
Combinatorial Generation in the Presence of Symmetry

Derrick Stolee

Iowa State University
dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/

December 2, 2013
ISU MECS Seminar



Application: Generating Chemical Molecules



Application: Generating Chemical Molecules



Application: Generating Chemical Molecules
Chirality?



Application: Compiling Software



Application: Compiling Software



Exponential Behavior is Unavoidable

When dealing with NP-hard problems (or worse!), exponential behavior is
unavoidable.

All we can do is delay or diminish that exponential behavior.



Exponential Behavior is Unavoidable

When dealing with NP-hard problems (or worse!), exponential behavior is
unavoidable.

All we can do is delay or diminish that exponential behavior.



Shifting the Exponent



Shifting the Exponent



Shifting the Exponent



Graphs



Graphs

1

2

34

5 6
7

89

10

2
3

4

5
67

8

9

10

1 1

2

34

5 6

7

89

10



Graphs

1

2

34

5 6
7

89

10

2
3

4

5
67

8

9

10

1 1

2

34

5 6

7

89

10

An isomorphism between G1 and G2 is a bijection from V (G1) to V (G2) that
induces a bijection from E(G1) to E(G2).



Graphs

1

2

34

5 6
7

89

10

2
3

4

5
67

8

9

10

1 1

2

34

5 6

7

89

10

An isomorphism between G1 and G2 is a bijection from V (G1) to V (G2) that
induces a bijection from E(G1) to E(G2).

An automorphism of G is a bijection from V (G) to V (G) that induces a bijection
from E(G) to E(G).



Graphs: Automorphisms

The set of automorphisms form a group.



Graphs: Automorphisms

The set of automorphisms form a group.











Permutations



Permutations



Permutations



Permutations



Permutations



Graphs: Orbits

An orbit is a maximal set of objects such that every object is sent to every other
object by some automorphism.



Graphs: Orbits

An orbit is a maximal set of objects such that every object is sent to every other
object by some automorphism.



Graphs: Orbits

An orbit is a maximal set of objects such that every object is sent to every other
object by some automorphism.



Graphs: Orbits

An orbit is a maximal set of objects such that every object is sent to every other
object by some automorphism.



Other Objects
Directed Graphs



Other Objects
Hypergraphs



Other Objects
Colored (Partitioned) Graphs



Other Objects
Latin Squares

A B P C O D N E M F L G K H J I
B C A D P E O F N G M H L I K J
C D B E A F P G O H N I M J L K
D E C F B G A H P I O J N K M L
E F D G C H B I A J P K O L N M
F G E H D I C J B K A L P M O N
G H F I E J D K C L B M A N P O
H I G J F K E L D M C N B O A P
I J H K G L F M E N D O C P B A
J K I L H M G N F O E P D A C B
K L J M I N H O G P F A E B D C
L M K N J O I P H A G B F C E D
M N L O K P J A I B H C G D F E
N O M P L A K B J C I D H E G F
O P N A M B L C K D J E I F H G
P A O B N C M D L E K F J G I H

This 16× 16 latin square assists in the construction of a Williams Design.



Other Objects
Partially-Ordered Sets



Subobjects
Independent Sets



Subobjects
(Induced) Subgraphs



Subobjects
(Induced) Subgraphs



Subobjects
(Induced) Subgraphs



Subobjects
(Induced) Subgraphs



Subobjects
(Proper) Colorings



Generation Algorithms

Goal: Generate all unlabeled objects that satisfy the constraints.



Symmetry Breaking

1. Reduces isomorphic duplicates.
2. Does not allow for dynamic symmetry updates.
3. Removes symmetry, then uses standard symmetry-unaware algorithms.



Orbital Branching

1. Reduces isomorphic duplicates.
2. Allows for dynamic symmetry updates.
3. Branching method can be customized to the given problem.
4. Integrates well with branch-and-bound methods and constraint propagation.

(Ostrowski talked about this, also my CS Colloquium)



Canonical Deletion

1. Eliminates isomorphic duplicates∗.
2. Allows for dynamic symmetry updates.
3. Augmentation method can be customized to the given problem.
4. Does not integrate well with branch-and-bound methods or constraint

propagation.

Brendan McKay, Isomorph-free exhaustive generation, J. of Algorithms (1997).



Canonical Deletion

1. Build objects piece-by-piece.
2. Define a canonical construction path to every unlabeled object.
3. Only follow paths that agree with the canonical construction path.



Example: Generating Graphs by Vertex Additions

Let’s generate all graphs of order n by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set S ⊂ V (G).

Deletion: Select a vertex v ∈ V (G) to delete, G′ = G− v .



Generating with Vertex Augmentations



Generating with Vertex Augmentations



Generating with Vertex Augmentations



Generating with Vertex Augmentations



Generating with Vertex Augmentations



Generating with Vertex Augmentations



Example: Generating Graphs by Vertex Additions

Let’s generate all graphs of order n by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set S ⊂ V (G).
IMPORTANT: Only one augmentation per orbit!

Deletion: Select a vertex v ∈ V (G) to delete, G′ = G− v .



Canonical Labeling

A canonical labeling takes a labeled graph G

and applies labels σG(v) to each
v ∈ V (G) so that any H ∼= G with labels σH(v) has an isomorphism σ−1

H (σG(v))
from G to H.

Canonical labels can be computed by McKay’s nauty software.



Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels σG(v) to each
v ∈ V (G)

so that any H ∼= G with labels σH(v) has an isomorphism σ−1
H (σG(v))

from G to H.

Canonical labels can be computed by McKay’s nauty software.



Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels σG(v) to each
v ∈ V (G) so that any H ∼= G with labels σH(v)

has an isomorphism σ−1
H (σG(v))

from G to H.

Canonical labels can be computed by McKay’s nauty software.



Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels σG(v) to each
v ∈ V (G) so that any H ∼= G with labels σH(v) has an isomorphism σ−1

H (σG(v))
from G to H.

Canonical labels can be computed by McKay’s nauty software.



Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels σG(v) to each
v ∈ V (G) so that any H ∼= G with labels σH(v) has an isomorphism σ−1

H (σG(v))
from G to H.

Canonical labels can be computed by McKay’s nauty software.



Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels σG(v) to each
v ∈ V (G) so that any H ∼= G with labels σH(v) has an isomorphism σ−1

H (σG(v))
from G to H.

Canonical labels can be computed by McKay’s nauty software.



Canonical Labeling

A canonical labeling takes a labeled graph G and applies labels σG(v) to each
v ∈ V (G) so that any H ∼= G with labels σH(v) has an isomorphism σ−1

H (σG(v))
from G to H.

Canonical labels can be computed by McKay’s nauty software.



Canonical Deletion by Filtering

Let S = V (G). Filter S until |S| = 1 by the following conditions:

1. Remove cut vertices from S.
2. Let d = min{deg(v) : v ∈ S}. Set

S ← {v ∈ S : deg(v) = d}.

3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling `, and set

v = argminv∈S `(v).

The vertex v is the canonical deletion.



Canonical Deletion by Filtering

Let S = V (G). Filter S until |S| = 1 by the following conditions:

1. Remove cut vertices from S.

2. Let d = min{deg(v) : v ∈ S}. Set

S ← {v ∈ S : deg(v) = d}.

3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling `, and set

v = argminv∈S `(v).

The vertex v is the canonical deletion.



Canonical Deletion by Filtering

Let S = V (G). Filter S until |S| = 1 by the following conditions:

1. Remove cut vertices from S.
2. Let d = min{deg(v) : v ∈ S}. Set

S ← {v ∈ S : deg(v) = d}.

3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling `, and set

v = argminv∈S `(v).

The vertex v is the canonical deletion.



Canonical Deletion by Filtering

Let S = V (G). Filter S until |S| = 1 by the following conditions:

1. Remove cut vertices from S.
2. Let d = min{deg(v) : v ∈ S}. Set

S ← {v ∈ S : deg(v) = d}.

3. (Include other, more complicated invariants here.)

4. Compute a canonical labeling `, and set

v = argminv∈S `(v).

The vertex v is the canonical deletion.



Canonical Deletion by Filtering

Let S = V (G). Filter S until |S| = 1 by the following conditions:

1. Remove cut vertices from S.
2. Let d = min{deg(v) : v ∈ S}. Set

S ← {v ∈ S : deg(v) = d}.

3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling `, and set

v = argminv∈S `(v).

The vertex v is the canonical deletion.



Canonical Deletion by Filtering

Let S = V (G). Filter S until |S| = 1 by the following conditions:

1. Remove cut vertices from S.
2. Let d = min{deg(v) : v ∈ S}. Set

S ← {v ∈ S : deg(v) = d}.

3. (Include other, more complicated invariants here.)
4. Compute a canonical labeling `, and set

v = argminv∈S `(v).

The vertex v is the canonical deletion.



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid
making augmentations that will not be canonical deletions:

1. If minimizing degree, do not add anything of degree more than δ(G) + 1.
2. If not deleting cut-vertices, everything has degree at least one.



Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid
making augmentations that will not be canonical deletions:

1. If minimizing degree, do not add anything of degree more than δ(G) + 1.

2. If not deleting cut-vertices, everything has degree at least one.



Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid
making augmentations that will not be canonical deletions:

1. If minimizing degree, do not add anything of degree more than δ(G) + 1.
2. If not deleting cut-vertices, everything has degree at least one.



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Canonical Vertex Deletions



Effectiveness of Canonical Deletion

Every unlabeled object is expanded exactly once.

Every unlabeled object is reached at most once per possible deletion.



Effectiveness of Canonical Deletion

Every unlabeled object is expanded exactly once.

Every unlabeled object is reached at most once per possible deletion.



Effectiveness of Canonical Deletion

Every unlabeled graph is expanded exactly once.

Every unlabeled graph is reached at most n times.

Most unlabeled graphs have n! different labelings.

So the resulting computation time is about

N

∑
n=1

2(n
2) · nf (n)

n!
≈ 2N2−N log N

where f (n) is the average time to compute canonical labels and automorphisms.



Effectiveness of Canonical Deletion

Every unlabeled graph is expanded exactly once.

Every unlabeled graph is reached at most n times.

Most unlabeled graphs have n! different labelings.

So the resulting computation time is about

N

∑
n=1

2(n
2) · nf (n)

n!
≈ 2N2−N log N

where f (n) is the average time to compute canonical labels and automorphisms.



Effectiveness of Canonical Deletion

Every unlabeled graph is expanded exactly once.

Every unlabeled graph is reached at most n times.

Most unlabeled graphs have n! different labelings.

So the resulting computation time is about

N

∑
n=1

2(n
2) · nf (n)

n!
≈ 2N2−N log N

where f (n) is the average time to compute canonical labels and automorphisms.



n Labeled graphs of order n

6 32,768

7 2,097,152

8 268,435,456

9 68,719,476,736

10 35,184,372,088,832

11 36,028,797,018,963,968

12 73,786,976,294,838,206,464

13 302,231,454,903,657,293,676,544

14 2,475,880,078,570,760,549,798,248,448

15 40,564,819,207,303,340,847,894,502,572,032

2(n
2) ≈ 2θ(n2)



n Unlabeled connected graphs of order n

6 85

7 509

8 4,060

9 41,301

10 510,489

11 7,319,447

12 117,940,535

13 2,094,480,864

14 40,497,138,011

15 845,480,228,069

OEIS Sequence A002851 Grows 2Ω(n2).



n Unlabeled connected graphs of order n

6 85

7 509

8 4,060

9 41,301

10 510,489

11 7,319,447

12 117,940,535

13 2,094,480,864

14 40,497,138,011

15 845,480,228,069

Requires about 1 day of CPU Time.



n Unlabeled connected graphs of order n

6 85

7 509

8 4,060

9 41,301

10 510,489

11 7,319,447

12 117,940,535

13 2,094,480,864

14 40,497,138,011

15 845,480,228,069

Requires over 1 year of CPU Time.









Implementation

My TreeSearch library enables parallelization in the Condor scheduler.

Executes on the Open Science Grid, a collection of supercomputers around the
country.



Research Problem

Q: How can we integrate constraint propagation with
canonical deletion?



Next Week: Generating Graphs with p Perfect Matchings

Let f (n,p) be the maximum number of edges in a graph of order n with exactly
p perfect matchings.

We determine this value and characterize all graphs achieving this bound for all n
(for small p).

Requires building a canonical deletion that has the number of perfect matchings
be monotonic!



Next Week: Generating Graphs with p Perfect Matchings

Let f (n,p) be the maximum number of edges in a graph of order n with exactly
p perfect matchings.

We determine this value and characterize all graphs achieving this bound for all n
(for small p).

Requires building a canonical deletion that has the number of perfect matchings
be monotonic!



Next Week: Generating Graphs with p Perfect Matchings

Let f (n,p) be the maximum number of edges in a graph of order n with exactly
p perfect matchings.

We determine this value and characterize all graphs achieving this bound for all n
(for small p).

Requires building a canonical deletion that has the number of perfect matchings
be monotonic!



To learn more...

I B. D. McKay. Isomorph-free exhaustive generation.
I B. D. McKay. Small graphs are reconstructible.
I F. Margot. Pruning by isomorphism in branch-and-cut.
I B. D. McKay, A. Meynert. Small latin squares, quasigroups, and loops.
I G. Brinkmann, B. D. McKay. Posets on up to 16 points.
I P. Kaski, P. R. J. Östergard. The Steiner triple systems of order 19.
I D. Stolee. Isomorph-free generation of 2-connected graphs with applications.
I D. Stolee. Generating p-extremal graphs.



Combinatorial Generation in the Presence of Symmetry

Derrick Stolee

Iowa State University
dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/

December 2, 2013
ISU MECS Seminar


