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-
Computational Combinatorics

Computational Combinatorics is using a combination of

@ pure mathematics,
@ algorithms, and
@ computational resources

to solve problems in pure combinatorics by

@ providing evidence for conjectures,
@ finding examples and counterexamples, and
@ discovering and proving theorems.
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]
Research Goal

Determine if certain combinatorial objects exist with given
structural or extremal properties.
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]
Research Goal

Determine if certain combinatorial objects exist with given
structural or extremal properties.

Examples:
@ Is there a projective plane of order 107?

@ When do strongly regular graphs exist?

© How many Steiner triple systems are there of order 19?
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]
Research Goal

Determine if certain combinatorial objects exist with given
structural or extremal properties.

Examples:

@ Is there a projective plane of order 107?
(Lam, Thiel, Swiercz, 1989)

@ When do strongly regular graphs exist?
(Spence 2000, Coolsaet, Degraer, Spence 2006, many others)

© How many Steiner triple systems are there of order 19?
(Kaski, Ostergard, 2004)
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]
Research Goal

Determine if certain combinatorial objects exist with given
structural or extremal properties.

Example: Does there exist a 2-coloring of E(K}) such that no
monochromatic copy of G or H exists?

Stanistaw P. Radziszowski
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]
Research Goal

Determine if certain combinatorial objects exist with given
structural or extremal properties.

Example: What properties do uniquely H-saturated graphs
exhibit?

Paul S. Wenger



|
Combinatorial Objects

Most “combinatorial” objects are finite.
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Most “combinatorial” objects are finite.

We can necessarily enumerate all examples up to a point.
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|
Combinatorial Objects

Most “combinatorial” objects are finite.

We can necessarily enumerate all examples up to a point.

Our goal is to use proof and algorithms to extend the reach of
computer check!
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|
Combinatorial Objects

What if the object does not come from a finite space?
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Combinatorial Object

Real vectors x = (xq,...,Xn) € R"
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Combinatorial Object

Real vectors x = (Xy,..., Xs) € R" with Y74 x; > 0.
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Combinatorial Object

Real vectors x = (xq, ..., Xn) € R"with Y7 4 x; > 0.

Consider the family of nonnegative partial sums:
subsets S C [n] = {1,..., n} such that ;g x; > 0.
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Combinatorial Object

Real vectors x = (xq, ..., Xn) € R"with Y7 4 x; > 0.

Consider the family of nonnegative partial sums:
subsets S C [n] = {1,..., n} such that ;g x; > 0.

Consider the family of nonnegative partial k-sums:
subsets S € ([Z]) such that ;.5 x; > 0.
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A Question

Q: For a nonnegative sum Y ; x; > 0, how many
partial sums are nonnegative?
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Nonnegative Sums
The Answer

Theorem (Bier-Manickam, ’87) If Y/, x; > 0, then there are
at least 2"~ nonnegative partial sums ¥;cg x; > 0.
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Nonnegative Sums
The Answer

Theorem (Bier-Manickam, ’87) If Y/, x; > 0, then there are
at least 2"~ nonnegative partial sums ¥;cg x; > 0.

Example: xi =n—1, xo=---=x,=—1.
S has nonnegative sum if and only if it contains 1.
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The Conjecture Nonnegative Sums

The Answer

Theorem (Bier-Manickam, ’87) If Y/, x; > 0, then there are
at least 2"~ nonnegative partial sums ¥;cg x; > 0.

Example: xi =n—1, xo=---=x,=—1.
S has nonnegative sum if and only if it contains 1.

Theorem. If F C 27 is an intersecting family, then | F| < 271,
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Research Question

Q: For a nonnegative sum Y ; x; > 0, how many
partial k-sums are nonnegative?
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Nonnegative k-Sums
The Answer?

Conjecture (Manickam-Mikl6s—Singhi, ’88) If n > 4k and
Y1 X; > 0, then there are at least (,’zj) nonnegative partial
k-sums Y ;cs x; > 0, where |S| = k.
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Nonnegative k-Sums
The Answer?

Conjecture (Manickam-Mikl6s—Singhi, ’88) If n > 4k and
Y1 X; > 0, then there are at least (,’zj) nonnegative partial
k-sums Y ;cs x; > 0, where |S| = k.

Example: xi =n—1, xo=---=x,=—1.
S has nonnegative sum if and only if it contains 1.

Theorem (Erdés—Ko—Rado, 61) If n> 2k and F C (1)) is an
intersecting family, then | F| < (7_1).
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Why n > 4k?
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Why n > 4k?

For k > 2and n = 3k + 1, we have (", %) < (7-1), and
X.I:...:Xn_S:S’ Xn_2:Xn_1:Xn:_(n_3)

has (", %) nonnegative k-sums.
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Why n > 4k?

For k > 2and n = 3k + 1, we have (", %) < (7-1), and
X‘IZ"':X/’]—S:S, Xn_2:Xn_1:Xn:_(n_3)

has (", %) nonnegative k-sums.

A: 4 is the next integer.
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iz ks
It works eventually!

Definition Let g(n, k) be the minimum number of nonnegative k-sums
in a nonnegative sum Y, x; > 0.

Theorem (Bier-Manickam, '87) There exists a minimum integer f(k)
such that g(n, k) = (-1 for all n > (k).
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Previous Results
...eventually...

Bier—Manickam, '87:

f(k) < k(k — 1)Kk —2)k + k(k —1)?(k — 2) + k2
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Previous Results
...eventually...
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Manickam-Miklds, '88: f(k) < (k—1)(KK+ Kk?) + k

Bhattacharya, '03: f(k) < 2k+1gkpk+1
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...eventually...
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Previous Results
...eventually...

Bier—Manickam, ’87:
f(k) < k(k — 1)Kk =2k + k(k —1)%(k — 2) + K2

Manickam-Miklds, '88: f(k) < (k—1)(KK+ Kk?) + k
Bhattacharya, '03: f(k) < 2k+1gkpk+1
Tyomkyn, '12: f(k) < k?(4elog k)k
Alon, Huang, Sudakov, '12: f(k) < min{33k2, 2k3}
Pokrovskiy *13: f(k) < 10%k
Blinovsky *132: F(K) < 4k
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Previous Results
Fixed k

f(1) = 1 (trivial)
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Previous Results
Fixed k

f(1) = 1 (trivial)

f(2) =8 (exercise)
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Previous Results
Fixed k

f(1) =1 (trivial)
f(2) =8 (exercise)

f(3) <12 (Marino, Chiaselotti, ’02)
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The Conjecture Previous Results

Fixed k
f(1) = 1
f(2) =8
f(3) < 12
f(3) = 11

Derrick Stolee (ISU)

(trivial)
(exercise)
(Marino, Chiaselotti, ’02)

(Chowdhury, '12)
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The Conjecture Previous Results

Fixed k
f(1) =1
f(2) =8
f(3) < 12
f(3) = 11
f(4) < 24

Derrick Stolee (ISU)

(trivial)

(exercise)

(Marino, Chiaselotti, ’02)
(Chowdhury, '12)

(Chowdhury, '12)

LP Approach to MMS Conjecture
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Our Results
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Our Results

f(4) =14
f(5) =17
f(6) = 20

f(7) = 23
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Our Results

f(4) =14
f(5) =17
f(6) =20
f(7) =23
f(k) =3k+2for2 <k <7.
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Our Method

For a given n and k, we verify g(n, k) > t by looking for a vector
X = (X1,...,Xp) with
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1. ZX,’ZO,
i=1
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Our Method

For a given n and k, we verify g(n, k) > t by looking for a vector
X = (X1,...,Xp) with

n
PSR
2X1

> Xo > - > Xp, (Say X = (Xq,...,Xn) € Fp)
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Our Method

For a given n and k, we verify g(n, k) > t by looking for a vector
X = (X1,...,Xp) with

n
1. ZX,’ZO,
i=1

2. X4 2 Xp >+ > Xp, (Say X = (Xq1,...,Xp) € Fp)
3. and strictly less than t nonnegative k-sums.
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Our Method

For a given n and k, we verify g(n, k) > t by looking for a vector
X = (X1,...,Xp) with

n
1. ZX,’ZO

2. X1 > Xp >+ > Xp, (Say x = (xq,..., Xn) € Fp)
3. and strictly less than t nonnegative k-sums.

Lemma (Chowdhury, ’12)

If g(n, k) = <Z_1) then g(n+ k, k) = (”:ff)
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iz ks
The Endgame

If we find g(n, k) = (Zj) for k consecutive values of n, then we
are done!
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iz ks
The Endgame

If we find g(n, k) = Zj) for k consecutive values of n, then we
are done!

Theorem (Bier-Manickam, '87)

If k divides n, then g(n, k) = <Z: 1)
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iz ks
Multiples of k

Theorem (Bier—Manickam, '87) If k divides n, then g(n, k) = (Z:]).

Theorem (Baranyai, '75) If k divides n, then KX decomposes into
(k1) perfect matchings M, ..., Mo-1).

k—1
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Theorem (Bier—Manickam, '87) If k divides n, then g(n, k) = (Z:]).

Theorem (Baranyai, '75) If k divides n, then KX decomposes into
(k1) perfect matchings M, ..., Mo-1).

k—1

For each matching M;, ) ) X
SeM; ieS
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iz ks
Multiples of k

Theorem (Bier—Manickam, '87) If k divides n, then g(n, k) = (Z:]).

Theorem (Baranyai, '75) If k divides n, then KX decomposes into
(k1) perfect matchings M, ..., Mo-1).

k—1

n
For each matching M;, ) Y xi=) X
SeM; ieS i=1
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iz ks
Multiples of k

Theorem (Bier—Manickam, '87) If k divides n, then g(n, k) = (Z:]).

Theorem (Baranyai, '75) If k divides n, then KX decomposes into
(k1) perfect matchings M, ..., Mo-1).

k—1

n
For each matching M;, ) Y x;=) x >0.
SeM; ieS i=1
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Our Method (Again)

Xt 2 Xo 2 X3 2> X4 =2 X5 > Xg = X7 > Xg
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Our Method (Again)

Xt =2 X2 =2 X3 = X4 = X5 = Xg = X7 = Xs

T T T

Derrick Stolee (ISU) LP Approach to MMS Conjecture 22/55



Our Method (Again)

Xt =2 X2 =2 X3 = X4 = X5 = Xg = X7 = Xs

S S T T S T
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Our Method (Again)

X 2 X2 = X3 = X4 = X5 = Xg

Vv

X7

S S T T S T

Vv

X3

Define S = T (Sis to the left of T) if
S={1<hb< - <} T={1<p<-<jk}
and iy < jyforall /e {1,..., k}.

Equivalently:

x, > x;, forall £ e {1,..., k} and all x € Fy.
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The Algorithm

MMSSearch(n,k,t, A*, A7):
Determine if there is anx € F, withCy O At,Cx D A™,
and fewer than t nonnegative k-sums

if |[Lx(AT)| > tthen
return Null
end if

if £i(AT)URK(A™) = (') then
output (A", A7)
end if

Select S ¢ Lx(AT)URK(A)
call MMSSearch(n, k, t, AT U{S}, A7)
call MMSSearch(n, k, t, AT, A~ U{S})
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Refining the Algorithm

Evenif Lx(AT)URk(A™) is a partition of the k-sets, there may not
exist a vector x € F, with Cf = Lx(AT).
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Refining the Algorithm

Evenif Lx(AT)URk(A™) is a partition of the k-sets, there may not
exist a vector x € F, with Cf = Lx(AT).

We need a connection between the discrete and continuous!
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The Linear Program

P(k,n, AT, A7) :
minimize X4

n
subjectto ) x>0
e

Xi— Xiir1 >0 \V/IE{1,

EX,‘ZO vSe A"
ieS
ZX/S -1 VT e A~
ieT

X1,....Xp € R
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Linear Programming Formulation

Lemma (Hartke, Stolee, "13+) Fix subsets A+, A~ c (I7).
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Linear Programming Formulation

Lemma (Hartke, Stolee, "13+) Fix subsets A+, A~ c (I7).

There exists a vector x € F, with C O AT and Cy D A~ if and only if
P(n, k, A*, A7) has a nonempty feasible set.
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The Algorithm

MMSSearch(n,k,t, AT, A7):

Determine if there is anx € F, withCy O A1,Cx 2 A~
and fewer than t nonnegative k-sums

if |[Lx(AT)| > torP(n k, A", A") isinfeasible then
return Null

end if

if solution to P(n, kAT, A~) has fewer than t nonnegative k-sums
then

output solution to P(n, k, A", A7)
end if

Select S ¢ Lx(AT)URK(A)
call MMSSearch(n, k,t, AT U {S}, A™)
call MMSSearch(n, k, t, A", A~ U{S})
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Learning a little about A~

Assume x € F, has fewer than t nonnegative k-sums.
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Learning a little about A~
Assume x € F, has fewer than t nonnegative k-sums.

Lemma. If [L4(S)| > t, then Y ;csxi <O.

Lemma. Ift < (}-}), 1€ S, and |Lk(S)| + g(n—k, k) > t, then
YiesXi <0.

Proof. Let T={1,n—k+2,...,n}.
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Learning a little about A~

Assume x € F, has fewer than t nonnegative k-sums.
Lemma. If [L4(S)| > t, then Y ;csxi <O.

Lemma. Ift < (}-}), 1€ S, and |Lk(S)| + g(n—k, k) > t, then
YiesXi <0.

Proof. Let T={1,n—k+2,....n}. |Lk(T)| = (}-1), 80 Licr xi < O.
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Learning a little about A~

Assume x € F, has fewer than t nonnegative k-sums.
Lemma. If [L4(S)| > t, then Y ;csxi <O.

Lemma. Ift < (}-}), 1€ S, and |Lk(S)| + g(n—k, k) > t, then
YiesXi <0.

Proof. Let T={1,n—k+2,....n}. |Lk(T)| = (}-1), 80 Licr xi < O.

Thus there are at least g(n — k, k) nonnegative k-sums with min
coordinate at least 2.
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Learning more about A~

Define L*(S) = |£x(S) \ Lx(A1)].

Lemma. If L*(S)+ |Lk(AT)| > t, then YjcsX; < O for all x € F, with
Cy D AT,
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Independent sub-trees







Implementation

My TreeSearch library enables parallelization in the Condor scheduler.

Executes on the Open Science Grid, a collection of supercomputers
around the country.
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Learning More About A~

If P(n, k, A", A~ U{S}) is infeasible, then all vectors x € F,, with
Cx 2 AT and Cy 2 A~ have ¥;csx; > 0.
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Learning More About A~

If P(n, k, A", A~ U{S}) is infeasible, then all vectors x € F,, with
Cx 2 AT and Cy 2 A~ have ¥;csx; > 0.

We add such sets Sto A™.
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Computer-Generated Proof that g(11,3) = () = 45

Proof.
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Computer-Generated Proof that g(11,3) = () = 45

Proof. The following sums must be strictly negative or we have at
least 45 of nonnegative sets:

X1+Xs + X11 X1+Xg + X10 Xo+X5 + X141
Xo+Xg + X10 Xo-+X7 + Xg X3+Xq + X11
X3+X5 + Xg X3+X7 + Xg X4+Xg + Xg
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Computer-Generated Proof that g(11,3) = () = 45

Proof. The following sums must be strictly negative or we have at
least 45 of nonnegative sets:

X1+Xe + Xq1 X1+Xg + X10 Xo+X5 + X11
Xo+Xg + X10 Xo-+X7 + Xg X3+Xq + X11
X3+X5 + Xg X3+X7 + Xg X4+Xg + Xg

The following sums must be nonnegative or else the associated linear
program becomes infeasible:

X4+Xe + X7 X4+X5 + Xg X3+X4 + X10
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Computer-Generated Proof that g(11,3) = () = 45

Proof. The following sums must be strictly negative or we have at
least 45 of nonnegative sets:

X1+Xe + Xq1 X1+Xg + X10 Xo+X5 + X11
Xo+Xg + X10 Xo-+X7 + Xg X3+Xq + X11
X3+X5 + Xg X3+X7 + Xg X4+Xg + Xg

The following sums must be nonnegative or else the associated linear
program becomes infeasible:

X4+Xe + X7 X4+X5 + Xg X3+X4 + X10

These positive sets now force at least 56 nonnegative 3-sums, and our
target was 45 nonnegative 3-sums. O
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Learning More About A~

If P(n k, AT, A~ U{S}) is infeasible, then all vectors x € F, with
Cx 2 ATandC~ D A have ¥ g X < 0.

So, we can add such sets Sto A™.

How do we find such sets?
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Learning More About A~

If P(n k, AT, A~ U{S}) is infeasible, then all vectors x € F, with
Cx 2 ATandC~ D A have ¥ g X < 0.

So, we can add such sets Sto A™.
How do we find such sets?

We randomly sample a set S to test.
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Our Results

After executing our full algorithm, we discover g(n, k) for all
k € {3,4,5,6,7} and all n.
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Our Results

After executing our full algorithm, we discover g(n, k) for all
k € {3,4,5,6,7} and all n.

We also know of sharp examples: x € F, with exactly g(n, k)
nonnegative k-sums!
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Sharp Examples

All of our examples have the form
b a
Xx=a’ (—b)
for a+ b = n, where X is given as

\X-I:...:Xb:@I Xb+1:o..:Xn:—b

b copies of a a copiggof -b
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Sharp Examples

(n=1)! (~1)m

has (]~}) nonnegative k-sums.

3 (~(n-9))°

has (", %) nonnegative k-sums when n > 3k.
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The Results Sharp Examples

15| 1705 | 123 (-3)
16 | 2431 133 (-3)™3
(
(

17 | 3367 | 143 (-3)™
18 | 6188 171 (=)
19 | 8008 | 3'6(-16)3

k| n | g(n k) | Sharp Example
6|7 1 16 (—6)!
6| 8 7 17 (=7)1
6|9 28 18 (-8)!
6|10 70 82 (—2)8
6 | 11 126 9?2 (—2)°
6|12 462 | 111 (—1)"
6|13 462 | 2" (—11)?
6|14 924 | 212 (-12)2
6 12
6

6

6

6
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The Results Strong Examples

A vector is strong if Xy + Y/, .5 X <O0.

Derrick Stolee (ISU)

k | n | Strong Example
6|20 317 (—-17)3
6 | 21 174 (—4)V7
6|22 18*(—4)'®
6|23 194 (—4)'°
6|24 | 33'116 (—7)7
625|104 416 (—21)8
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The Results Our Conjecture

Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the

least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.
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Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the
least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.

For k < 250, the largest examples with fewer than (,’Zj) nonnegative
k-sums are of the form 373 (—(n—3))3.
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Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the
least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.

For k < 250, the largest examples with fewer than (,’Zj) nonnegative
k-sums are of the form 373 (—(n—3))3.

Conjecture (Hartke, Stolee, *13+) For k > 2, let Nj be the least
integer such that (M3) > (M),
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Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the
least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.

For k < 250, the largest examples with fewer than (,’Zj) nonnegative
k-sums are of the form 373 (—(n— 3))3.

Conjecture (Hartke, Stolee, *13+) For k > 2, let Nj be the least
integer such that (M%) > (M"). f(k) = N, and hence

Cf(k) . Ne
am = = Jm e =
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Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the
least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.

For k < 250, the largest examples with fewer than (,’Zj) nonnegative
k-sums are of the form 373 (—(n— 3))3.

Conjecture (Hartke, Stolee, *13+) For k > 2, let Nj be the least
integer such that (M%) > (M"). f(k) = N, and hence

Cf(k) . Ne
am = = Jm 2 =3
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Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the
least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.

For k < 250, the largest examples with fewer than (,’Zj) nonnegative
k-sums are of the form 373 (—(n— 3))3.

Conjecture (Hartke, Stolee, *13+) For k > 2, let Nj be the least
integer such that (M%) > (M"). f(k) = N, and hence

Cf(k) . Ne
am = = Jm o =31
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Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the
least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.

For k < 250, the largest examples with fewer than (,’Zj) nonnegative
k-sums are of the form 373 (—(n— 3))3.

Conjecture (Hartke, Stolee, *13+) For k > 2, let Nj be the least
integer such that (M%) > (M"). f(k) = N, and hence

Cf(k) . Ne
am =~ = Jm o =314
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Our Conjecture

Conjecture (Hartke, Stolee, ’13+) For all kK > 2, and n < 4k, the
least number of nonnegative k-sums in a strong vector x € F is
achieved by a vector of the form a® (—b)?2.

For k < 250, the largest examples with fewer than (,’Zj) nonnegative
k-sums are of the form 373 (—(n— 3))3.

Conjecture (Hartke, Stolee, *13+) For k > 2, let Nj be the least
integer such that (M%) > (M"). f(k) = N, and hence

im T im N _ 3 447899...
k—oo K k—oo K
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Our Conjecture

3.2F ¢ o

I I I I
0 50 100 150 200 250

Values of Ni/k for k € {5,...,250}.
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The Results Our Conjecture

Computational Combinatorics

Computational
Combinatorics

Pure
Combinatorics
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