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Ramsey Theory and anti-Ramsey Theory

Ramsey Theory: Looking for monochromatic (monoχ) subgraphs in large
edge-colored graphs.

Anti-Ramsey Theory: Looking for rainbow subgraphs in edge-colorings using
many colors.
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Ramsey Theory and anti-Ramsey Theory

Ramsey Theory: Looking for monochromatic (monoχ) subgraphs in large
edge-colored graphs.

“Complete disorder is impossible.”

Anti-Ramsey Theory: Looking for rainbow subgraphs in edge-colorings using
many colors.

“Complete disorder is unavoidable.”



Ramsey Theory on the Integers

We will consider [n] = {1, . . . ,n} ⊂N. Let k ≥ 3.

Definition A k -term arithmetic progression (k -AP) is a set S such that

S = {a + id : 0 ≤ i < k} = {a,a + d ,a + 2d , . . . ,a + (k − 1)d}

for some integers a,d , and d 6= 0.
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van der Waerden: If the number of colors r is fixed and n is large, then there
exists a monoχ k-AP in every c : [n]→ [r ].

Definition wr (k) is the minimum n such that all r -colorings of [n] contain a
monoχ k -AP.
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lim
n→∞

sz([n], k)/n = 0.

Theorem (Gowers)
sz([n], k) ≤ n

log log n
.

Theorem (Behrend)
sz([n], k) ≥ ne−b

√
log n.



Ramsey Theory on the Integers
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Anti-Ramsey Theory on the Integers

Szemerédi: If a single color class is large, then there exists a monoχ k-AP.

anti-Szemerédi: If all color classes are large, then there exists a rainbow k-AP.

Theorem (Juncić, Fox, Mahdian, Nešetřil, Radoičić) If N is colored with three
colors such that each color class has upper density strictly larger than 1

6 , then the
coloring contains a rainbow 3-AP.

Theorem (Axenovich, Fon-Der-Flaass) If [n] is colored with three colors such
that each color class has size at least n+4

6 , then the coloring contains a rainbow
3-AP.
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anti-Szemerédi: If all color classes are large, then there exists a rainbow k-AP.
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Anti-Ramsey Theory on the Integers

An r -coloring is exact if all colors are used at least once.

Definition aw([n], k) is the minimum positive r such that all exact r -colorings of
[n] contain a rainbow k -AP.

Assuming k ≤ n:

k ≤ aw([n], k) ≤ n



n \ k 3 4 5 6 7 8 9
3 3
4 4
5 4 5
6 4 6
7 4 6 7
8 5 6 8
9 4 7 8 9
10 5 8 9 10
11 5 8 9 10 11
12 5 8 10 11 12
13 5 8 11 11 12 13
14 5 8 11 12 13 14
15 5 9 11 13 14 14 15

Values of aw([n], k) for 3 ≤ k ≤ n+3
2 .
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Monotonicity?

Proposition aw([n + 1], k) ≤ aw([n], k) + 1.

Conjecture aw([n + 1], k) ≥ aw([n], k)− 1.



Asymptotics of aw([n], k)

Theorem (BEHHKKLMSWY ’14)
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k = 3 Case

Theorem (BEHHKKLMSWY ’14)

log3 n + 2 ≤ aw([n],3) ≤ log2 n + 1

For the lower bound, consider the coloring

c(i) = the largest integer j such that 3j divides i .

If x < y < z is a 3-AP, then x + z = 2y . Let j = min{c(x), c(y), c(z)} and divide
the equation by 3j to find

mx (3c(x)−j) + mz(3c(z)−j) = 2my (3c(y)−j)

where mx ,my ,mz are relatively prime to 3. Since the colors are distinct, exactly
two of the numbers are multiples of three.
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k = 3 Case

For the log2(n) + 1 upper bound, consider the following

Proposition For n ≥ 2, there exists m ≤ b n
2c such that

aw([n],3) ≤ aw ([m],3) + 1.

Let r + 1 = aw([n],3) and consider an exact r -coloring of [n] that has no rainbow
3-AP.

There is a minimal interval [a,b] ⊂ [n] such that all r colors appear. Thus, the
color c(a) does not appear within [a + 1,b] and the color c(b) does not appear
within [a,b− 1].

Translate [a,b] to be a coloring of [t ] where t = b− a + 1.
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Claim: t is even. (If not, then 1, t−1
2 , t is a rainbow 3-AP.)
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Now, c : [t ]→ [r ] is an exact coloring where c(1) 6= c(t) and these colors do not
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k = 3 Case

Now, c : [t ]→ [r ] is an exact coloring where c(1) 6= c(t) and these colors do not
appear within [2, t − 1].

Claim: r − 1 colors appear on the odd elements of [t ].

Note that r − 1 colors also appear on the even elements of [t ]!



Structure of Extremal Colorings

n = 22

n = 28



The k ≥ 4 Case

Theorem (BEHHKKLMSWY ’14) For k ≥ 4,
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log n) < aw([n], k) ≤ ne− log log log n−ω(1).

The upper bound follows from

Proposition aw([n], k)− 1 ≤ sz([n], k) ≤ n
log log n .

Proof.

Let r + 1 = aw([n], k) and fix an exact r -coloring that avoids rainbow k -APs.

Select one element from each color class. This creates a set S of size r with no
k -AP.

aw([n], k)− 1 = |S| ≤ sz([n], k).
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punctured 4-APs: sets given by taking a 4-AP A and removing an element.

Let S ⊂ [n] contain no punctured 4-AP. If we color S with distinct colors, then
[n]− S with a new color, the coloring avoids rainbow 4-APs.
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Let S ⊂ [n] contain no punctured 4-AP.

If we color S with distinct colors, then
[n]− S with a new color, the coloring avoids rainbow 4-APs.
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anti-van der Waerden on Zn

0 1 2 3 4 5 6 7 8 9
0–9 3 3 3 4 3 3 4

10–19 4 3 4 3 4 4 3 4 5 3
20–29 4 4 4 3 4 4 4 5 4 3
30–39 5 4 3 4 5 4 5 3 4 4
40–49 4 4 5 4 4 5 4 3 4 4
50–59 5 5 4 3 6 4 4 4 4 3
60–69 5 3 5 5 3 4 5 3 5 4
70–79 5 3 5 4 4 5 4 4 5 3
80–89 4 6 5 3 5 5 5 4 4 4
90–99 6 4 4 5 4 4 4 4 5 5

Computed values of aw(Zn,3) for n = 3, . . . ,99
The row label gives the range of n and the column heading is the ones digit within this range.



anti-van der Waerden on Zn, k = 3

Theorem (BEHHKKLMSWY ’14)

1. For all positive integers m, aw(Z2m ,3) = 3.

2. For an integer n ≥ 2 having every prime factor less than 100,

aw(Zn,3) = 2 + f2 + f3 + 2f4.

Here f4 denotes the number of odd prime factors of n in the set Q4 = {17,31,41,43,73,89,97}.
The quantity f3 is the number of odd prime factors of n in Q3, where Q3 is the set of all odd primes
less than 100 and not in Q4. Both f3 and f4 are counted according to multiplicity. Finally, f2 = 0 if n
odd and f2 = 1 if n is even.



anti-van der Waerden on Zn, k ≥ 4

Theorem. For k ≥ 4,

ne−O(
√

log n) < aw(Zn, k) ≤ ne− log log log n−ω(1).

Proof is essentially the same as the aw([n], k) case.



Open Problems

Conjecture For positive integers n and k , aw([n], k) ≥ aw([n− 1], k)− 1.

Conjecture Let m be a nonnegative integer. Then aw([3m],3) = m + 2.

Question Is it true that aw([3n],3) = aw([n],3) + 1 for all positive integers n?
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A singleton extremal coloring of S is an exact coloring of S that avoids rainbow
k -APs and uses exactly aw(S, k)− 1 colors

Conjecture For k = 3, there exists a singleton extremal coloring of [n] and of Zn.

Conjecture For p an odd prime and t ≥ 3,

aw(Zpt ,3) ≥ aw(Zt ,3) + aw(Zp,3)− 2.
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Question Does there exist a prime p such that aw(Zp,3) ≥ 5?
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Collaboration on steroids!

Discussions were varied, everyone had meaningful
contributions.

The graduate students doing the main writing.
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A new problem.
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What Didn’t Work

Big group!

Ideal: no more than 4 grad students and 2 faculty per group.

An 11-author paper will look confusing on anyone’s C.V.
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Ideas for Next Time

More Problems: Select more problems with more variety, expect one
to be dropped.

Smaller Groups: Natural for more problems. Gives more responsibility
to each author.

Group Rotation: Have one group meet in seminar room per week.
Other groups meet students-only in another room.
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