Automated Discharging Arguments for Density Problems in Grids

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

September 2, 2014 Mathematics Department Colloquium

Wireless Sensor Networks

Fault Tolerance

These devices break!

These devices break!

We want to know which device needs to be repaired after a failure.

These devices break!

We want to know which device needs to be repaired after a failure.

We can put detection process on some of the nodes, but that drains power, so we want to put that on the **smallest** number of nodes.

These devices break!

We want to know which device needs to be repaired after a failure.

We can put detection process on some of the nodes, but that drains power, so we want to put that on the **smallest** number of nodes.

Combinatorial Optimization!

Density

These grids are **amenable**:

$$\limsup_{r \to \infty} \frac{|B_{r+d}(v) \setminus B_r(v)|}{|B_r(v)|} = 0,$$

where $B_r(v)$ is the ball of radius *r* about a vertex *v*.

Density

These grids are **amenable**:

$$\limsup_{r\to\infty}\frac{|B_{r+d}(v)\setminus B_r(v)|}{|B_r(v)|}=0,$$

where $B_r(v)$ is the ball of radius *r* about a vertex *v*.

This implies two facts:

$$\begin{split} \liminf_{r \to \infty} \frac{|B_r(v) \cap B_r(u)|}{|B_r(v)|} &= 1, \\ \text{and} \\ \limsup_{r \to \infty} \frac{|B_r(v) \cap X|}{|B_r(v)|} &= \limsup_{r \to \infty} \frac{|B_r(u) \cap X|}{|B_r(u)|} \\ \text{for any pair of vertices } u, v \in V(G) \text{ and any set } X \subseteq V(G). \end{split}$$

and

Density

Therefore, we can select an arbitrary vertex $v_0 \in V(G)$ and define the **density** of a set $X \subseteq V(G)$ as

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(v_0) \cap X|}{|B_r(v_0)|}.$$

Therefore, we can select an arbitrary vertex $v_0 \in V(G)$ and define the **density** of a set $X \subseteq V(G)$ as

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(v_0) \cap X|}{|B_r(v_0)|}$$

This definition is used for problems where we minimize the density.

We would use lim inf for maximizing the density.

Dominating Sets

A set $X \subseteq V(G)$ is a **dominating set** if

∘ $N[v] \cap X \neq \emptyset$ for all vertices $v \in V(G)$.

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Dominating Sets

A set $X \subseteq V(G)$ is a **dominating set** if

• $N[v] \cap X \neq \emptyset$ for all vertices $v \in V(G)$.

(N[v] is the closed neighborhood of v: $N[v] = N(v) \cup \{v\}$.)

Forbidden Configuration

Dominating Sets

A set $X \subseteq V(G)$ is a **dominating set** if

• $N[v] \cap X \neq \emptyset$ for all vertices $v \in V(G)$.

(N[v] is the closed neighborhood of v: $N[v] = N(v) \cup \{v\}$.)

Forbidden Configuration

It is not difficult to see that the optimal density of a dominating set in the hexagonal grid is $\frac{1}{4} = 0.250000$.

Identifying Codes

A set $X \subseteq V(G)$ is an **identifying code** if

•
$$N[v] \cap X \neq \emptyset$$
 for all vertices $v \in V(G)$, and

• $N[v] \cap X \neq N[u] \cap X$ for all distinct vertices $v, u \in V(G)$.

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Forbidden Configurations

Identifying Codes

A set $X \subseteq V(G)$ is an **identifying code** if

•
$$N[v] \cap X \neq \emptyset$$
 for all vertices $v \in V(G)$, and

• $N[v] \cap X \neq N[u] \cap X$ for all distinct vertices $v, u \in V(G)$.

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Forbidden Configurations

Defined by Karpovsky, Chakrabarty, Levitin in 1998.

Identifying Codes Alternative Definition

A set $X \subseteq V(G)$ is an **identifying code** if

 $(N[v] \triangle N[u]) \cap X \neq \emptyset$

for all distinct vertices $v, u \in V(G)$.

Identifying Codes Alternative Definition

A set $X \subseteq V(G)$ is an **identifying code** if

 $(N[v] \triangle N[u]) \cap X \neq \emptyset$

for all distinct vertices $v, u \in V(G)$.

So, an identifying code is a specific type of covering problem.

Let G be the hexagonal grid, and

 $\delta = \inf \{ \delta(X) : X \subset V(G) \text{ is an identifying code} \}.$

Let G be the hexagonal grid, and

 $\delta = \inf{\delta(X) : X \subset V(G) \text{ is an identifying code}}.$

2000 : Cohen, Honkala, Lobstein, and Zémor:

Let G be the hexagonal grid, and

 $\delta = \inf{\delta(X) : X \subset V(G) \text{ is an identifying code}}.$

1998 : Karpovsky, Chakrabarty, and Levitin

 $\delta \geq \frac{2}{5} = 0.400000$

2000 : Cohen, Honkala, Lobstein, and Zémor:

Let G be the hexagonal grid, and

 $\delta = \inf{\delta(X) : X \subset V(G) \text{ is an identifying code}}.$

1998 : Karpovsky, Chakrabarty, and Levitin 2000 : Cohen, Honkala, Lobstein, and Zémor $\delta \ge \frac{2}{5} = 0.400000$ $\delta \ge \frac{16}{39} \approx 0.410256$

2000 : Cohen, Honkala, Lobstein, and Zémor:

Let G be the hexagonal grid, and

 $\delta = \inf{\delta(X) : X \subset V(G) \text{ is an identifying code}}.$

1998 : Karpovsky, Chakrabarty, and Levitin 2000 : Cohen, Honkala, Lobstein, and Zémor 2009 : Cranston and Yu $\begin{array}{l} \delta \geq \ \frac{2}{5} = 0.400000 \\ \delta \geq \frac{16}{39} \approx 0.410256 \\ \delta \geq \frac{12}{29} \approx 0.413793 \end{array}$

2000 : Cohen, Honkala, Lobstein, and Zémor:

Let G be the hexagonal grid, and

 $\delta = \inf{\delta(X) : X \subset V(G) \text{ is an identifying code}}.$

1998 : Karpovsky, Chakrabarty, and Levitin 2000 : Cohen, Honkala, Lobstein, and Zémor 2009 : Cranston and Yu 2013 : Cuickerman and Yu $\begin{array}{l} \delta \geq \ \frac{2}{5} = 0.400000 \\ \delta \geq \frac{16}{39} \approx 0.410256 \\ \delta \geq \frac{12}{29} \approx 0.413793 \\ \delta \geq \frac{5}{12} \approx 0.416666 \end{array}$

2000 : Cohen, Honkala, Lobstein, and Zémor:

Let G be the hexagonal grid, and

 $\delta = \inf{\delta(X) : X \subset V(G) \text{ is an identifying code}}.$

1998 : Karpovsky, Chakrabarty, and Levitin 2000 : Cohen, Honkala, Lobstein, and Zémor 2009 : Cranston and Yu 2013 : Cuickerman and Yu	$\delta \geq rac{2}{5} = 0.400000 \ \delta \geq rac{16}{39} pprox 0.410256 \ \delta \geq rac{12}{29} pprox 0.413793 \ \delta \geq rac{5}{12} pprox 0.416666$
2015 ⁺ : Stolee	$\delta \geq rac{23}{55} pprox 0.418181$
2000 : Cohen, Honkala, Lobstein, and Zémor:	$\delta \leq rac{3}{7} pprox 0.428571$

Discharging demonstrates a connection between local structure and global averages.

Discharging arguments have a few components:

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

The total charge is somehow connected to our global average, but is **roughly distributed**.

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

The total charge is somehow connected to our global average, but is **roughly distributed**.

By **discharging** (or **distributing charge**), we aim to make the charge distributed evenly.

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

The total charge is somehow connected to our global average, but is **roughly distributed**.

By **discharging** (or **distributing charge**), we aim to make the charge distributed evenly.

If the final charge amount is bounded below by the same value, then we have a bound on the **global average**.

Let X be an identifying code in the hexagonal grid.

Let X be an identifying code in the hexagonal grid.

Define
$$\mu(\mathbf{v}) = \begin{cases} 1 & \mathbf{v} \in X \\ 0 & \mathbf{x} \notin X \end{cases}$$
.
Let X be an identifying code in the hexagonal grid.

Define
$$\mu(\mathbf{v}) = \begin{cases} 1 & \mathbf{v} \in X\\ 0 & x \notin X \end{cases}$$

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(\mathbf{v}_0) \cap X|}{|B_r(\mathbf{v}_0)|} = \limsup_{r \to \infty} \frac{\sum_{\mathbf{v} \in B_r(\mathbf{v}_0)} \mu(\mathbf{v})}{|B_r(\mathbf{v}_0)|}.$$

Let X be an identifying code in the hexagonal grid.

Define
$$\mu(\mathbf{v}) = \begin{cases} 1 & \mathbf{v} \in X\\ 0 & x \notin X \end{cases}$$

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(\mathbf{v}_0) \cap X|}{|B_r(\mathbf{v}_0)|} = \limsup_{r \to \infty} \frac{\sum_{\mathbf{v} \in B_r(\mathbf{v}_0)} \mu(\mathbf{v})}{|B_r(\mathbf{v}_0)|}.$$

If we **discharge** such that our new charge values $\mu'(v)$ have $\mu'(v) \ge w$ always, then

$$\delta(X) = \limsup_{r \to \infty} \frac{\sum_{v \in B_r(v_0)} \mu(v)}{|B_r(v_0)|} = \limsup_{r \to \infty} \frac{\sum_{v \in B_r(v_0)} \mu'(v)}{|B_r(v_0)|} \ge w.$$

Example Discharging Argument

Why did it work?

Forbidden Configurations

Example Discharging Argument

Why did it work?

Forbidden Configurations

It is also a sharp lower bound: $\delta > \frac{2}{5}$ as it is impossible to construct a local area where $\mu'(v) = \frac{2}{5}$ for all vertices.

There are a few subtle points:

There are a few subtle points:

We actually have a charge function $\nu(f)$ on the faces: $\nu(f) = 0$.

There are a few subtle points:

We actually have a charge function $\nu(f)$ on the faces: $\nu(f) = 0$.

When we discharge with the faces, we must have that $\nu'(f) \ge 0$ always.

There are a few subtle points:

We actually have a charge function $\nu(f)$ on the faces: $\nu(f) = 0$.

When we discharge with the faces, we must have that $\nu'(f) \ge 0$ always.

The equality

$$\limsup_{r \to \infty} \frac{\sum_{\boldsymbol{v} \in B_r(\boldsymbol{v}_0)} \mu(\boldsymbol{v})}{|B_r(\boldsymbol{v}_0)|} = \limsup_{r \to \infty} \frac{\sum_{\boldsymbol{v} \in B_r(\boldsymbol{v}_0)} \mu'(\boldsymbol{v})}{|B_r(\boldsymbol{v}_0)|}$$

holds only when our discharging sends a **bounded amount** of charge a **bounded distance**.

The main difficulty with designing discharging arguments is to balance

Low-charge objects receive enough charge to match the goal value.

► High-charge objects *maintain* enough charge to match the goal value.

Automated Discharging Arguments using GEneration.

Automated Discharging Arguments using GEneration.

ADAGE

Automated Discharging Arguments using GEneration.

ADAGE

A proof using this technique is called an **adage**.

Automated Discharging Arguments

There are three main steps:
Automated Discharging Arguments

There are three main steps:

1. Define the **shape** of the rules.

Automated Discharging Arguments

There are three main steps:

- 1. Define the **shape** of the rules.
- 2. Generate constraints on the rule values.

Automated Discharging Arguments

There are three main steps:

- 1. Define the **shape** of the rules.
- 2. Generate constraints on the rule values.
- 3. Optimize the values.

Generating Rules

Generating Rules

1758 instances of this rule.

Generating Rules

1758 instances of this rule.

We do not assign values to these rules! Only variables!

Given a set of rules, we must constrain the values of the rules such that we meet our goal charge values.

Example constraints:

Given a set of rules, we must constrain the values of the rules such that we meet our goal charge values.

Example constraints:

1,758 Rules with 5,238 Variables.

To assign value to the rules, we create the following linear program:

 $\begin{array}{cccc} \max & \textbf{w} & \\ & \mu'(\textbf{v}) & \geq & \textbf{w} & \forall \textbf{v} \in \textbf{V}(\textbf{G}) \\ & \nu'(f) & \geq & \textbf{0} & \forall f \in \textbf{F}(\textbf{G}) \end{array}$

To assign value to the rules, we create the following linear program:

To assign value to the rules, we create the following linear program:

To assign value to the rules, we create the following linear program:

Results

Theorem

Let X be an identifying code in the hexagonal grid. The adage proof using rule N demonstrates a lower bound of $\delta(X) \ge \frac{23}{55} = 0.4\overline{18}$.

Theorem

Let X be an identifying code in the hexagonal grid. The adage proof using rule N demonstrates a lower bound of $\delta(X) \ge \frac{23}{55} = 0.4\overline{18}$.

This improves the previous-best lower bound of Cuickerman & Yu $(\frac{5}{12} = 0.41\overline{6})$ but does not match the current-best upper bound $(\frac{3}{7} \approx 0.42857)$.

Other Rule Sets in Hexagonal Grid

Other Rule Sets in Square Grid

Other Rule Sets in Triangular Grid

Results for Variations on Identifying Codes

Set Type	Hexagonal Grid		Square Grid		Triangular Grid	
Dominating Set	<i>V</i> ₁	$\tfrac{1}{4}\approx 0.250000^*$	<i>V</i> ₁	$\tfrac{1}{5}\approx 0.200000^*$	<i>V</i> ₁	$rac{1}{7} pprox 0.142857^{*}$
Identifying Code	N	$rac{23}{55} pprox 0.418182^{+}$	V ₂	$rac{7}{20}pprox 0.350000^*$	<i>V</i> ₁	$\tfrac{1}{4}\approx 0.250000^{*}$
Strong Identify- ing Code	<i>V</i> ₂	$\tfrac{8}{17}\approx 0.470588$	$C_1 \cup C_2$	$rac{7}{18}pprox 0.388889$	$C_1^+\cup C_2^+$	$\tfrac{4}{13}\approx 0.307692$
Locating- Dominating Code	V ₂	$\tfrac{1}{3}\approx 0.333333^*$	<i>V</i> ₂	$\frac{3}{10} \approx 0.300000^{*}$	$C_1 \cup C_2$	$rac{12}{53} pprox 0.226415$
Open-Locating- Dominating Code	V ₂	$\tfrac{1}{2}\approx 0.500000^*$	<i>C</i> ₁ ⁺	$\frac{2}{5} \approx 0.400000^{*}$	<i>C</i> ₁ ⁺	$rac{4}{13} pprox 0.307692^{*}$

1. More discharging rules, more adage proofs. Can we do better?

- 1. More discharging rules, more adage proofs. Can we do better?
- 2. Build a white-box implementation of linear programming. Perhaps use a primal-dual algorithm?

- 1. More discharging rules, more adage proofs. Can we do better?
- 2. Build a white-box implementation of linear programming. Perhaps use a primal-dual algorithm?
- 3. Extend framework to coloring problems on planar graphs.

- 1. More discharging rules, more adage proofs. Can we do better?
- 2. Build a white-box implementation of linear programming. Perhaps use a primal-dual algorithm?
- 3. Extend framework to coloring problems on planar graphs.
- 4. Use discharging as *combinatorial dual* for finite combinatorial optimization problems.

Automated Discharging Arguments for Density Problems in Grids

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

September 2, 2014 Mathematics Department Colloquium