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Last Week

1. Discussed generation of combinatorial objects.
2. “Defined” symmetry in terms of automorphism groups.
3. Presented canonical deletion, a method to remove isomorphic duplicates.
4. Discussed example for generating connected graphs by vertex

augmentations.
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Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.

Question (Dudek, Schmitt, ’12) What is the maximum number of edges in a graph
with exactly n vertices and p perfect matchings?

Definition Let n be an even number and fix p ≥ 1.

f (n,p) = max{|E(G)| : |V (G)| = n,Φ(G) = p}.

Graphs attaining this number of edges are p-extremal.



Hetyei’s Theorem

Theorem (Hetyei’s Theorem, 1986) For all even n ≥ 2,

f (n,1) =
n2

4
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The Form of f (n,p)

Theorem (Dudek & Schmitt)

For each p, there exist constants np, cp so that for all n ≥ np,

f (n,p) =
n2

4
+ cp.

G

Take G with n2

4 + c edges.
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Theorem (Dudek & Schmitt)

For each p, there exist constants np, cp so that for all n ≥ np,

f (n,p) =
n2

4
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G

Add two new vertices.



The Form of f (n,p)

Theorem (Dudek & Schmitt)

For each p, there exist constants np, cp so that for all n ≥ np,

f (n,p) =
n2

4
+ cp.

G

Add edges to get (n+2)2

4 + c edges.



The Excess of a Graph

Let Φ(G) > 0. The excess c(G) is

c(G) = |E(G)| − |V (G)|2
4

.

In this sense, lower bounds on cp are “easy”
(any G with Φ(G) = p, has c(G) ≤ cp).

Upper bounds are hard: must prove NO graph achieves a higher constant!
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Edge Types

Let Φ(G) > 0 and e ∈ E(G).

I e is extendable if there exists a perfect matching containing e.
I e is forbidden otherwise.
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p-Extremal Graphs are Spires

Theorem (Hartke, Stolee, West, Yancey ’12) If G is p-extremal, then G is a spire
of chambers G1, . . . ,Gk , with barriers Xi ⊆ V (Gi) of maximum size.

In addition:

1. p = Φ(G) = ∏k
i=1 Φ(Gi). Let pi = Φ(Gi).

2. If pi = 1, then Hi
∼= K2.

3. There are at most Npi = O(
√

pi) vertices in Gi , and c(Gi) ≤ cpi .

4. cp = c(G) ≤ ∑k
i=1 c(Gi) with equality if and only if |Xi |

|V (Gi )|
= 1

2 for all i < k .
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Finiteness

Characterizing p-extremal graphs becomes finite for each fixed p.

If G has p perfect matchings and c = c(G), then

Np ≤ 3 +
√

16p− 8c − 23

is an upper bound on the maximum size of a p-extremal chamber.

For p ≤ 10, Np ≤ 12 and geng can enumerate all possible graphs.
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Characterizing p-extremal graphs becomes finite for each fixed p.

If G has p perfect matchings and c = c(G), then

Np ≤ 3 +
√

16p− 8c − 23

is an upper bound on the maximum size of a p-extremal chamber.

For p ≤ 10, Np ≤ 12 and geng can enumerate all possible graphs.



Example: p = 7

Theorem (HSWY, ’12) For even n with n ≥ 6, the unique 7-extremal graph has
n2

4 + 3 edges and is a spire with k = n/2− 2 chambers G1, . . . ,Gk are given by
Gi = K2 for i < k and Gk given below.



Example: Generating Graphs by Vertex Additions

Let’s generate all graphs of order n by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set S ⊂ V (G).
IMPORTANT: Only one augmentation per orbit!

Deletion: Select a vertex v ∈ V (G) to delete, G′ = G− v .



Extremal Chambers for p ≤ 10

p = 1 p = 2 p = 3 p = 4 p = 5 p = 5 p = 6

p = 6 p = 7 p = 8 p = 8 p = 8 p = 9 p = 10



Values of cp for p ≤ 10

p 1 2 3 4 5 6 7 8 9 10
np 2 4 4 6 6 6 6 6 6 6
cp 0 1 2 2 2 3 3 3 4 4
Np 2 4 6 8 8 10 10 12 12 12

Dudek & Schmitt HSWY

Table: Known values of np and cp.
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Focus on Chambers

Since the structure theorem only depends on combinations of chambers, we can
generate chambers of maximum excess.

We break chambers into the extendable and forbidden edges.
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The Structure of Extendable Edges

A connected graph is extendable if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If H is a extendable graph, there is a
graded ear decomposition

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk

such that

1. H0
∼= C2` for some ` and Hk = H.

2. Each Hi is extendable.
3. Each ear augmentation Hi ⊂ Hi+1 uses one or two ears of even order.

Graphs which appear “between” two extendable graphs in a two-ear augmentation
are almost extendable graphs.
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Example: Generating Graphs by Ear Augmentations

Let’s generate all graphs of order n by adding vertices one-by-one.

Initialization: Let G be a cycle.

Augmentation: Let x , y ∈ V (G) be distinct vertices and ` a length.
Add an ear of length ` between x and y .

Deletion: Select an ear to delete, such that G remains 2-connected.
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Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.
2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not

extendable.
3. Among ears in S, minimize their length.
4. Among ears in S, minimize the degrees of their endpoints.
5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.
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Adding in the Forbidden Edges

We can generate the extendable edges by ear augmentations.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a p-extremal graph are cliques.

If H is extendable, then let E(H) be the collection of supergraphs G where all
edges in E(G) \ E(H) are forbidden.
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The Extremal Two-Ears Theorem

Lemma. Let H be a 1-extendable graph on n vertices with Φ(H) = q. Let H ′ be a
1-extendable supergraph of H built from H by a graded ear decomposition. Let
Φ(H ′) = p > q and N = n(H ′). Choose G ∈ E(H) and G′ ∈ E(H ′) with the
maximum number of edges in each set. Then,

c(G′) ≤ c(G) + 2(p− q)− 1
4
(N − n)(n− 2).

G G′

H

forbidden edges

OO

ear augmentations //H ′
forbidden edges

OO
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The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).
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Timing

p Np cp CPU Time
5 8 2 0.02s
6 10 3 0.04s
7 10 3 0.18s
8 12 3 0.72s
9 12 4 1.46s
10 12 4 5.95s
11 14 3 43.29s
12 14 5 44.01s
13 14 3 6.66m
14 16 4 12.17m
15 16 6 12.71m

p Np cp CPU Time
16 16 4 2.02h
17 16 4 6.77h
18 18 5 11.75h
19 18 4 2.71d
20 18 5 4.21d
21 18 5 13.71d
22 20 5 42.84d
23 20 5 118.32d
24 20 6 209.42d
25 20 5 2.52y
26 20 5 7.21y
27 22 6 10.68y



Results

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4
np 2 4 4 6 6 6 6 6 6 6

p 11 12 13 14 15 16 17 18 19 20
cp 3 5 3 4 6 4 4 5 4 5
np 8 6 8 8 6 8 8 8 8 8

p 21 22 23 24 25 26 27
cp 5 5 5 6 5 5 6
np 8 8 8 8 8 8 8



Extremal Chambers for 11 ≤ p ≤ 27

p = 11 p = 11 p = 12 p = 13 p = 13 p = 13 p = 13 p = 13 p = 13 p = 14

p = 14 p = 15 p = 16 p = 16 p = 16 p = 16 p = 17 p = 17 p = 18 p = 18

p = 19 p = 19 p = 19 p = 19 p = 19 p = 19 p = 20 p = 21 p = 21 p = 21

p = 22 p = 23 p = 24 p = 24 p = 25 p = 25 p = 26 p = 26 p = 26 p = 27



p-Extremal Configurations for p ∈ {2,4}

p = 2 p = 4 p = 4
c2 = 1 c4 = 2 c4 = 2



p-Extremal Configurations for p = 8

p = 8

c8 = 3



p-Extremal Configurations for p = 16

p = 16

c16 = 4



Open Problems!

1. Compute more values of cp.

2. Show a growing lower bound on cp.
3. Show a logarithmic(?) upper bound on N∗p .

Conjecture (Hartke, Stolee, West, Yancey, ’12) Let p, k , t be integers so that
k ∈ {1, . . . ,2t} and

k(2t − 1)!! ≤ p < (k + 1)(2t − 1)!!

and set Cp = t2 − t + k − 1. Always cp ≤ Cp.

If the conjecture holds, then cp ≤ O
((

log p
log log p

)2
)

.
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If you learned ANYTHING...

...then it should be that

pairing structural theorems with specialized algorithms can be

very effective!
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