Generating *p*-extremal graphs

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

> December 9, 2013 ISU MECS Seminar

Last Week

- 1. Discussed generation of combinatorial objects.
- 2. "Defined" symmetry in terms of automorphism groups.
- 3. Presented **canonical deletion**, a method to remove isomorphic duplicates.
- 4. Discussed example for generating connected graphs by vertex augmentations.

A **perfect matching** is a set of edges which cover each vertex exactly once. $\Phi(G)$ is the number of perfect matchings in the graph *G*.

A **perfect matching** is a set of edges which cover each vertex exactly once. $\Phi(G)$ is the number of perfect matchings in the graph *G*.

A **perfect matching** is a set of edges which cover each vertex exactly once. $\Phi(G)$ is the number of perfect matchings in the graph *G*.

A perfect matching is a set of edges which cover each vertex exactly once.

Question (Dudek, Schmitt, '12) What is the maximum number of edges in a graph with exactly *n* vertices and *p* perfect matchings?

Definition Let *n* be an even number and fix $p \ge 1$.

$$f(n,p) = \max\{|E(G)| : |V(G)| = n, \Phi(G) = p\}.$$

Graphs attaining this number of edges are *p*-extremal.

$$f(n,1)=\frac{n^2}{4}.$$

$$f(n,1)=\frac{n^2}{4}.$$

$$f(n,1)=\frac{n^2}{4}.$$

$$f(n,1)=\frac{n^2}{4}.$$

The Form of f(n, p)

Theorem (Dudek & Schmitt)

For each *p*, there exist constants n_p , c_p so that for all $n \ge n_p$,

$$f(n,p)=\frac{n^2}{4}+c_p.$$

Take G with
$$\frac{n^2}{4} + c$$
 edges.

The Form of f(n, p)

Theorem (Dudek & Schmitt)

For each *p*, there exist constants n_p , c_p so that for all $n \ge n_p$,

$$f(n,p)=\frac{n^2}{4}+c_p.$$

Add two new vertices.

The Form of f(n, p)

Theorem (Dudek & Schmitt)

For each *p*, there exist constants n_p , c_p so that for all $n \ge n_p$,

$$f(n,p)=\frac{n^2}{4}+c_p$$

The Excess of a Graph

Let $\Phi(G) > 0$. The **excess** c(G) is

$$c(G) = |E(G)| - rac{|V(G)|^2}{4}.$$

Let $\Phi(G) > 0$. The **excess** c(G) is

$$c(G) = |E(G)| - \frac{|V(G)|^2}{4}$$

In this sense, lower bounds on c_p are "easy" (any *G* with $\Phi(G) = p$, has $c(G) \le c_p$).

Upper bounds are hard: must prove NO graph achieves a higher constant!

Edge Types

Let $\Phi(G) > 0$ and $e \in E(G)$.

- *e* is **extendable** if there exists a perfect matching containing *e*.
- *e* is **forbidden** otherwise.

Let *G* be connected with $\Phi(G) > 0$.

• *G* is **extendable** if all edges are extendable.

- *G* is **extendable** if all edges are extendable.
- G is a chamber if the set of extendable edges forms a connected (spanning) subgraph.

- *G* is **extendable** if all edges are extendable.
- G is a chamber if the set of extendable edges forms a connected (spanning) subgraph.
- G is *p*-extremal if $\Phi(G) = p$ and $c(G) = c_p$.

- *G* is **extendable** if all edges are extendable.
- G is a chamber if the set of extendable edges forms a connected (spanning) subgraph.
- *G* is *p*-extremal if $\Phi(G) = p$ and $c(G) = c_p$.

Let $\Phi(G) > 0$. A set $X \subset V(G)$ is a **barrier** if

Let $\Phi(G) > 0$. A set $X \subset V(G)$ is a **barrier** if

Let $\Phi(G) > 0$. A set $X \subset V(G)$ is a **barrier** if

Let $\Phi(G) > 0$. A set $X \subset V(G)$ is a **barrier** if

Theorem (Hartke, Stolee, West, Yancey '12) If *G* is *p*-extremal, then *G* is a spire of chambers G_1, \ldots, G_k , with barriers $X_i \subseteq V(G_i)$ of maximum size.

Theorem (Hartke, Stolee, West, Yancey '12) If *G* is *p*-extremal, then *G* is a spire of chambers G_1, \ldots, G_k , with barriers $X_i \subseteq V(G_i)$ of maximum size. In addition:

1.
$$p = \Phi(G) = \prod_{i=1}^{k} \Phi(G_i)$$
. Let $p_i = \Phi(G_i)$.

Theorem (Hartke, Stolee, West, Yancey '12) If *G* is *p*-extremal, then *G* is a spire of chambers G_1, \ldots, G_k , with barriers $X_i \subseteq V(G_i)$ of maximum size. In addition:

1.
$$p = \Phi(G) = \prod_{i=1}^{k} \Phi(G_i)$$
. Let $p_i = \Phi(G_i)$.

2. If $p_i = 1$, then $H_i \cong K_2$.

Theorem (Hartke, Stolee, West, Yancey '12) If *G* is *p*-extremal, then *G* is a spire of chambers G_1, \ldots, G_k , with barriers $X_i \subseteq V(G_i)$ of maximum size. In addition:

1.
$$p = \Phi(G) = \prod_{i=1}^{k} \Phi(G_i)$$
. Let $p_i = \Phi(G_i)$.

2. If $p_i = 1$, then $H_i \cong K_2$.

3. There are at most $N_{p_i} = O(\sqrt{p_i})$ vertices in G_i , and $c(G_i) \le c_{p_i}$.

Theorem (Hartke, Stolee, West, Yancey '12) If *G* is *p*-extremal, then *G* is a spire of chambers G_1, \ldots, G_k , with barriers $X_i \subseteq V(G_i)$ of maximum size. In addition:

1.
$$p = \Phi(G) = \prod_{i=1}^{k} \Phi(G_i)$$
. Let $p_i = \Phi(G_i)$.

2. If $p_i = 1$, then $H_i \cong K_2$.

3. There are at most $N_{p_i} = O(\sqrt{p_i})$ vertices in G_i , and $c(G_i) \le c_{p_i}$.

4. $c_p = c(G) \leq \sum_{i=1}^k c(G_i)$ with equality if and only if $\frac{|X_i|}{|V(G_i)|} = \frac{1}{2}$ for all i < k.

Order of Chambers

Order of Chambers

Order of Chambers

Characterizing *p*-extremal graphs becomes finite for each fixed *p*.

Finiteness

Characterizing *p*-extremal graphs becomes finite for each fixed *p*.

If *G* has *p* perfect matchings and c = c(G), then

$$N_p \leq 3 + \sqrt{16p - 8c - 23}$$

is an upper bound on the maximum size of a *p*-extremal chamber.

Finiteness

Characterizing *p*-extremal graphs becomes finite for each fixed *p*.

If *G* has *p* perfect matchings and c = c(G), then

$$N_p \leq 3 + \sqrt{16p - 8c - 23}$$

is an upper bound on the maximum size of a *p*-extremal chamber.

For $p \leq 10$, $N_p \leq 12$ and geng can enumerate all possible graphs.

Example: p = 7

Theorem (HSWY, '12) For even *n* with $n \ge 6$, the unique 7-extremal graph has $\frac{n^2}{4} + 3$ edges and is a spire with k = n/2 - 2 chambers G_1, \ldots, G_k are given by $G_i = K_2$ for i < k and G_k given below.

Example: Generating Graphs by Vertex Additions

Let's generate all graphs of order *n* by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set $S \subset V(G)$. IMPORTANT: Only one augmentation per orbit!

Deletion: Select a vertex $v \in V(G)$ to delete, G' = G - v.

Extremal Chambers for $p \leq 10$

Values of c_p for $p \le 10$

р	1	2	3	4	5	6	7	8	9	10
n _p	2	4	4	6	6	6	6	6	6	6
c _p	0	1	2	2	2	3	3	3	4	4
Np	2	4	6	8	8	10	10	12	12	12
	Dudek & Schmitt						HSWY			

Table: Known values of n_p and c_p .

Since the structure theorem only depends on combinations of chambers, we can generate **chambers** of **maximum excess**.

Since the structure theorem only depends on combinations of chambers, we can generate **chambers** of **maximum excess**.

We break chambers into the extendable and forbidden edges.

A graph is **2-connected** if no single vertex deletion disconnects the graph.

A graph is **2-connected** if no single vertex deletion disconnects the graph.

A graph is **2-connected** if no single vertex deletion disconnects the graph.

A graph is **2-connected** if no single vertex deletion disconnects the graph.

A graph is **2-connected** if no single vertex deletion disconnects the graph.

A connected graph is **extendable** if all edges are extendable

A connected graph is **extendable** if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If *H* is a extendable graph, there is a **graded ear decomposition**

$$H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$$

such that

A connected graph is **extendable** if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If *H* is a extendable graph, there is a **graded ear decomposition**

$$H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$$

such that

1. $H_0 \cong C_{2\ell}$ for some ℓ and $H_k = H$.

A connected graph is **extendable** if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If *H* is a extendable graph, there is a **graded ear decomposition**

$$H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$$

such that

- 1. $H_0 \cong C_{2\ell}$ for some ℓ and $H_k = H$.
- 2. Each H_i is extendable.

A connected graph is **extendable** if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If *H* is a extendable graph, there is a **graded ear decomposition**

$$H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$$

such that

- 1. $H_0 \cong C_{2\ell}$ for some ℓ and $H_k = H$.
- 2. Each H_i is extendable.
- 3. Each ear augmentation $H_i \subset H_{i+1}$ uses one or two ears of even order.

A connected graph is **extendable** if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If *H* is a extendable graph, there is a **graded ear decomposition**

$$H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$$

such that

- 1. $H_0 \cong C_{2\ell}$ for some ℓ and $H_k = H$.
- 2. Each H_i is extendable.
- 3. Each ear augmentation $H_i \subset H_{i+1}$ uses one or two ears of even order.

Graphs which appear "between" two extendable graphs in a two-ear augmentation are *almost extendable* graphs.

Example: Generating Graphs by Ear Augmentations

Let's generate all graphs of order *n* by adding vertices one-by-one.

Initialization: Let G be a cycle.

Augmentation: Let $x, y \in V(G)$ be distinct vertices and ℓ a length. Add an ear of length ℓ between x and y.

Deletion: Select an ear to delete, such that G remains 2-connected.

Generating with Ear Augmentations

Generating with Ear Augmentations

Generating with Ear Augmentations

Let *S* be the set of ears of *G*. Filter *S* until |S| = 1 by the following conditions:

1. Remove ears $\varepsilon \in S$ such that $G - \varepsilon$ is not 2-connected.

- 1. Remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not 2-connected.
- 2. If *G* is almost-extendable, then remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not extendable.

- 1. Remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not 2-connected.
- 2. If *G* is almost-extendable, then remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not extendable.
- 3. Among ears in *S*, minimize their length.

- 1. Remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not 2-connected.
- 2. If *G* is almost-extendable, then remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not extendable.
- 3. Among ears in *S*, minimize their length.
- 4. Among ears in *S*, minimize the degrees of their endpoints.

- 1. Remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not 2-connected.
- 2. If *G* is almost-extendable, then remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not extendable.
- 3. Among ears in *S*, minimize their length.
- 4. Among ears in *S*, minimize the degrees of their endpoints.
- 5. Compute a canonical labeling ℓ , and set

$$\varepsilon = \operatorname{argmin}_{\varepsilon \in S} \{ n(G) \ell(\varepsilon_1) + \ell(\varepsilon_2) \}.$$

Let *S* be the set of ears of *G*. Filter *S* until |S| = 1 by the following conditions:

- 1. Remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not 2-connected.
- 2. If *G* is almost-extendable, then remove ears $\varepsilon \in S$ such that $G \varepsilon$ is not extendable.
- 3. Among ears in *S*, minimize their length.
- 4. Among ears in *S*, minimize the degrees of their endpoints.
- 5. Compute a canonical labeling ℓ , and set

$$\varepsilon = \operatorname{argmin}_{\varepsilon \in S} \{ n(G) \ell(\varepsilon_1) + \ell(\varepsilon_2) \}.$$

The ear ε is the canonical deletion.

Adding in the Forbidden Edges

We can generate the extendable edges by ear augmentations.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a *p*-extremal graph are **cliques**.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a *p*-extremal graph are **cliques**.

If *H* is extendable, then let $\mathcal{E}(H)$ be the collection of supergraphs *G* where all edges in $E(G) \setminus E(H)$ are forbidden.

The Extremal Two-Ears Theorem

Lemma. Let *H* be a 1-extendable graph on *n* vertices with $\Phi(H) = q$. Let *H'* be a 1-extendable supergraph of *H* built from *H* by a graded ear decomposition. Let $\Phi(H') = p > q$ and N = n(H'). Choose $G \in \mathcal{E}(H)$ and $G' \in \mathcal{E}(H')$ with the maximum number of edges in each set. Then,

$$c(G') \leq c(G) + 2(p-q) - \frac{1}{4}(N-n)(n-2).$$

The Extremal Two-Ears Theorem

Lemma. Let *H* be a 1-extendable graph on *n* vertices with $\Phi(H) = q$. Let *H'* be a 1-extendable supergraph of *H* built from *H* by a graded ear decomposition. Let $\Phi(H') = p > q$ and N = n(H'). Choose $G \in \mathcal{E}(H)$ and $G' \in \mathcal{E}(H')$ with the maximum number of edges in each set. Then,

$$c(G') \leq c(G) + 2(p-q) - \frac{1}{4}(N-n)(n-2).$$

Begin with *p*, *c*, *N*. Generate all chambers *G* with *p* perfect matchings, $c(G) \ge c$, and $n(G) \le N$.

1. Start with an even cycle *H* of order at most *N*.

- 1. Start with an even cycle *H* of order at most *N*.
- 2. Add ear augmentations to *H* that match canonical deletions.

- 1. Start with an even cycle *H* of order at most *N*.
- 2. Add ear augmentations to *H* that match canonical deletions.
- 3. If $\Phi(H) > p$, then backtrack.

- 1. Start with an even cycle *H* of order at most *N*.
- 2. Add ear augmentations to *H* that match canonical deletions.
- 3. If $\Phi(H) > p$, then backtrack.
- 4. Maintain and update list of barriers on H.

- 1. Start with an even cycle *H* of order at most *N*.
- 2. Add ear augmentations to *H* that match canonical deletions.
- 3. If $\Phi(H) > p$, then backtrack.
- 4. Maintain and update list of barriers on H.
- 5. Find maximum chambers G by adding forbidden edges to H.

- 1. Start with an even cycle *H* of order at most *N*.
- 2. Add ear augmentations to *H* that match canonical deletions.
- 3. If $\Phi(H) > p$, then backtrack.
- 4. Maintain and update list of barriers on H.
- 5. Find maximum chambers G by adding forbidden edges to H.
- 6. If $c(G) + 2(p \Phi(H)) < c$, then backtrack.

- 1. Start with an even cycle *H* of order at most *N*.
- 2. Add ear augmentations to *H* that match canonical deletions.
- 3. If $\Phi(H) > p$, then backtrack.
- 4. Maintain and update list of barriers on H.
- 5. Find maximum chambers G by adding forbidden edges to H.
- 6. If $c(G) + 2(p \Phi(H)) < c$, then backtrack.
- 7. If $\Phi(H) = p$, then output all maximum *G* (with $c(G) \ge c$).

Timing

р	Np	Сp	CPU Time	р	Np	Сp	CPU Time
5	8	2	0.02s	16	16	4	2.02h
6	10	3	0.04s	17	16	4	6.77h
7	10	3	0.18s	18	18	5	11.75h
8	12	3	0.72s	19	18	4	2.71d
9	12	4	1.46s	20	18	5	4.21d
10	12	4	5.95s	21	18	5	13.71d
11	14	3	43.29s	22	20	5	42.84d
12	14	5	44.01s	23	20	5	118.32d
13	14	3	6.66m	24	20	6	209.42d
14	16	4	12.17m	25	20	5	2.52y
15	16	6	12.71m	26	20	5	7.21y
				27	22	6	10.68y

Results

p	1	2	3	4	5	6	7	8	9	10
Cp	0	1	2	2	2	3	3	3	4	4
n _p	2	4	4	6	6	6	6	6	6	6

p	11	12	13	14	15	16	17	18	19	20
Cp	3	5	3	4	6	4	4	5	4	5
n _p	8	6	8	8	6	8	8	8	8	8

р	21	22	23	24	25	26	27		
Cp	5	5	5	6	5	5	6		
$ n_p $	8	8	8	8	8	8	8		

Extremal Chambers for $11 \le p \le 27$

p-Extremal Configurations for $p \in \{2, 4\}$

p-Extremal Configurations for p = 8

p = 8

 $c_{8} = 3$

p-Extremal Configurations for p = 16

$$oldsymbol{
ho}=16$$
 $c_{16}=4$

1. Compute more values of c_p .

- 1. Compute more values of c_p .
- 2. Show a growing lower bound on c_p .

- 1. Compute more values of c_p .
- 2. Show a growing lower bound on c_p .
- 3. Show a logarithmic(?) upper bound on N_{p}^{*} .

- 1. Compute more values of c_p .
- 2. Show a growing lower bound on c_p .
- 3. Show a logarithmic(?) upper bound on N_{p}^{*} .

Conjecture (Hartke, Stolee, West, Yancey, '12) Let p, k, t be integers so that $k \in \{1, ..., 2t\}$ and

$$k(2t-1)!! \le p < (k+1)(2t-1)!!$$

and set $C_{\rho} = t^2 - t + k - 1$. Always $c_{\rho} \leq C_{\rho}$.

- 1. Compute more values of c_p .
- 2. Show a growing lower bound on c_p .
- 3. Show a logarithmic(?) upper bound on N_{p}^{*} .

Conjecture (Hartke, Stolee, West, Yancey, '12) Let p, k, t be integers so that $k \in \{1, ..., 2t\}$ and

$$k(2t-1)!! \le p < (k+1)(2t-1)!!$$

and set $C_{\rho} = t^2 - t + k - 1$. Always $c_{\rho} \leq C_{\rho}$.

If the conjecture holds, then $c_p \leq O\left(\left(\frac{\log p}{\log\log p}\right)^2\right)$.

If you learned ANYTHING...

If you learned ANYTHING...

...then it should be that

pairing structural theorems with specialized algorithms can be

very effective!

Generating *p*-extremal graphs

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

> December 9, 2013 ISU MECS Seminar