- discovering and proving theorems.

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

Examples:

Is there a projective plane of order 10?

When do strongly regular graphs exist?

How many Steiner triple systems are there of order 19?

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

Examples:

- Is there a projective plane of order 10? (Lam, Thiel, Swiercz, 1989)
- When do strongly regular graphs exist? (Spence 2000, Coolsaet, Degraer, Spence 2006, many others)
- How many Steiner triple systems are there of order 19? (Kaski, Östergård, 2004)

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

Example: Does there exist a 2-coloring of $E(K_n)$ such that no monochromatic copy of *G* or *H* exists?

Stanisław P. Radziszowski

Derrick Stolee (ISU)

LP Approach to MMS Conjecture

Determine if certain **combinatorial objects** exist with given **structural** or **extremal** properties.

Example: What properties do **uniquely** *H***-saturated graphs** exhibit?

Paul S. Wenger

Most "combinatorial" objects are finite.

Most "combinatorial" objects are finite.

We can necessarily enumerate all examples up to a point.

Most "combinatorial" objects are finite.

We can necessarily enumerate all examples up to a point.

Our goal is to use **proof** and **algorithms** to extend the reach of computer check!

What if the object does not come from a finite space?

Real vectors $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$

Real vectors $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ with $\sum_{i=1}^n x_i \ge 0$.

Real vectors $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ with $\sum_{i=1}^n x_i \ge 0$.

Consider the family of **nonnegative partial sums**: subsets $S \subseteq [n] = \{1, ..., n\}$ such that $\sum_{i \in S} x_i \ge 0$.

Real vectors $\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{R}^n$ with $\sum_{i=1}^n x_i \ge 0$.

Consider the family of **nonnegative partial sums**: subsets $S \subseteq [n] = \{1, ..., n\}$ such that $\sum_{i \in S} x_i \ge 0$.

Consider the family of **nonnegative partial** *k*-sums: subsets $S \in {[n] \choose k}$ such that $\sum_{i \in S} x_i \ge 0$.

A Question

Q: For a nonnegative sum $\sum_{i=1}^{n} x_i \ge 0$, how many partial sums are nonnegative?

The Answer

Theorem (Bier–Manickam, '87) If $\sum_{i=1}^{n} x_i \ge 0$, then there are at least 2^{n-1} nonnegative partial sums $\sum_{i \in S} x_i \ge 0$.

The Answer

Theorem (Bier–Manickam, '87) If $\sum_{i=1}^{n} x_i \ge 0$, then there are at least 2^{n-1} nonnegative partial sums $\sum_{i \in S} x_i \ge 0$.

Example: $x_1 = n - 1$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

The Answer

Theorem (Bier–Manickam, '87) If $\sum_{i=1}^{n} x_i \ge 0$, then there are at least 2^{n-1} nonnegative partial sums $\sum_{i \in S} x_i \ge 0$.

Example: $x_1 = n - 1$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

Theorem. If $\mathcal{F} \subseteq 2^{[n]}$ is an intersecting family, then $|\mathcal{F}| \leq 2^{n-1}$.

Research Question

Q: For a nonnegative sum $\sum_{i=1}^{n} x_i \ge 0$, how many partial *k*-sums are nonnegative?

The Answer?

Conjecture (Manickam–Miklós–Singhi, '88) If $n \ge 4k$ and $\sum_{i=1}^{n} x_i \ge 0$, then there are at least $\binom{n-1}{k-1}$ nonnegative partial *k*-sums $\sum_{i \in S} x_i \ge 0$, where |S| = k.

The Answer?

Conjecture (Manickam–Miklós–Singhi, '88) If $n \ge 4k$ and $\sum_{i=1}^{n} x_i \ge 0$, then there are at least $\binom{n-1}{k-1}$ nonnegative partial *k*-sums $\sum_{i \in S} x_i \ge 0$, where |S| = k.

Example: $x_1 = n - 1$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

The Answer?

Conjecture (Manickam–Miklós–Singhi, '88) If $n \ge 4k$ and $\sum_{i=1}^{n} x_i \ge 0$, then there are at least $\binom{n-1}{k-1}$ nonnegative partial *k*-sums $\sum_{i \in S} x_i \ge 0$, where |S| = k.

Example: $x_1 = n - 1$, $x_2 = \cdots = x_n = -1$. *S* has nonnegative sum if and only if it contains 1.

Theorem (Erdős–Ko–Rado, '61) If $n \ge 2k$ and $\mathcal{F} \subseteq {\binom{[n]}{k}}$ is an intersecting family, then $|\mathcal{F}| \le {\binom{n-1}{k-1}}$.

Why $n \ge 4k$?

Why $n \ge 4k$?

For
$$k \ge 2$$
 and $n = 3k + 1$, we have $\binom{n-3}{k} < \binom{n-1}{k-1}$, and
 $x_1 = \dots = x_{n-3} = 3$, $x_{n-2} = x_{n-1} = x_n = -(n-3)$

has $\binom{n-3}{k}$ nonnegative *k*-sums.

Why $n \ge 4k$?

For
$$k \ge 2$$
 and $n = 3k + 1$, we have $\binom{n-3}{k} < \binom{n-1}{k-1}$, and $x_1 = \dots = x_{n-3} = 3$, $x_{n-2} = x_{n-1} = x_n = -(n-3)$

has $\binom{n-3}{k}$ nonnegative *k*-sums.

A: 4 is the next integer.

It works eventually!

Definition Let g(n, k) be the minimum number of nonnegative *k*-sums in a nonnegative sum $\sum_{i=1}^{n} x_i \ge 0$.

Theorem (Bier–Manickam, '87) There exists a minimum integer f(k) such that $g(n, k) = \binom{n-1}{k-1}$ for all $n \ge f(k)$.

...eventually...

Bier-Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Bier–Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam–Miklós, '88:
 $f(k) \le (k-1)(k^k + k^2) + k$

Bier–Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam–Miklós, '88:
 $f(k) \le (k-1)(k^k + k^2) + k$
Bhattacharya, '03:
 $f(k) \le 2^{k+1}e^kk^{k+1}$

Bier-Manickam, '87:

$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$

Manickam-Miklós, '88:
 $f(k) \le (k-1)(k^k + k^2) + k$
Bhattacharya, '03:
 $f(k) \le 2^{k+1}e^kk^{k+1}$
Tyomkyn, '12:
 $f(k) \le k^2(4e\log k)^k$

Bier-Manickam, '87:
$$f(k) \leq k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$
Manickam-Miklós, '88: $f(k) \leq (k-1)(k^k + k^2) + k$ Bhattacharya, '03: $f(k) \leq 2^{k+1}e^kk^{k+1}$ Tyomkyn, '12: $f(k) \leq k^2(4e\log k)^k$ Alon, Huang, Sudakov, '12:

Bier-Manickam, '87:
$$f(k) \leq k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$
Manickam-Miklós, '88: $f(k) \leq (k-1)(k^k + k^2) + k$ Bhattacharya, '03: $f(k) \leq 2^{k+1}e^kk^{k+1}$ Tyomkyn, '12: $f(k) \leq k^2(4e\log k)^k$ Alon, Huang, Sudakov, '12: $f(k) \leq \min\{33k^2, 2k^3\}$ Pokrovskiy '13: $f(k) \leq 10^{46}k$

Bier-Manickam, '87:
$$f(k) \le k(k-1)^k(k-2)^k + k(k-1)^2(k-2) + k^2$$
Manickam-Miklós, '88: $f(k) \le (k-1)(k^k + k^2) + k$ Bhattacharya, '03: $f(k) \le 2^{k+1}e^kk^{k+1}$ Tyomkyn, '12: $f(k) \le k^2(4e\log k)^k$ Alon, Huang, Sudakov, '12: $f(k) \le \min\{33k^2, 2k^3\}$ Pokrovskiy '13: $f(k) \le 10^{46}k$ Blinovsky '13?: $f(k) \le 2^k + 1e^kk^k$

Fixed k

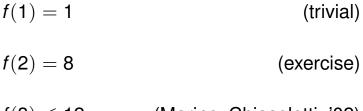
f(1) = 1

(trivial)

Fixed k

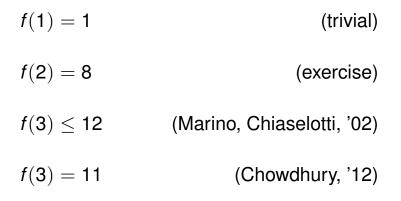
f(1) = 1(trivial)f(2) = 8(exercise)

Fixed k



$f(3) \le 12$ (Marino, Chiaselotti, '02)

Fixed k



The Conjecture **Previous Results** Fixed k f(1) = 1(trivial) f(2) = 8(exercise) $f(3) \le 12$ (Marino, Chiaselotti, '02) (Chowdhury, '12) f(3) = 11f(4) < 24(Chowdhury, '12)

f(4) = 14

$$f(4) = 14$$

 $f(5) = 17$

$$f(4) = 14$$

 $f(5) = 17$

$$f(6) = 20$$

$$f(4) = 14$$

 $f(5) = 17$
 $f(6) = 20$
 $f(7) = 23$

$$f(4) = 14$$

 $f(5) = 17$
 $f(6) = 20$
 $f(7) = 23$
 $f(k) = 3k + 2 \text{ for } 2 \le k \le 7.$

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector $\mathbf{x} = (x_1, \dots, x_n)$ with

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector $\mathbf{x} = (x_1, \dots, x_n)$ with

$$1. \sum_{i=1}^n x_i \ge 0,$$

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector $\mathbf{x} = (x_1, \dots, x_n)$ with

$$1. \sum_{i=1}^n x_i \ge 0,$$

2. $x_1 \ge x_2 \ge \cdots \ge x_n$, (Say $\mathbf{x} = (x_1, \dots, x_n) \in F_n$)

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector $\mathbf{x} = (x_1, \dots, x_n)$ with

$$1. \sum_{i=1}^n x_i \ge 0,$$

2.
$$x_1 \ge x_2 \ge \cdots \ge x_n$$
, (Say $\mathbf{x} = (x_1, \dots, x_n) \in F_n$)

3. and strictly less than *t* nonnegative *k*-sums.

For a given *n* and *k*, we verify $g(n, k) \ge t$ by looking for a vector $\mathbf{x} = (x_1, \dots, x_n)$ with

$$1. \sum_{i=1}^n x_i \ge 0,$$

2.
$$x_1 \ge x_2 \ge \cdots \ge x_n$$
, (Say $\mathbf{x} = (x_1, \dots, x_n) \in F_n$)

3. and strictly less than *t* nonnegative *k*-sums.

Lemma (Chowdhury, '12)

If
$$g(n,k) = \binom{n-1}{k-1}$$
, then $g(n+k,k) = \binom{n+k-1}{k-1}$.

The Endgame

If we find $g(n, k) = \binom{n-1}{k-1}$ for k consecutive values of n, then we are done!

The Endgame

If we find $g(n, k) = \binom{n-1}{k-1}$ for *k* consecutive values of *n*, then we are done!

Theorem (Bier-Manickam, '87)

If k divides n, then
$$g(n, k) = \binom{n-1}{k-1}$$
.

Multiples of k

Theorem (Bier–Manickam, '87) If k divides n, then $g(n, k) = \binom{n-1}{k-1}$.

Theorem (Baranyai, '75) If *k* divides *n*, then K_n^k decomposes into $\binom{n-1}{k-1}$ perfect matchings $M_1, \ldots, M_{\binom{n-1}{k-1}}$.

Multiples of k

Theorem (Bier–Manickam, '87) If k divides n, then $g(n, k) = \binom{n-1}{k-1}$.

Theorem (Baranyai, '75) If *k* divides *n*, then K_n^k decomposes into $\binom{n-1}{k-1}$ perfect matchings $M_1, \ldots, M_{\binom{n-1}{k-1}}$.

For each matching M_j , $\sum_{S \in M_j} \sum_{i \in S} x_i$

Multiples of k

Theorem (Bier–Manickam, '87) If k divides n, then $g(n, k) = \binom{n-1}{k-1}$.

Theorem (Baranyai, '75) If *k* divides *n*, then K_n^k decomposes into $\binom{n-1}{k-1}$ perfect matchings $M_1, \ldots, M_{\binom{n-1}{k-1}}$.

For each matching
$$M_j$$
, $\sum_{S \in M_j} \sum_{i \in S} x_i = \sum_{i=1}^n x_i$

Multiples of k

Theorem (Bier–Manickam, '87) If k divides n, then $g(n, k) = \binom{n-1}{k-1}$.

Theorem (Baranyai, '75) If *k* divides *n*, then K_n^k decomposes into $\binom{n-1}{k-1}$ perfect matchings $M_1, \ldots, M_{\binom{n-1}{k-1}}$.

For each matching
$$M_j$$
, $\sum_{S \in M_j} \sum_{i \in S} x_i = \sum_{i=1}^n x_i \ge 0$.

$x_1 \geq x_2 \geq x_3 \geq x_4 \geq x_5 \geq x_6 \geq x_7 \geq x_8$

$x_1 \geq x_2 \geq x_3 \geq x_4 \geq x_5 \geq x_6 \geq x_7 \geq x_8$ T T T

<i>x</i> ₁	\geq	<i>x</i> ₂	\geq	<i>X</i> 3	\geq	<i>x</i> ₄	\geq	<i>X</i> 5	\geq	<i>x</i> ₆	\geq	X 7	\geq	<i>x</i> 8
S		S		Т				Т				S		Т

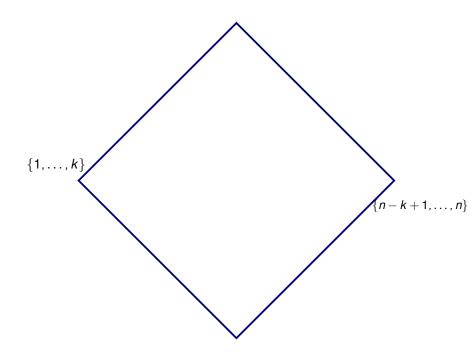
Define $S \succeq T$ (S is to the left of T) if

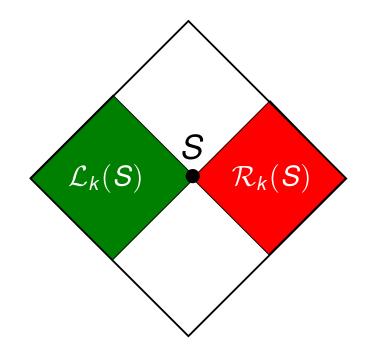
 $S = \{i_1 \leq i_2 \leq \cdots \leq i_k\}, T = \{j_1 \leq j_2 \leq \cdots \leq j_k\},\$

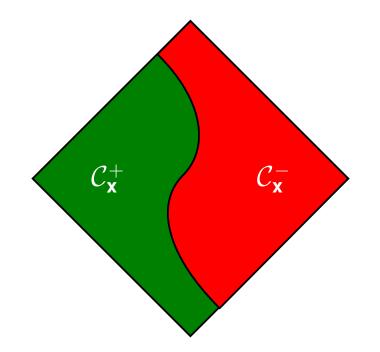
and $i_{\ell} \leq \underline{j}_{\ell}$ for all $\ell \in \{1, \ldots, k\}$.

Equivalently:

$$x_{i_\ell} \ge x_{j_\ell}$$
 for all $\ell \in \{1, \dots, k\}$ and all $\mathbf{x} \in F_n$.







MMSSearch(n,k,t, A^+, A^-):

Determine if there is an $\mathbf{x} \in F_n$ with $C_{\mathbf{x}}^+ \supseteq \mathcal{A}^+, C_{\mathbf{x}}^- \supseteq \mathcal{A}^-$, and fewer than t nonnegative k-sums

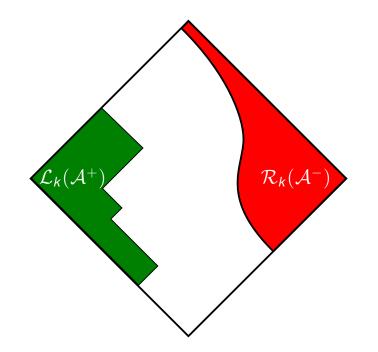
if $|\mathcal{L}_k(\mathcal{A}^+)| \ge t$ then return Null end if

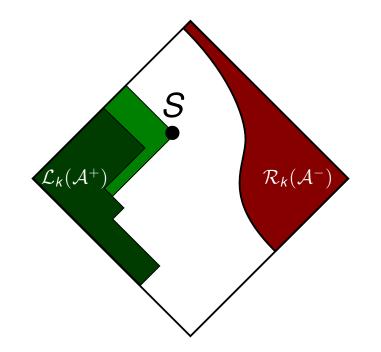
if
$$\mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-) = \binom{[n]}{k}$$
 then output $(\mathcal{A}^+, \mathcal{A}^-)$ end if

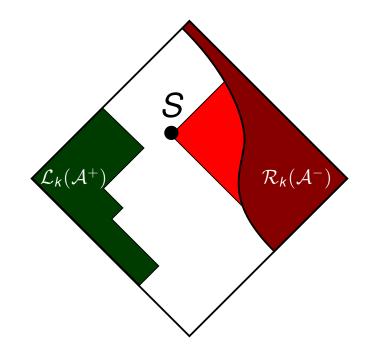
Select $S \notin \mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$

call MMSSearch($n, k, t, A^+ \cup \{S\}, A^-$)

call MMSSearch($n, k, t, A^+, A^- \cup \{S\}$)







Refining the Algorithm

Even if $\mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$ is a partition of the *k*-sets, there **may not** exist a vector $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ = \mathcal{L}_k(\mathcal{A}^+)$.

Refining the Algorithm

Even if $\mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$ is a partition of the *k*-sets, there **may not** exist a vector $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ = \mathcal{L}_k(\mathcal{A}^+)$.

We need a connection between the discrete and continuous!

The Linear Program

$$\begin{aligned} \mathcal{P}(k, n, \mathcal{A}^+, \mathcal{A}^-) &: \\ \text{minimize} & x_1 \\ \text{subject to} & \sum_{i=1}^n x_i \geq 0 \\ x_i - x_{i+1} \geq 0 & \forall i \in \{1, \dots, n-1\} \\ & \sum_{i \in \mathcal{S}} x_i \geq 0 & \forall \mathcal{S} \in \mathcal{A}^+ \\ & \sum_{i \in \mathcal{T}} x_i \leq -1 & \forall \mathcal{T} \in \mathcal{A}^- \\ & x_1, \dots, x_n \in \mathbb{R} \end{aligned}$$

Linear Programming Formulation

Lemma (Hartke, Stolee, '13+) Fix subsets \mathcal{A}^+ , $\mathcal{A}^- \subset {[n] \choose k}$.

Linear Programming Formulation

Lemma (Hartke, Stolee, '13+) Fix subsets \mathcal{A}^+ , $\mathcal{A}^- \subset \binom{[n]}{k}$.

There exists a vector $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ \supseteq \mathcal{A}^+$ and $\mathcal{C}_{\mathbf{x}}^- \supseteq \mathcal{A}^-$ if and only if $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^-)$ has a nonempty feasible set.

MMSSearch(n, k, t, A^+, A^-): Determine if there is an $\mathbf{x} \in F_n$ with $C_{\mathbf{x}}^+ \supseteq A^+, C_{\mathbf{x}}^- \supseteq A^-$, and fewer than t nonnegative k-sums

if $|\mathcal{L}_k(\mathcal{A}^+)| \ge t$ or $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^-)$ is infeasible then return Null end if

end if

if solution to $\mathcal{P}(n, k\mathcal{A}^+, \mathcal{A}^-)$ has fewer than *t* nonnegative *k*-sums then

output solution to $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^-)$ end if

Select $S \notin \mathcal{L}_k(\mathcal{A}^+) \cup \mathcal{R}_k(\mathcal{A}^-)$

call MMSSearch($n, k, t, A^+ \cup \{S\}, A^-$)

call MMSSearch($n, k, t, A^+, A^- \cup \{S\}$)

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

```
Lemma. If |\mathcal{L}_k(\mathcal{S})| \ge t, then \sum_{i \in \mathcal{S}} x_i < 0.
```

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(\mathcal{S})| \ge t$, then $\sum_{i \in \mathcal{S}} x_i < 0$.

Lemma. If $t \le \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k, k) \ge t$, then $\sum_{i \in S} x_i < 0$.

Proof. Let $T = \{1, n - k + 2, ..., n\}.$

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(\mathcal{S})| \ge t$, then $\sum_{i \in \mathcal{S}} x_i < 0$.

Lemma. If $t \le \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k, k) \ge t$, then $\sum_{i \in S} x_i < 0$.

Proof. Let $T = \{1, n - k + 2, ..., n\}$. $|\mathcal{L}_k(T)| = \binom{n-1}{k-1}$, so $\sum_{i \in T} x_i < 0$.

Assume $\mathbf{x} \in F_n$ has fewer than *t* nonnegative *k*-sums.

Lemma. If $|\mathcal{L}_k(\mathcal{S})| \ge t$, then $\sum_{i \in \mathcal{S}} x_i < 0$.

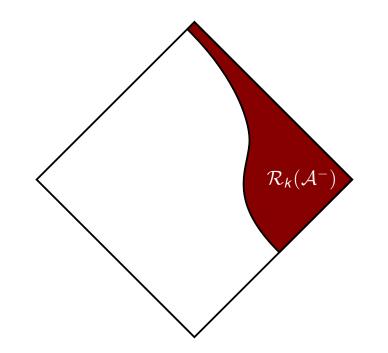
Lemma. If $t \le \binom{n-1}{k-1}$, $1 \in S$, and $|\mathcal{L}_k(S)| + g(n-k, k) \ge t$, then $\sum_{i \in S} x_i < 0$.

Proof. Let $T = \{1, n - k + 2, ..., n\}$. $|\mathcal{L}_k(T)| = \binom{n-1}{k-1}$, so $\sum_{i \in T} x_i < 0$.

$$x_{1} \ge x_{2} \ge x_{3} \ge x_{4} \ge x_{5} \ge x_{6} \ge x_{7} \ge x_{8} \ge x_{9} \ge x_{10} \ge x_{11} \ge x_{12}$$
$$T \qquad T \qquad T \qquad T \qquad T$$

Thus there are at least g(n - k, k) nonnegative *k*-sums with min coordinate at least 2.

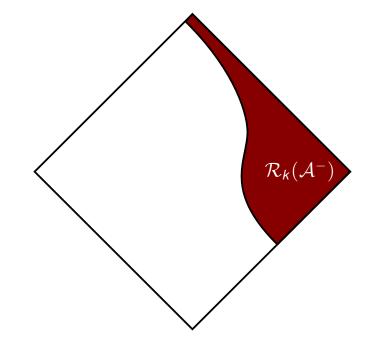
Derrick Stolee (ISU)

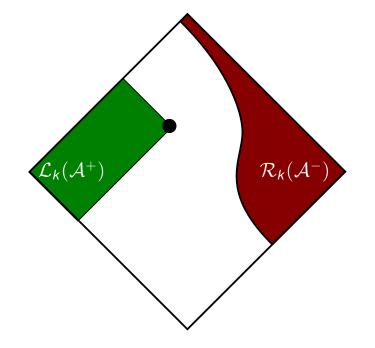


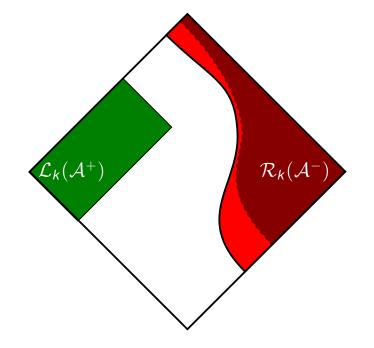
Learning more about \mathcal{A}^-

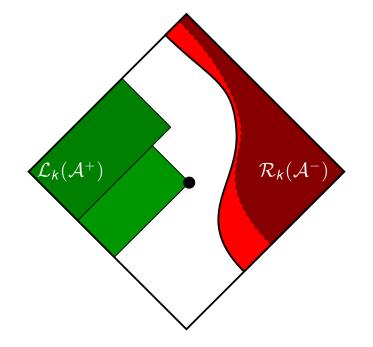
Define
$$L^*(S) = |\mathcal{L}_k(S) \setminus \mathcal{L}_k(\mathcal{A}^+)|.$$

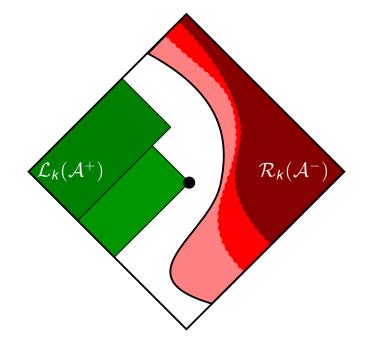
Lemma. If $L^*(S) + |\mathcal{L}_k(\mathcal{A}^+)| \ge t$, then $\sum_{i \in S} x_i < 0$ for all $\mathbf{x} \in F_n$ with $\mathcal{C}^+_{\mathbf{x}} \supseteq \mathcal{A}^+$.

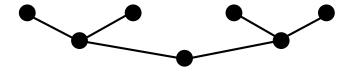


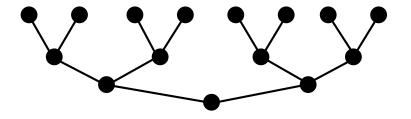


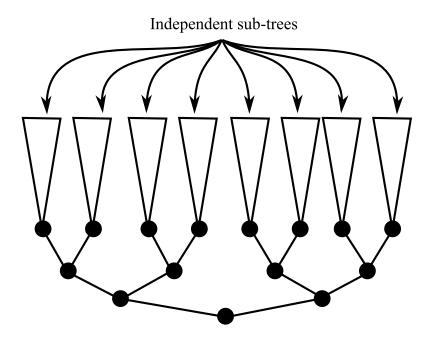


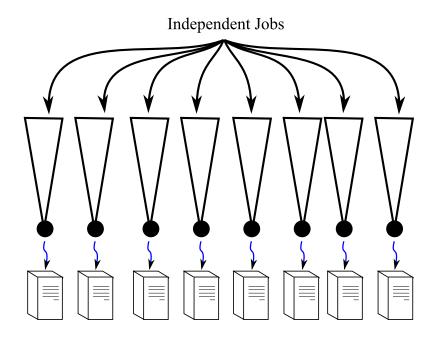










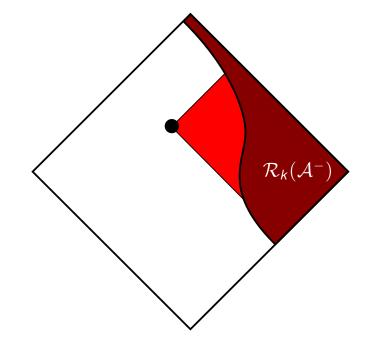


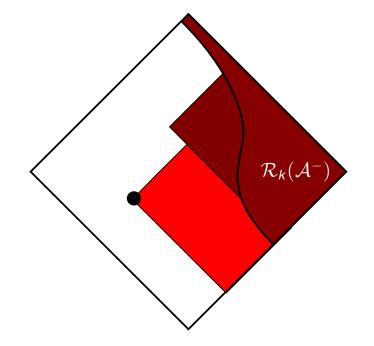
Implementation

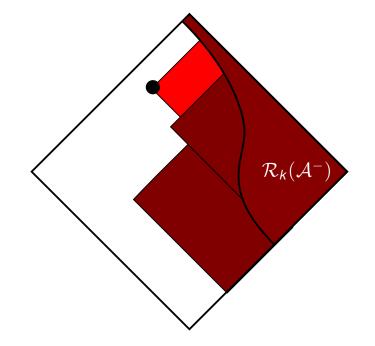
My TreeSearch library enables parallelization in the Condor scheduler.

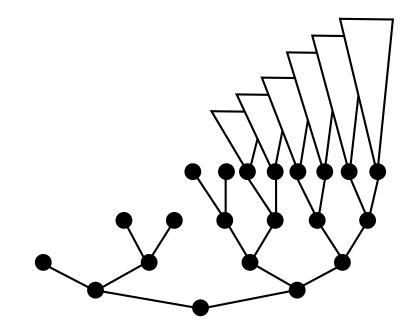
Executes on the **Open Science Grid**, a collection of supercomputers around the country.

Open Science Grid









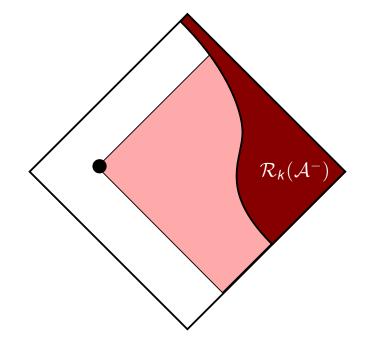
Learning More About \mathcal{A}^+

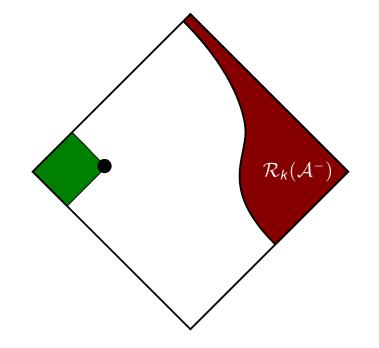
If $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^- \cup \{S\})$ is infeasible, then all vectors $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ \supseteq \mathcal{A}^+$ and $\mathcal{C}_{\mathbf{x}}^- \supseteq \mathcal{A}^-$ have $\sum_{i \in S} x_i \ge 0$.

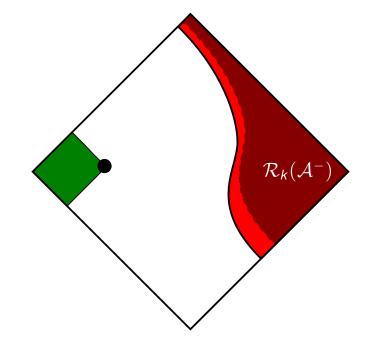
Learning More About \mathcal{A}^+

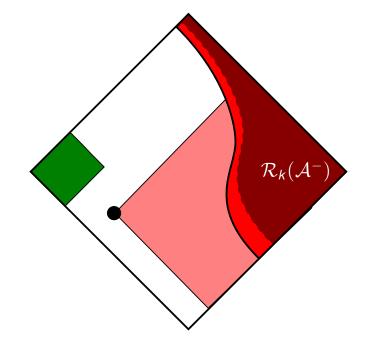
If $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^- \cup \{S\})$ is infeasible, then all vectors $\mathbf{x} \in F_n$ with $\mathcal{C}_{\mathbf{x}}^+ \supseteq \mathcal{A}^+$ and $\mathcal{C}_{\mathbf{x}}^- \supseteq \mathcal{A}^-$ have $\sum_{i \in S} x_i \ge 0$.

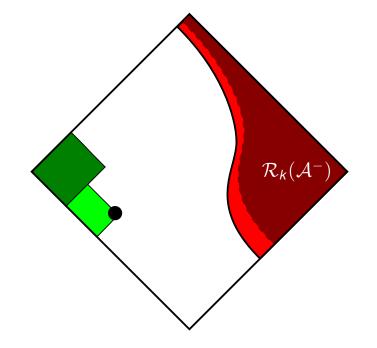
We add such sets *S* to \mathcal{A}^+ .

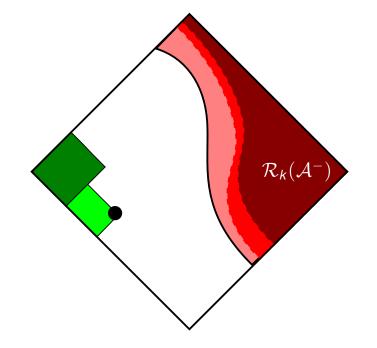












Computer-Generated Proof that $g(11, 3) = \binom{10}{2} = 45$

Proof.

Computer-Generated Proof that $g(11,3) = \binom{10}{2} = 45$

Proof. The following sums must be strictly negative or we have at least 45 of nonnegative sets:

Computer-Generated Proof that $g(11,3) = \binom{10}{2} = 45$

Proof. The following sums must be strictly negative or we have at least 45 of nonnegative sets:

$x_1 + x_6 + x_{11}$	$x_1 + x_8 + x_{10}$	$x_2 + x_5 + x_{11}$
$x_2 + x_6 + x_{10}$	$x_2 + x_7 + x_9$	$x_3 + x_4 + x_{11}$
$x_3 + x_5 + x_9$	$x_3 + x_7 + x_8$	$x_4 + x_6 + x_8$

The following sums must be nonnegative or else the associated linear program becomes infeasible:

$$x_4 + x_6 + x_7$$
 $x_4 + x_5 + x_8$ $x_3 + x_4 + x_{10}$

Computer-Generated Proof that $g(11,3) = \binom{10}{2} = 45$

Proof. The following sums must be strictly negative or we have at least 45 of nonnegative sets:

$x_1 + x_6 + x_{11}$	$x_1 + x_8 + x_{10}$	$x_2 + x_5 + x_{11}$
$x_2 + x_6 + x_{10}$	$x_2 + x_7 + x_9$	$x_3 + x_4 + x_{11}$
$x_3 + x_5 + x_9$	$x_3 + x_7 + x_8$	$x_4 + x_6 + x_8$

The following sums must be nonnegative or else the associated linear program becomes infeasible:

$$x_4 + x_6 + x_7$$
 $x_4 + x_5 + x_8$ $x_3 + x_4 + x_{10}$

These positive sets now force at least 56 nonnegative 3-sums, and our target was 45 nonnegative 3-sums. $\hfill\square$

Learning More About \mathcal{A}^+

If $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^- \cup \{S\})$ is infeasible, then all vectors $\mathbf{x} \in F_n$ with $\mathcal{C}^+_{\mathbf{x}} \supseteq \mathcal{A}^+$ and $\mathcal{C}^- \supseteq \mathcal{A}^-$ have $\sum_{i \in S} x_i < 0$.

So, we can add such sets *S* to A^+ .

How do we find such sets?

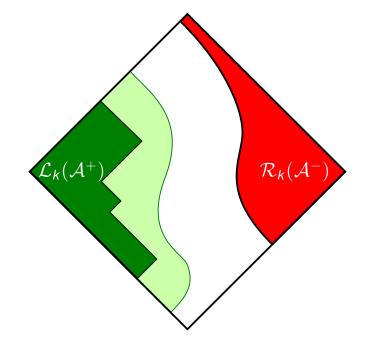
Learning More About \mathcal{A}^+

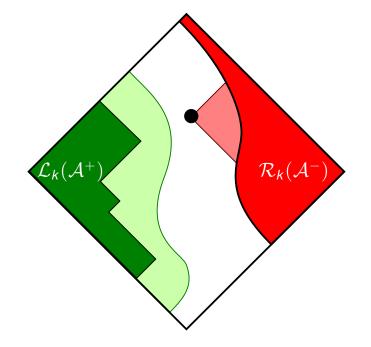
If $\mathcal{P}(n, k, \mathcal{A}^+, \mathcal{A}^- \cup \{S\})$ is infeasible, then all vectors $\mathbf{x} \in F_n$ with $\mathcal{C}^+_{\mathbf{x}} \supseteq \mathcal{A}^+$ and $\mathcal{C}^- \supseteq \mathcal{A}^-$ have $\sum_{i \in S} x_i < 0$.

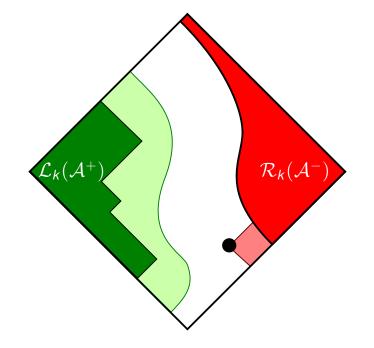
So, we can add such sets *S* to A^+ .

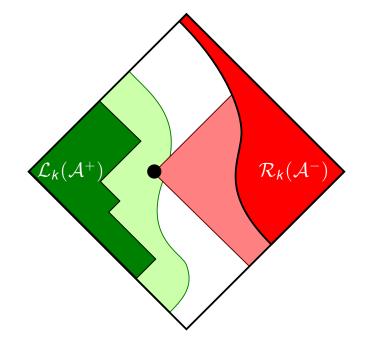
How do we find such sets?

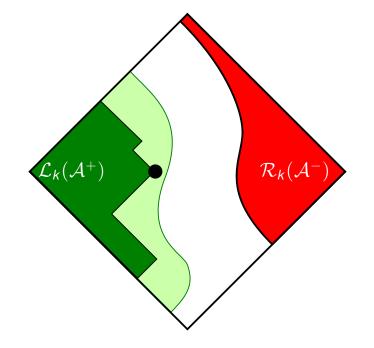
We randomly sample a set S to test.

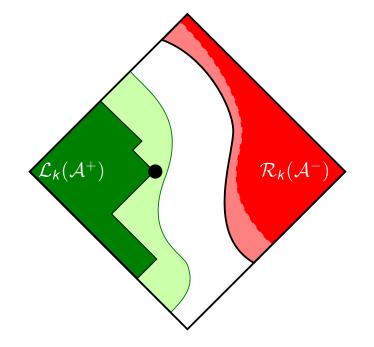


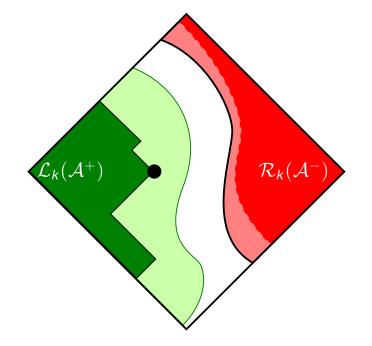












Our Results

After executing our full algorithm, we discover g(n, k) for all $k \in \{3, 4, 5, 6, 7\}$ and all n.

Our Results

After executing our full algorithm, we discover g(n, k) for all $k \in \{3, 4, 5, 6, 7\}$ and all n.

We also know of **sharp examples**: $\mathbf{x} \in F_n$ with exactly g(n, k) nonnegative *k*-sums!

Sharp Examples

All of our examples have the form

$$\mathbf{x} = a^b \; (-b)^a$$

for a + b = n, where **x** is given as

$$\underbrace{x_1 = \cdots = x_b = a}_{b \text{ copies of } a}, \qquad \underbrace{x_{b+1} = \cdots = x_n = -b}_{a \text{ copies of } -b}$$

Sharp Examples

$$(n-1)^1 \ (-1)^{n-1}$$

has $\binom{n-1}{k-1}$ nonnegative *k*-sums.

$$3^{n-3} (-(n-3))^3$$

has $\binom{n-3}{k}$ nonnegative *k*-sums when n > 3k.

k	n	g (n , k)	Sharp Example
6	7	1	1 ⁶ (-6) ¹
6	8	7	$1^7 (-7)^1$
6	9	28	1 ⁸ (-8) ¹
6	10	70	8 ² (-2) ⁸
6	11	126	9 ² (-2) ⁹
6	12	462	11 ¹ (-1) ¹¹
6	13	462	2 ¹¹ (-11) ²
6	14	924	$2^{12} (-12)^2$
6	15	1705	$12^3 \ (-3)^{12}$
6	16	2431	13 ³ (-3) ¹³
6	17	3367	$14^3 (-3)^{14}$
6	18	6188	$17^1 \ (-1)^{17}$
6	19	8008	3 ¹⁶ (-16) ³

Strong Examples

A vector is strong if $x_1 + \sum_{i=n-k+2}^n x_i < 0$.

k	n	Strong Example
6	20	3 ¹⁷ (-17) ³
6	21	17 ⁴ (-4) ¹⁷
6	22	18 ⁴ (-4) ¹⁸
6	23	19 ⁴ (-4) ¹⁹
6	24	33 ¹ 1 ¹⁶ (-7) ⁷
6	25	$104^1 \ 4^{16} \ (-21)^8$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

For $k \le 250$, the largest examples with fewer than $\binom{n-1}{k-1}$ nonnegative *k*-sums are of the form $3^{n-3} (-(n-3))^3$.

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

For $k \le 250$, the largest examples with fewer than $\binom{n-1}{k-1}$ nonnegative *k*-sums are of the form $3^{n-3} (-(n-3))^3$.

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

For $k \le 250$, the largest examples with fewer than $\binom{n-1}{k-1}$ nonnegative *k*-sums are of the form $3^{n-3} (-(n-3))^3$.

$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

For $k \le 250$, the largest examples with fewer than $\binom{n-1}{k-1}$ nonnegative *k*-sums are of the form $3^{n-3} (-(n-3))^3$.

$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

For $k \le 250$, the largest examples with fewer than $\binom{n-1}{k-1}$ nonnegative *k*-sums are of the form $3^{n-3} (-(n-3))^3$.

$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.1$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

For $k \le 250$, the largest examples with fewer than $\binom{n-1}{k-1}$ nonnegative *k*-sums are of the form $3^{n-3} (-(n-3))^3$.

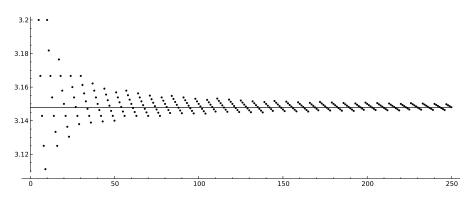
$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.14$$

Conjecture (Hartke, Stolee, '13+) For all $k \ge 2$, and n < 4k, the least number of nonnegative *k*-sums in a **strong** vector $\mathbf{x} \in F_n$ is achieved by a vector of the form $a^b (-b)^a$.

For $k \le 250$, the largest examples with fewer than $\binom{n-1}{k-1}$ nonnegative *k*-sums are of the form $3^{n-3} (-(n-3))^3$.

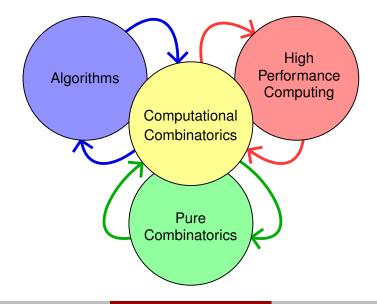
$$\lim_{k\to\infty}\frac{f(k)}{k}=\lim_{k\to\infty}\frac{N_k}{k}=3.147899...$$

Our Conjecture



Values of N_k/k for $k \in \{5, \ldots, 250\}$.

Computational Combinatorics



A Linear Programming Approach to the Manickam-Miklós-Singhi Conjecture

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

November 7, 2013 Rochester Institute of Technology