Combinatorial Generation in the Presence of Symmetry

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

> December 2, 2013 ISU MECS Seminar

Application: Generating Chemical Molecules

Application: Generating Chemical Molecules Chirality?

Application: Compiling Software

Application: Compiling Software

Exponential Behavior is Unavoidable

When dealing with NP-hard problems (or **worse!**), exponential behavior is unavoidable.

Exponential Behavior is Unavoidable

When dealing with NP-hard problems (or **worse!**), exponential behavior is unavoidable.

All we can do is **delay** or **diminish** that exponential behavior.

Shifting the Exponent

Shifting the Exponent

Shifting the Exponent

An **isomorphism** between G_1 and G_2 is a bijection from $V(G_1)$ to $V(G_2)$ that induces a bijection from $E(G_1)$ to $E(G_2)$.

An **isomorphism** between G_1 and G_2 is a bijection from $V(G_1)$ to $V(G_2)$ that induces a bijection from $E(G_1)$ to $E(G_2)$.

An **automorphism** of *G* is a bijection from V(G) to V(G) that induces a bijection from E(G) to E(G).

Graphs: Automorphisms

The set of **automorphisms** form a **group**.

Graphs: Automorphisms

The set of **automorphisms** form a **group**.

Other Objects Directed Graphs

Other Objects Hypergraphs

Other Objects Colored (Partitioned) Graphs

Other Objects

Latin Squares

В Ρ С Ν Е F G Κ н А 0 D Μ L J L С F В А D Ρ Е 0 Ν G Μ Н L Κ L J Е F С D В А Ρ G Ο н Κ Ν Т Μ J L Е С F D В G А Н Ρ Ν Κ Μ Т Ο J L Е F D G С н В Ρ Κ 0 Ν Μ А J L L F G Е Н D С В Κ L Ρ J А Μ 0 Ν G н F Е J D Κ С L В Μ А Ν Ρ L 0 Н Т G J F Κ Е L D Μ С Ν В 0 А Ρ F J н Κ G 1 Μ Е Ν D Ο С Ρ В А Т F Е С J Κ Т L н Μ G Ν Ο Ρ D А В Е Κ L Μ н G Ρ F А В D С J L Ν 0 F Н С Е Μ Κ Ν J 0 Ρ А G В D L Т Κ Ρ В Н С G D F Е Μ Ν L 0 J Α L Ρ А Κ В С D Н Е G F Ν 0 Μ L J Т 0 Ρ Ν А Μ В L С Κ D Е F Н G J L Ρ Е А В Ν С D Κ F G Н 0 Μ Т J Т

This 16×16 latin square assists in the construction of a Williams Design.

Other Objects Partially-Ordered Sets

Subobjects Independent Sets

Subobjects (Proper) Colorings

Generation Algorithms

Goal: Generate all unlabeled objects that satisfy the constraints.

Symmetry Breaking

- 1. Reduces isomorphic duplicates.
- 2. Does not allow for dynamic symmetry updates.
- 3. Removes symmetry, then uses standard symmetry-unaware algorithms.

- 1. Reduces isomorphic duplicates.
- 2. Allows for dynamic symmetry updates.
- 3. Branching method can be customized to the given problem.
- 4. Integrates well with branch-and-bound methods and constraint propagation.

(Ostrowski talked about this, also my CS Colloquium)

Canonical Deletion

- 1. Eliminates isomorphic duplicates*.
- 2. Allows for dynamic symmetry updates.
- 3. Augmentation method can be customized to the given problem.
- 4. Does not integrate well with branch-and-bound methods or constraint propagation.

Brendan McKay, Isomorph-free exhaustive generation, J. of Algorithms (1997).

Canonical Deletion

- 1. Build objects piece-by-piece.
- 2. Define a *canonical construction path* to every unlabeled object.
- 3. Only follow paths that agree with the canonical construction path.

Example: Generating Graphs by Vertex Additions

Let's generate all graphs of order *n* by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set $S \subset V(G)$.

Deletion: Select a vertex $v \in V(G)$ to delete, G' = G - v.

- - - \bullet

• • •

Example: Generating Graphs by Vertex Additions

Let's generate all graphs of order *n* by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set $S \subset V(G)$. IMPORTANT: Only one augmentation per orbit!

Deletion: Select a vertex $v \in V(G)$ to delete, G' = G - v.

A canonical labeling takes a labeled graph G

A canonical labeling takes a labeled graph *G* and applies labels $\sigma_G(v)$ to each $v \in V(G)$

A **canonical labeling** takes a labeled graph *G* and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$

A canonical labeling takes a labeled graph *G* and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from *G* to *H*.

A canonical labeling takes a labeled graph *G* and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from *G* to *H*.

A **canonical labeling** takes a labeled graph *G* and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from *G* to *H*.

A **canonical labeling** takes a labeled graph *G* and applies labels $\sigma_G(v)$ to each $v \in V(G)$ so that any $H \cong G$ with labels $\sigma_H(v)$ has an isomorphism $\sigma_H^{-1}(\sigma_G(v))$ from *G* to *H*.

Canonical labels can be computed by McKay's nauty software.

Let S = V(G). Filter S until |S| = 1 by the following conditions:

Let S = V(G). Filter S until |S| = 1 by the following conditions:

1. Remove cut vertices from *S*.

Let S = V(G). Filter S until |S| = 1 by the following conditions:

- 1. Remove cut vertices from *S*.
- 2. Let $d = \min\{\deg(v) : v \in S\}$. Set

$$S \leftarrow \{v \in S : \deg(v) = d\}.$$

Let S = V(G). Filter S until |S| = 1 by the following conditions:

- 1. Remove cut vertices from *S*.
- 2. Let $d = \min\{\deg(v) : v \in S\}$. Set

$$\mathcal{S} \leftarrow \{ \mathbf{v} \in \mathcal{S} : \deg(\mathbf{v}) = \mathbf{d} \}.$$

3. (Include other, more complicated invariants here.)

Let S = V(G). Filter S until |S| = 1 by the following conditions:

- 1. Remove cut vertices from *S*.
- 2. Let $d = \min\{\deg(v) : v \in S\}$. Set

$$\mathcal{S} \leftarrow \{ \mathbf{v} \in \mathcal{S} : \deg(\mathbf{v}) = \mathbf{d} \}.$$

- 3. (Include other, more complicated invariants here.)
- 4. Compute a canonical labeling $\ell,$ and set

$$v = \operatorname{argmin}_{v \in S} \ell(v).$$

Let S = V(G). Filter S until |S| = 1 by the following conditions:

- 1. Remove cut vertices from *S*.
- 2. Let $d = \min\{\deg(v) : v \in S\}$. Set

$$\mathcal{S} \leftarrow \{ \mathbf{v} \in \mathcal{S} : \deg(\mathbf{v}) = \mathbf{d} \}.$$

- 3. (Include other, more complicated invariants here.)
- 4. Compute a canonical labeling $\ell,$ and set

$$v = \operatorname{argmin}_{v \in S} \ell(v).$$

The vertex v is the canonical deletion.

Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid making augmentations that will not be canonical deletions:

Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid making augmentations that will not be canonical deletions:

1. If minimizing degree, do not add anything of degree more than $\delta(G) + 1$.

Using Deletion To Minimize Augmentations

By thinking of our filtering mechanism for the canonical deletion, we can avoid making augmentations that will not be canonical deletions:

- 1. If minimizing degree, do not add anything of degree more than $\delta(G) + 1$.
- 2. If not deleting cut-vertices, everything has degree at least one.

Every unlabeled object is **expanded** exactly once.

Every unlabeled object is **expanded** exactly once.

Every unlabeled object is **reached** at most once per possible deletion.

Every unlabeled graph is **expanded** exactly once.

Every unlabeled graph is **reached** at most *n times*.

Every unlabeled graph is **expanded** exactly once.

Every unlabeled graph is **reached** at most *n times*.

Most unlabeled graphs have *n*! different labelings.

Every unlabeled graph is **expanded** exactly once.

Every unlabeled graph is **reached** at most *n times*.

Most unlabeled graphs have *n*! different labelings.

So the resulting computation time is about

$$\sum_{n=1}^{N} 2^{\binom{n}{2}} \cdot \frac{nf(n)}{n!} \approx 2^{N^2 - N \log N}$$

where f(n) is the average time to compute canonical labels and automorphisms.

n	Labeled graphs of order <i>n</i>
6	32,768
7	2,097,152
8	268,435,456
9	68,719,476,736
10	35,184,372,088,832
11	36,028,797,018,963,968
12	73,786,976,294,838,206,464
13	302,231,454,903,657,293,676,544
14	2,475,880,078,570,760,549,798,248,448
15	40,564,819,207,303,340,847,894,502,572,032

 $\mathbf{2}^{\binom{n}{2}} \approx \mathbf{2}^{\theta(n^2)}$

n	Unlabeled connected	d graphs of order <i>n</i>		
6		85		
7		509		
8		4,060		
9		41,301		
10		510,489		
11		7,319,447		
12		117,940,535		
13		2,094,480,864		
14		40,497,138,011		
15		845,480,228,069		
OEIS Sequence A002851 Grows $2^{\Omega(n^2)}$				

n	Unlabeled connected graphs of order n		
6	85		
7	509		
8	4,060		
9	41,301		
10	510,489		
11	7,319,447		
12	117,940,535		
13	2,094,480,864		
14	40,497,138,011		
15	845,480,228,069		
Requires about 1 day of CPU Time.			

n	Unlabeled connected graphs of order n			
6	85			
7	509			
8	4,060			
9	41,301			
10	510,489			
11	7,319,447			
12	117,940,535			
13	2,094,480,864			
14	40,497,138,011			
15	845,480,228,069			
Requires over 1 year of CPU Time.				

Implementation

My **TreeSearch** library enables parallelization in the Condor scheduler.

Executes on the **Open Science Grid**, a collection of supercomputers around the country.

Open Science Grid

Q: How can we integrate **constraint propagation** with canonical deletion?

Next Week: Generating Graphs with *p* Perfect Matchings

Let f(n, p) be the **maximum number of edges** in a graph of order *n* with **exactly** p **perfect matchings**.

Next Week: Generating Graphs with *p* Perfect Matchings

Let f(n, p) be the **maximum number of edges** in a graph of order *n* with **exactly** p **perfect matchings**.

We determine this value and characterize all graphs achieving this bound for all n (for small p).

Next Week: Generating Graphs with *p* Perfect Matchings

Let f(n, p) be the **maximum number of edges** in a graph of order *n* with **exactly** p **perfect matchings**.

We determine this value and characterize all graphs achieving this bound for all n (for small p).

Requires building a canonical deletion that has the number of perfect matchings be **monotonic!**

To learn more...

- B. D. McKay. Isomorph-free exhaustive generation.
- ► B. D. McKay. Small graphs are reconstructible.
- F. Margot. Pruning by isomorphism in branch-and-cut.
- ▶ B. D. McKay, A. Meynert. Small latin squares, quasigroups, and loops.
- G. Brinkmann, B. D. McKay. Posets on up to 16 points.
- P. Kaski, P. R. J. Östergard. The Steiner triple systems of order 19.
- D. Stolee. Isomorph-free generation of 2-connected graphs with applications.
- D. Stolee. Generating *p*-extremal graphs.

Combinatorial Generation in the Presence of Symmetry

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

> December 2, 2013 ISU MECS Seminar