
Generating p-extremal graphs

Derrick Stolee

Iowa State University
dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/

December 9, 2013
ISU MECS Seminar

Last Week

1. Discussed generation of combinatorial objects.
2. “Defined” symmetry in terms of automorphism groups.
3. Presented canonical deletion, a method to remove isomorphic duplicates.
4. Discussed example for generating connected graphs by vertex

augmentations.

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.
Φ(G) is the number of perfect matchings in the graph G.

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.
Φ(G) is the number of perfect matchings in the graph G.

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.
Φ(G) is the number of perfect matchings in the graph G.

Φ(G) = 3
8 edges

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.

Φ(G) = 3
8 edges 11 edges

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.

Φ(G) = 3
8 edges 11 edges

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.

Φ(G) = 3
8 edges 11 edges

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.

Φ(G) = 3 Φ(G) = 3
8 edges 11 edges

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly once.

Question (Dudek, Schmitt, ’12) What is the maximum number of edges in a graph
with exactly n vertices and p perfect matchings?

Definition Let n be an even number and fix p ≥ 1.

f (n,p) = max{|E(G)| : |V (G)| = n,Φ(G) = p}.

Graphs attaining this number of edges are p-extremal.

Hetyei’s Theorem

Theorem (Hetyei’s Theorem, 1986) For all even n ≥ 2,

f (n,1) =
n2

4
.

Hetyei’s Theorem

Theorem (Hetyei’s Theorem, 1986) For all even n ≥ 2,

f (n,1) =
n2

4
.

Hetyei’s Theorem

Theorem (Hetyei’s Theorem, 1986) For all even n ≥ 2,

f (n,1) =
n2

4
.

Hetyei’s Theorem

Theorem (Hetyei’s Theorem, 1986) For all even n ≥ 2,

f (n,1) =
n2

4
.

The Form of f (n,p)

Theorem (Dudek & Schmitt)

For each p, there exist constants np, cp so that for all n ≥ np,

f (n,p) =
n2

4
+ cp.

G

Take G with n2

4 + c edges.

The Form of f (n,p)

Theorem (Dudek & Schmitt)

For each p, there exist constants np, cp so that for all n ≥ np,

f (n,p) =
n2

4
+ cp.

G

Add two new vertices.

The Form of f (n,p)

Theorem (Dudek & Schmitt)

For each p, there exist constants np, cp so that for all n ≥ np,

f (n,p) =
n2

4
+ cp.

G

Add edges to get (n+2)2

4 + c edges.

The Excess of a Graph

Let Φ(G) > 0. The excess c(G) is

c(G) = |E(G)| − |V (G)|2
4

.

In this sense, lower bounds on cp are “easy”
(any G with Φ(G) = p, has c(G) ≤ cp).

Upper bounds are hard: must prove NO graph achieves a higher constant!

The Excess of a Graph

Let Φ(G) > 0. The excess c(G) is

c(G) = |E(G)| − |V (G)|2
4

.

In this sense, lower bounds on cp are “easy”
(any G with Φ(G) = p, has c(G) ≤ cp).

Upper bounds are hard: must prove NO graph achieves a higher constant!

Edge Types

Let Φ(G) > 0 and e ∈ E(G).

I e is extendable if there exists a perfect matching containing e.
I e is forbidden otherwise.

Types of Graphs

Let G be connected with Φ(G) > 0.

I G is extendable if all edges are extendable.
I G is a chamber if the set of extendable edges forms a connected (spanning)

subgraph.
I G is p-extremal if Φ(G) = p and c(G) = cp.

Types of Graphs

Let G be connected with Φ(G) > 0.

I G is extendable if all edges are extendable.

I G is a chamber if the set of extendable edges forms a connected (spanning)
subgraph.

I G is p-extremal if Φ(G) = p and c(G) = cp.

Types of Graphs

Let G be connected with Φ(G) > 0.

I G is extendable if all edges are extendable.
I G is a chamber if the set of extendable edges forms a connected (spanning)

subgraph.

I G is p-extremal if Φ(G) = p and c(G) = cp.

Types of Graphs

Let G be connected with Φ(G) > 0.

I G is extendable if all edges are extendable.
I G is a chamber if the set of extendable edges forms a connected (spanning)

subgraph.
I G is p-extremal if Φ(G) = p and c(G) = cp.

Types of Graphs

Let G be connected with Φ(G) > 0.

I G is extendable if all edges are extendable.
I G is a chamber if the set of extendable edges forms a connected (spanning)

subgraph.
I G is p-extremal if Φ(G) = p and c(G) = cp.

Barriers

Let Φ(G) > 0. A set X ⊂ V (G) is a barrier if

|X | = # of odd connected components in G− X

Barriers

Let Φ(G) > 0. A set X ⊂ V (G) is a barrier if

|X | = # of odd connected components in G− X

Barriers

Let Φ(G) > 0. A set X ⊂ V (G) is a barrier if

|X | = # of odd connected components in G− X

Barriers

Let Φ(G) > 0. A set X ⊂ V (G) is a barrier if

|X | = # of odd connected components in G− X

Spires

Let G1, . . . ,Gk be chambers with barriers X1, . . . ,Xk where Xi is of maximum size
in Gi .

G4

G3

G2

G1

Spires

Let G1, . . . ,Gk be chambers with barriers X1, . . . ,Xk where Xi is of maximum size
in Gi .

G4

G3

G2

G1

X4

X3

X2

X1

Spires

Let G1, . . . ,Gk be chambers with barriers X1, . . . ,Xk where Xi is of maximum size
in Gi .

G4

G3

G2

G1

X4

X3

X2

X1

Spires

Let G1, . . . ,Gk be chambers with barriers X1, . . . ,Xk where Xi is of maximum size
in Gi .

G4

G3

G2

G1

X4

X3

X2

X1

Spires

Let G1, . . . ,Gk be chambers with barriers X1, . . . ,Xk where Xi is of maximum size
in Gi .

G4

G3

G2

G1

X4

X3

X2

X1

Spires

Let G1, . . . ,Gk be chambers with barriers X1, . . . ,Xk where Xi is of maximum size
in Gi .

G4

G3

G2

G1

X4

X3

X2

X1

p-Extremal Graphs are Spires

Theorem (Hartke, Stolee, West, Yancey ’12) If G is p-extremal, then G is a spire
of chambers G1, . . . ,Gk , with barriers Xi ⊆ V (Gi) of maximum size.

In addition:

1. p = Φ(G) = ∏k
i=1 Φ(Gi). Let pi = Φ(Gi).

2. If pi = 1, then Hi
∼= K2.

3. There are at most Npi = O(
√

pi) vertices in Gi , and c(Gi) ≤ cpi .

4. cp = c(G) ≤ ∑k
i=1 c(Gi) with equality if and only if |Xi |

|V (Gi)|
= 1

2 for all i < k .

p-Extremal Graphs are Spires

Theorem (Hartke, Stolee, West, Yancey ’12) If G is p-extremal, then G is a spire
of chambers G1, . . . ,Gk , with barriers Xi ⊆ V (Gi) of maximum size. In addition:

1. p = Φ(G) = ∏k
i=1 Φ(Gi). Let pi = Φ(Gi).

2. If pi = 1, then Hi
∼= K2.

3. There are at most Npi = O(
√

pi) vertices in Gi , and c(Gi) ≤ cpi .

4. cp = c(G) ≤ ∑k
i=1 c(Gi) with equality if and only if |Xi |

|V (Gi)|
= 1

2 for all i < k .

p-Extremal Graphs are Spires

Theorem (Hartke, Stolee, West, Yancey ’12) If G is p-extremal, then G is a spire
of chambers G1, . . . ,Gk , with barriers Xi ⊆ V (Gi) of maximum size. In addition:

1. p = Φ(G) = ∏k
i=1 Φ(Gi). Let pi = Φ(Gi).

2. If pi = 1, then Hi
∼= K2.

3. There are at most Npi = O(
√

pi) vertices in Gi , and c(Gi) ≤ cpi .

4. cp = c(G) ≤ ∑k
i=1 c(Gi) with equality if and only if |Xi |

|V (Gi)|
= 1

2 for all i < k .

p-Extremal Graphs are Spires

Theorem (Hartke, Stolee, West, Yancey ’12) If G is p-extremal, then G is a spire
of chambers G1, . . . ,Gk , with barriers Xi ⊆ V (Gi) of maximum size. In addition:

1. p = Φ(G) = ∏k
i=1 Φ(Gi). Let pi = Φ(Gi).

2. If pi = 1, then Hi
∼= K2.

3. There are at most Npi = O(
√

pi) vertices in Gi , and c(Gi) ≤ cpi .

4. cp = c(G) ≤ ∑k
i=1 c(Gi) with equality if and only if |Xi |

|V (Gi)|
= 1

2 for all i < k .

p-Extremal Graphs are Spires

Theorem (Hartke, Stolee, West, Yancey ’12) If G is p-extremal, then G is a spire
of chambers G1, . . . ,Gk , with barriers Xi ⊆ V (Gi) of maximum size. In addition:

1. p = Φ(G) = ∏k
i=1 Φ(Gi). Let pi = Φ(Gi).

2. If pi = 1, then Hi
∼= K2.

3. There are at most Npi = O(
√

pi) vertices in Gi , and c(Gi) ≤ cpi .

4. cp = c(G) ≤ ∑k
i=1 c(Gi) with equality if and only if |Xi |

|V (Gi)|
= 1

2 for all i < k .

Order of Chambers

G4

G3

G2

G1

X4

X3

X2

X1
|X |1

|V(G)|1

|X |2

|V(G)|2

|X |3

|V(G)|3

|X |4

|V(G)|4

<
<

<

Order of Chambers

G4

G3

G2

G1

X4

X3

X2

X1
|X |1

|V(G)|1

|X |2

|V(G)|2

|X |3

|V(G)|3

|X |4

|V(G)|4

<
<

=

Order of Chambers

G4

G2

G3

G1

X4

X2

X3

X1
|X |1

|V(G)|1

|X |3

|V(G)|3

|X |2

|V(G)|2

|X |4

|V(G)|4

<
<

=

Finiteness

Characterizing p-extremal graphs becomes finite for each fixed p.

If G has p perfect matchings and c = c(G), then

Np ≤ 3 +
√

16p− 8c − 23

is an upper bound on the maximum size of a p-extremal chamber.

For p ≤ 10, Np ≤ 12 and geng can enumerate all possible graphs.

Finiteness

Characterizing p-extremal graphs becomes finite for each fixed p.

If G has p perfect matchings and c = c(G), then

Np ≤ 3 +
√

16p− 8c − 23

is an upper bound on the maximum size of a p-extremal chamber.

For p ≤ 10, Np ≤ 12 and geng can enumerate all possible graphs.

Finiteness

Characterizing p-extremal graphs becomes finite for each fixed p.

If G has p perfect matchings and c = c(G), then

Np ≤ 3 +
√

16p− 8c − 23

is an upper bound on the maximum size of a p-extremal chamber.

For p ≤ 10, Np ≤ 12 and geng can enumerate all possible graphs.

Example: p = 7

Theorem (HSWY, ’12) For even n with n ≥ 6, the unique 7-extremal graph has
n2

4 + 3 edges and is a spire with k = n/2− 2 chambers G1, . . . ,Gk are given by
Gi = K2 for i < k and Gk given below.

Example: Generating Graphs by Vertex Additions

Let’s generate all graphs of order n by adding vertices one-by-one.

Augmentation: Add a vertex adjacent to a set S ⊂ V (G).
IMPORTANT: Only one augmentation per orbit!

Deletion: Select a vertex v ∈ V (G) to delete, G′ = G− v .

Extremal Chambers for p ≤ 10

p = 1 p = 2 p = 3 p = 4 p = 5 p = 5 p = 6

p = 6 p = 7 p = 8 p = 8 p = 8 p = 9 p = 10

Values of cp for p ≤ 10

p 1 2 3 4 5 6 7 8 9 10
np 2 4 4 6 6 6 6 6 6 6
cp 0 1 2 2 2 3 3 3 4 4
Np 2 4 6 8 8 10 10 12 12 12

Dudek & Schmitt HSWY

Table: Known values of np and cp.

Φ Not Monotonic for Vertex Augmentations

Φ Not Monotonic for Vertex Augmentations

Φ Not Monotonic for Vertex Augmentations

Φ Not Monotonic for Vertex Augmentations

Φ Not Monotonic for Vertex Augmentations

Focus on Chambers

Since the structure theorem only depends on combinations of chambers, we can
generate chambers of maximum excess.

We break chambers into the extendable and forbidden edges.

Focus on Chambers

Since the structure theorem only depends on combinations of chambers, we can
generate chambers of maximum excess.

We break chambers into the extendable and forbidden edges.

Extendable Graphs are 2-connected

A graph is 2-connected if no single vertex deletion disconnects the graph.

Extendable Graphs are 2-connected

A graph is 2-connected if no single vertex deletion disconnects the graph.

2-connected graphs can be built by ear augmentations.

Extendable Graphs are 2-connected

A graph is 2-connected if no single vertex deletion disconnects the graph.

2-connected graphs can be built by ear augmentations.

Extendable Graphs are 2-connected

A graph is 2-connected if no single vertex deletion disconnects the graph.

2-connected graphs can be built by ear augmentations.

Extendable Graphs are 2-connected

A graph is 2-connected if no single vertex deletion disconnects the graph.

2-connected graphs can be built by ear augmentations.

The Structure of Extendable Edges

A connected graph is extendable if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If H is a extendable graph, there is a
graded ear decomposition

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk

such that

1. H0
∼= C2` for some ` and Hk = H.

2. Each Hi is extendable.
3. Each ear augmentation Hi ⊂ Hi+1 uses one or two ears of even order.

Graphs which appear “between” two extendable graphs in a two-ear augmentation
are almost extendable graphs.

The Structure of Extendable Edges

A connected graph is extendable if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If H is a extendable graph, there is a
graded ear decomposition

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk

such that

1. H0
∼= C2` for some ` and Hk = H.

2. Each Hi is extendable.
3. Each ear augmentation Hi ⊂ Hi+1 uses one or two ears of even order.

Graphs which appear “between” two extendable graphs in a two-ear augmentation
are almost extendable graphs.

The Structure of Extendable Edges

A connected graph is extendable if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If H is a extendable graph, there is a
graded ear decomposition

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk

such that

1. H0
∼= C2` for some ` and Hk = H.

2. Each Hi is extendable.
3. Each ear augmentation Hi ⊂ Hi+1 uses one or two ears of even order.

Graphs which appear “between” two extendable graphs in a two-ear augmentation
are almost extendable graphs.

The Structure of Extendable Edges

A connected graph is extendable if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If H is a extendable graph, there is a
graded ear decomposition

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk

such that

1. H0
∼= C2` for some ` and Hk = H.

2. Each Hi is extendable.

3. Each ear augmentation Hi ⊂ Hi+1 uses one or two ears of even order.

Graphs which appear “between” two extendable graphs in a two-ear augmentation
are almost extendable graphs.

The Structure of Extendable Edges

A connected graph is extendable if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If H is a extendable graph, there is a
graded ear decomposition

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk

such that

1. H0
∼= C2` for some ` and Hk = H.

2. Each Hi is extendable.
3. Each ear augmentation Hi ⊂ Hi+1 uses one or two ears of even order.

Graphs which appear “between” two extendable graphs in a two-ear augmentation
are almost extendable graphs.

The Structure of Extendable Edges

A connected graph is extendable if all edges are extendable

Theorem (Lovász Two-Ears Theorem) If H is a extendable graph, there is a
graded ear decomposition

H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk

such that

1. H0
∼= C2` for some ` and Hk = H.

2. Each Hi is extendable.
3. Each ear augmentation Hi ⊂ Hi+1 uses one or two ears of even order.

Graphs which appear “between” two extendable graphs in a two-ear augmentation
are almost extendable graphs.

Example: Generating Graphs by Ear Augmentations

Let’s generate all graphs of order n by adding vertices one-by-one.

Initialization: Let G be a cycle.

Augmentation: Let x , y ∈ V (G) be distinct vertices and ` a length.
Add an ear of length ` between x and y .

Deletion: Select an ear to delete, such that G remains 2-connected.

Generating with Ear Augmentations

Generating with Ear Augmentations

Generating with Ear Augmentations

Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.
2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not

extendable.
3. Among ears in S, minimize their length.
4. Among ears in S, minimize the degrees of their endpoints.
5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.

Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.

2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not
extendable.

3. Among ears in S, minimize their length.
4. Among ears in S, minimize the degrees of their endpoints.
5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.

Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.
2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not

extendable.

3. Among ears in S, minimize their length.
4. Among ears in S, minimize the degrees of their endpoints.
5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.

Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.
2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not

extendable.
3. Among ears in S, minimize their length.

4. Among ears in S, minimize the degrees of their endpoints.
5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.

Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.
2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not

extendable.
3. Among ears in S, minimize their length.
4. Among ears in S, minimize the degrees of their endpoints.

5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.

Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.
2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not

extendable.
3. Among ears in S, minimize their length.
4. Among ears in S, minimize the degrees of their endpoints.
5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.

Canonical Deletion by Filtering

Let S be the set of ears of G. Filter S until |S| = 1 by the following conditions:

1. Remove ears ε ∈ S such that G− ε is not 2-connected.
2. If G is almost-extendable, then remove ears ε ∈ S such that G− ε is not

extendable.
3. Among ears in S, minimize their length.
4. Among ears in S, minimize the degrees of their endpoints.
5. Compute a canonical labeling `, and set

ε = argminε∈S{n(G)`(ε1) + `(ε2)}.

The ear ε is the canonical deletion.

Adding in the Forbidden Edges

We can generate the extendable edges by ear augmentations.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a p-extremal graph are cliques.

If H is extendable, then let E(H) be the collection of supergraphs G where all
edges in E(G) \ E(H) are forbidden.

Adding in the Forbidden Edges

We can generate the extendable edges by ear augmentations.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a p-extremal graph are cliques.

If H is extendable, then let E(H) be the collection of supergraphs G where all
edges in E(G) \ E(H) are forbidden.

Adding in the Forbidden Edges

We can generate the extendable edges by ear augmentations.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a p-extremal graph are cliques.

If H is extendable, then let E(H) be the collection of supergraphs G where all
edges in E(G) \ E(H) are forbidden.

Adding in the Forbidden Edges

We can generate the extendable edges by ear augmentations.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a p-extremal graph are cliques.

If H is extendable, then let E(H) be the collection of supergraphs G where all
edges in E(G) \ E(H) are forbidden.

Adding in the Forbidden Edges

We can generate the extendable edges by ear augmentations.

Adding an edge between two vertices in the same barrier adds a forbidden edge.

However, this changes the other barriers.

We can assume that all barriers in a p-extremal graph are cliques.

If H is extendable, then let E(H) be the collection of supergraphs G where all
edges in E(G) \ E(H) are forbidden.

The Extremal Two-Ears Theorem

Lemma. Let H be a 1-extendable graph on n vertices with Φ(H) = q. Let H ′ be a
1-extendable supergraph of H built from H by a graded ear decomposition. Let
Φ(H ′) = p > q and N = n(H ′). Choose G ∈ E(H) and G′ ∈ E(H ′) with the
maximum number of edges in each set. Then,

c(G′) ≤ c(G) + 2(p− q)− 1
4
(N − n)(n− 2).

G G′

H

forbidden edges

OO

ear augmentations //H ′
forbidden edges

OO

The Extremal Two-Ears Theorem

Lemma. Let H be a 1-extendable graph on n vertices with Φ(H) = q. Let H ′ be a
1-extendable supergraph of H built from H by a graded ear decomposition. Let
Φ(H ′) = p > q and N = n(H ′). Choose G ∈ E(H) and G′ ∈ E(H ′) with the
maximum number of edges in each set. Then,

c(G′) ≤ c(G) + 2(p− q)− 1
4
(N − n)(n− 2).

G G′

H

forbidden edges

OO

ear augmentations //H ′
forbidden edges

OO

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.

2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.

3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.

4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.

5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.

6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.

7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

The Full Search Algorithm (In Parts)

Begin with p, c,N. Generate all chambers G with p perfect matchings, c(G) ≥ c,
and n(G) ≤ N.

1. Start with an even cycle H of order at most N.
2. Add ear augmentations to H that match canonical deletions.
3. If Φ(H) > p, then backtrack.
4. Maintain and update list of barriers on H.
5. Find maximum chambers G by adding forbidden edges to H.
6. If c(G) + 2(p−Φ(H)) < c, then backtrack.
7. If Φ(H) = p, then output all maximum G (with c(G) ≥ c).

Timing

p Np cp CPU Time
5 8 2 0.02s
6 10 3 0.04s
7 10 3 0.18s
8 12 3 0.72s
9 12 4 1.46s
10 12 4 5.95s
11 14 3 43.29s
12 14 5 44.01s
13 14 3 6.66m
14 16 4 12.17m
15 16 6 12.71m

p Np cp CPU Time
16 16 4 2.02h
17 16 4 6.77h
18 18 5 11.75h
19 18 4 2.71d
20 18 5 4.21d
21 18 5 13.71d
22 20 5 42.84d
23 20 5 118.32d
24 20 6 209.42d
25 20 5 2.52y
26 20 5 7.21y
27 22 6 10.68y

Results

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4
np 2 4 4 6 6 6 6 6 6 6

p 11 12 13 14 15 16 17 18 19 20
cp 3 5 3 4 6 4 4 5 4 5
np 8 6 8 8 6 8 8 8 8 8

p 21 22 23 24 25 26 27
cp 5 5 5 6 5 5 6
np 8 8 8 8 8 8 8

Extremal Chambers for 11 ≤ p ≤ 27

p = 11 p = 11 p = 12 p = 13 p = 13 p = 13 p = 13 p = 13 p = 13 p = 14

p = 14 p = 15 p = 16 p = 16 p = 16 p = 16 p = 17 p = 17 p = 18 p = 18

p = 19 p = 19 p = 19 p = 19 p = 19 p = 19 p = 20 p = 21 p = 21 p = 21

p = 22 p = 23 p = 24 p = 24 p = 25 p = 25 p = 26 p = 26 p = 26 p = 27

p-Extremal Configurations for p ∈ {2,4}

p = 2 p = 4 p = 4
c2 = 1 c4 = 2 c4 = 2

p-Extremal Configurations for p = 8

p = 8

c8 = 3

p-Extremal Configurations for p = 16

p = 16

c16 = 4

Open Problems!

1. Compute more values of cp.

2. Show a growing lower bound on cp.
3. Show a logarithmic(?) upper bound on N∗p .

Conjecture (Hartke, Stolee, West, Yancey, ’12) Let p, k , t be integers so that
k ∈ {1, . . . ,2t} and

k(2t − 1)!! ≤ p < (k + 1)(2t − 1)!!

and set Cp = t2 − t + k − 1. Always cp ≤ Cp.

If the conjecture holds, then cp ≤ O
((

log p
log log p

)2
)

.

Open Problems!

1. Compute more values of cp.
2. Show a growing lower bound on cp.

3. Show a logarithmic(?) upper bound on N∗p .

Conjecture (Hartke, Stolee, West, Yancey, ’12) Let p, k , t be integers so that
k ∈ {1, . . . ,2t} and

k(2t − 1)!! ≤ p < (k + 1)(2t − 1)!!

and set Cp = t2 − t + k − 1. Always cp ≤ Cp.

If the conjecture holds, then cp ≤ O
((

log p
log log p

)2
)

.

Open Problems!

1. Compute more values of cp.
2. Show a growing lower bound on cp.
3. Show a logarithmic(?) upper bound on N∗p .

Conjecture (Hartke, Stolee, West, Yancey, ’12) Let p, k , t be integers so that
k ∈ {1, . . . ,2t} and

k(2t − 1)!! ≤ p < (k + 1)(2t − 1)!!

and set Cp = t2 − t + k − 1. Always cp ≤ Cp.

If the conjecture holds, then cp ≤ O
((

log p
log log p

)2
)

.

Open Problems!

1. Compute more values of cp.
2. Show a growing lower bound on cp.
3. Show a logarithmic(?) upper bound on N∗p .

Conjecture (Hartke, Stolee, West, Yancey, ’12) Let p, k , t be integers so that
k ∈ {1, . . . ,2t} and

k(2t − 1)!! ≤ p < (k + 1)(2t − 1)!!

and set Cp = t2 − t + k − 1. Always cp ≤ Cp.

If the conjecture holds, then cp ≤ O
((

log p
log log p

)2
)

.

Open Problems!

1. Compute more values of cp.
2. Show a growing lower bound on cp.
3. Show a logarithmic(?) upper bound on N∗p .

Conjecture (Hartke, Stolee, West, Yancey, ’12) Let p, k , t be integers so that
k ∈ {1, . . . ,2t} and

k(2t − 1)!! ≤ p < (k + 1)(2t − 1)!!

and set Cp = t2 − t + k − 1. Always cp ≤ Cp.

If the conjecture holds, then cp ≤ O
((

log p
log log p

)2
)

.

If you learned ANYTHING...

...then it should be that

pairing structural theorems with specialized algorithms can be

very effective!

If you learned ANYTHING...

...then it should be that

pairing structural theorems with specialized algorithms can be

very effective!

Generating p-extremal graphs

Derrick Stolee

Iowa State University
dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/

December 9, 2013
ISU MECS Seminar

