
Automated Discharging Arguments for Density Problems in
Grids

Derrick Stolee

Iowa State University
dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/

September 2, 2014
Mathematics Department Colloquium

Wireless Sensor Networks

Fault Tolerance

These devices break!

We want to know which device needs to be repaired after a failure.

We can put detection process on some of the nodes, but that drains power, so we
want to put that on the smallest number of nodes.

Combinatorial Optimization!

Fault Tolerance

These devices break!

We want to know which device needs to be repaired after a failure.

We can put detection process on some of the nodes, but that drains power, so we
want to put that on the smallest number of nodes.

Combinatorial Optimization!

Fault Tolerance

These devices break!

We want to know which device needs to be repaired after a failure.

We can put detection process on some of the nodes, but that drains power, so we
want to put that on the smallest number of nodes.

Combinatorial Optimization!

Fault Tolerance

These devices break!

We want to know which device needs to be repaired after a failure.

We can put detection process on some of the nodes, but that drains power, so we
want to put that on the smallest number of nodes.

Combinatorial Optimization!

Density

These grids are amenable:

lim sup
r→∞

|Br+d (v) \ Br (v)|
|Br (v)|

= 0,

where Br (v) is the ball of radius r about a vertex v .

This implies two facts:

lim inf
r→∞

|Br (v) ∩ Br (u)|
|Br (v)|

= 1,

and

lim sup
r→∞

|Br (v) ∩ X |
|Br (v)|

= lim sup
r→∞

|Br (u) ∩ X |
|Br (u)|

,

for any pair of vertices u, v ∈ V (G) and any set X ⊆ V (G).

Density

These grids are amenable:

lim sup
r→∞

|Br+d (v) \ Br (v)|
|Br (v)|

= 0,

where Br (v) is the ball of radius r about a vertex v .

This implies two facts:

lim inf
r→∞

|Br (v) ∩ Br (u)|
|Br (v)|

= 1,

and

lim sup
r→∞

|Br (v) ∩ X |
|Br (v)|

= lim sup
r→∞

|Br (u) ∩ X |
|Br (u)|

,

for any pair of vertices u, v ∈ V (G) and any set X ⊆ V (G).

Density

Therefore, we can select an arbitrary vertex v0 ∈ V (G) and define the density of
a set X ⊆ V (G) as

δ(X) = lim sup
r→∞

|Br (v0) ∩ X |
|Br (v0)|

.

This definition is used for problems where we minimize the density.

We would use lim inf for maximizing the density.

Density

Therefore, we can select an arbitrary vertex v0 ∈ V (G) and define the density of
a set X ⊆ V (G) as

δ(X) = lim sup
r→∞

|Br (v0) ∩ X |
|Br (v0)|

.

This definition is used for problems where we minimize the density.

We would use lim inf for maximizing the density.

Dominating Sets

A set X ⊆ V (G) is a dominating set if

◦ N [v] ∩ X 6= ∅ for all vertices v ∈ V (G).

(N [v] is the closed neighborhood of v : N [v] = N(v) ∪ {v}.)

Forbidden Configuration

It is not difficult to see that the optimal density of a dominating set in the hexagonal
grid is 1

4 = 0.250000.

Dominating Sets

A set X ⊆ V (G) is a dominating set if

◦ N [v] ∩ X 6= ∅ for all vertices v ∈ V (G).

(N [v] is the closed neighborhood of v : N [v] = N(v) ∪ {v}.)

Forbidden Configuration

It is not difficult to see that the optimal density of a dominating set in the hexagonal
grid is 1

4 = 0.250000.

Dominating Sets

A set X ⊆ V (G) is a dominating set if

◦ N [v] ∩ X 6= ∅ for all vertices v ∈ V (G).

(N [v] is the closed neighborhood of v : N [v] = N(v) ∪ {v}.)

Forbidden Configuration

It is not difficult to see that the optimal density of a dominating set in the hexagonal
grid is 1

4 = 0.250000.

Identifying Codes

A set X ⊆ V (G) is an identifying code if

◦ N [v] ∩ X 6= ∅ for all vertices v ∈ V (G), and

◦ N [v] ∩ X 6= N [u] ∩ X for all distinct vertices v ,u ∈ V (G).

(N [v] is the closed neighborhood of v : N [v] = N(v) ∪ {v}.)

Forbidden Configurations

Defined by Karpovsky, Chakrabarty, Levitin in 1998.

Identifying Codes

A set X ⊆ V (G) is an identifying code if

◦ N [v] ∩ X 6= ∅ for all vertices v ∈ V (G), and

◦ N [v] ∩ X 6= N [u] ∩ X for all distinct vertices v ,u ∈ V (G).

(N [v] is the closed neighborhood of v : N [v] = N(v) ∪ {v}.)

Forbidden Configurations

Defined by Karpovsky, Chakrabarty, Levitin in 1998.

Identifying Codes
Alternative Definition

A set X ⊆ V (G) is an identifying code if

(N [v]4N [u]) ∩ X 6= ∅

for all distinct vertices v ,u ∈ V (G).

So, an identifying code is a specific type of covering problem.

Identifying Codes
Alternative Definition

A set X ⊆ V (G) is an identifying code if

(N [v]4N [u]) ∩ X 6= ∅

for all distinct vertices v ,u ∈ V (G).

So, an identifying code is a specific type of covering problem.

Density of Identifying Codes in Grids

Let G be the hexagonal grid, and

δ = inf{δ(X) : X ⊂ V (G) is an identifying code}.

Density of Identifying Codes in Grids

Let G be the hexagonal grid, and

δ = inf{δ(X) : X ⊂ V (G) is an identifying code}.

2000 : Cohen, Honkala, Lobstein, and Zémor: δ ≤ 3
7 ≈ 0.428571

Density of Identifying Codes in Grids

Let G be the hexagonal grid, and

δ = inf{δ(X) : X ⊂ V (G) is an identifying code}.

1998 : Karpovsky, Chakrabarty, and Levitin δ ≥ 2
5 = 0.400000

2000 : Cohen, Honkala, Lobstein, and Zémor: δ ≤ 3
7 ≈ 0.428571

Density of Identifying Codes in Grids

Let G be the hexagonal grid, and

δ = inf{δ(X) : X ⊂ V (G) is an identifying code}.

1998 : Karpovsky, Chakrabarty, and Levitin δ ≥ 2
5 = 0.400000

2000 : Cohen, Honkala, Lobstein, and Zémor δ ≥ 16
39 ≈ 0.410256

2000 : Cohen, Honkala, Lobstein, and Zémor: δ ≤ 3
7 ≈ 0.428571

Density of Identifying Codes in Grids

Let G be the hexagonal grid, and

δ = inf{δ(X) : X ⊂ V (G) is an identifying code}.

1998 : Karpovsky, Chakrabarty, and Levitin δ ≥ 2
5 = 0.400000

2000 : Cohen, Honkala, Lobstein, and Zémor δ ≥ 16
39 ≈ 0.410256

2009 : Cranston and Yu δ ≥ 12
29 ≈ 0.413793

2000 : Cohen, Honkala, Lobstein, and Zémor: δ ≤ 3
7 ≈ 0.428571

Density of Identifying Codes in Grids

Let G be the hexagonal grid, and

δ = inf{δ(X) : X ⊂ V (G) is an identifying code}.

1998 : Karpovsky, Chakrabarty, and Levitin δ ≥ 2
5 = 0.400000

2000 : Cohen, Honkala, Lobstein, and Zémor δ ≥ 16
39 ≈ 0.410256

2009 : Cranston and Yu δ ≥ 12
29 ≈ 0.413793

2013 : Cuickerman and Yu δ ≥ 5
12 ≈ 0.416666

2000 : Cohen, Honkala, Lobstein, and Zémor: δ ≤ 3
7 ≈ 0.428571

Density of Identifying Codes in Grids

Let G be the hexagonal grid, and

δ = inf{δ(X) : X ⊂ V (G) is an identifying code}.

1998 : Karpovsky, Chakrabarty, and Levitin δ ≥ 2
5 = 0.400000

2000 : Cohen, Honkala, Lobstein, and Zémor δ ≥ 16
39 ≈ 0.410256

2009 : Cranston and Yu δ ≥ 12
29 ≈ 0.413793

2013 : Cuickerman and Yu δ ≥ 5
12 ≈ 0.416666

2015+: Stolee δ ≥ 23
55 ≈ 0.418181

2000 : Cohen, Honkala, Lobstein, and Zémor: δ ≤ 3
7 ≈ 0.428571

Discharging Arguments

Discharging demonstrates a connection between local
structure and global averages.

Discharging Arguments

Discharging demonstrates a connection between local
structure and global averages.

Discharging Arguments

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, “charge” value.

The total charge is somehow connected to our global average, but is roughly
distributed.

By discharging (or distributing charge), we aim to make the charge distributed
evenly.

If the final charge amount is bounded below by the same value, then we have a
bound on the global average.

Discharging Arguments

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, “charge” value.

The total charge is somehow connected to our global average, but is roughly
distributed.

By discharging (or distributing charge), we aim to make the charge distributed
evenly.

If the final charge amount is bounded below by the same value, then we have a
bound on the global average.

Discharging Arguments

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, “charge” value.

The total charge is somehow connected to our global average, but is roughly
distributed.

By discharging (or distributing charge), we aim to make the charge distributed
evenly.

If the final charge amount is bounded below by the same value, then we have a
bound on the global average.

Discharging Arguments

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, “charge” value.

The total charge is somehow connected to our global average, but is roughly
distributed.

By discharging (or distributing charge), we aim to make the charge distributed
evenly.

If the final charge amount is bounded below by the same value, then we have a
bound on the global average.

Discharging Arguments

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, “charge” value.

The total charge is somehow connected to our global average, but is roughly
distributed.

By discharging (or distributing charge), we aim to make the charge distributed
evenly.

If the final charge amount is bounded below by the same value, then we have a
bound on the global average.

Discharging Arguments

Let X be an identifying code in the hexagonal grid.

Define µ(v) =

{
1 v ∈ X
0 x /∈ X

.

δ(X) = lim sup
r→∞

|Br (v0) ∩ X |
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

.

If we discharge such that our new charge values µ′(v) have µ′(v) ≥ w always,
then

δ(X) = lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

≥ w .

Discharging Arguments

Let X be an identifying code in the hexagonal grid.

Define µ(v) =

{
1 v ∈ X
0 x /∈ X

.

δ(X) = lim sup
r→∞

|Br (v0) ∩ X |
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

.

If we discharge such that our new charge values µ′(v) have µ′(v) ≥ w always,
then

δ(X) = lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

≥ w .

Discharging Arguments

Let X be an identifying code in the hexagonal grid.

Define µ(v) =

{
1 v ∈ X
0 x /∈ X

.

δ(X) = lim sup
r→∞

|Br (v0) ∩ X |
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

.

If we discharge such that our new charge values µ′(v) have µ′(v) ≥ w always,
then

δ(X) = lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

≥ w .

Discharging Arguments

Let X be an identifying code in the hexagonal grid.

Define µ(v) =

{
1 v ∈ X
0 x /∈ X

.

δ(X) = lim sup
r→∞

|Br (v0) ∩ X |
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

.

If we discharge such that our new charge values µ′(v) have µ′(v) ≥ w always,
then

δ(X) = lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

≥ w .

Example Discharging Argument

Why did it work?

Forbidden Configurations

It is also a sharp lower bound: δ > 2
5 as it is impossible to construct a local area

where µ′(v) = 2
5 for all vertices.

Example Discharging Argument

Why did it work?

Forbidden Configurations

It is also a sharp lower bound: δ > 2
5 as it is impossible to construct a local area

where µ′(v) = 2
5 for all vertices.

Discharging Arguments

There are a few subtle points:

We actually have a charge function ν(f) on the faces: ν(f) = 0.

When we discharge with the faces, we must have that ν′(f) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of charge a bounded
distance.

Discharging Arguments

There are a few subtle points:

We actually have a charge function ν(f) on the faces: ν(f) = 0.

When we discharge with the faces, we must have that ν′(f) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of charge a bounded
distance.

Discharging Arguments

There are a few subtle points:

We actually have a charge function ν(f) on the faces: ν(f) = 0.

When we discharge with the faces, we must have that ν′(f) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of charge a bounded
distance.

Discharging Arguments

There are a few subtle points:

We actually have a charge function ν(f) on the faces: ν(f) = 0.

When we discharge with the faces, we must have that ν′(f) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of charge a bounded
distance.

Discharging Arguments

The main difficulty with designing discharging arguments is to balance

I Low-charge objects receive enough charge to match the goal value.

I High-charge objects maintain enough charge to match the goal value.

We replace the manual “guess-and-check” method with a framework for producing
discharging arguments.

Automated Discharging Arguments using GEneration.

ADAGE

A proof using this technique is called an adage.

We replace the manual “guess-and-check” method with a framework for producing
discharging arguments.

Automated Discharging Arguments using GEneration.

ADAGE

A proof using this technique is called an adage.

We replace the manual “guess-and-check” method with a framework for producing
discharging arguments.

Automated Discharging Arguments using GEneration.

ADAGE

A proof using this technique is called an adage.

We replace the manual “guess-and-check” method with a framework for producing
discharging arguments.

Automated Discharging Arguments using GEneration.

ADAGE

A proof using this technique is called an adage.

Automated Discharging Arguments

There are three main steps:

1. Define the shape of the rules.

2. Generate constraints on the rule values.

3. Optimize the values.

Automated Discharging Arguments

There are three main steps:

1. Define the shape of the rules.

2. Generate constraints on the rule values.

3. Optimize the values.

Automated Discharging Arguments

There are three main steps:

1. Define the shape of the rules.

2. Generate constraints on the rule values.

3. Optimize the values.

Automated Discharging Arguments

There are three main steps:

1. Define the shape of the rules.

2. Generate constraints on the rule values.

3. Optimize the values.

Generating Rules

N

1758 instances of this rule.

We do not assign values to these rules! Only variables!

Generating Rules

N

1758 instances of this rule.

We do not assign values to these rules! Only variables!

Generating Rules

N

1758 instances of this rule.

We do not assign values to these rules! Only variables!

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Example constraints:

1 + x124 + x125 + x126 ≥ w
0 + 3x456 ≥ w

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Generating Constraints

Given a set of rules, we must constrain the values of the rules such that we meet
our goal charge values.

Example constraints:

−x1 − x12 − x126 − x356 − x600 − x1563 ≥ 0
− x5 − 2x345 − 3x1260 ≥ 0

Generating Constraints

Vertex Face
1,758 Constraints 663,662 Constraints

1,758 Rules with 5,238 Variables.

Solving the Linear Program

To assign value to the rules, we create the following linear program:

max w
µ′(v) ≥ w ∀v ∈ V (G)
ν′(f) ≥ 0 ∀f ∈ F (G)

Solving the Linear Program

To assign value to the rules, we create the following linear program:

max w
µ(v) + ∑f∈F (G) D(f , v) ≥ w ∀v ∈ V (G)
ν(f) − ∑v∈V (G) D(f , v) ≥ 0 ∀f ∈ F (G)

Solving the Linear Program

To assign value to the rules, we create the following linear program:

max w
1 + ∑f∈F (G) D(f , v) ≥ w ∀v ∈ X
0 + ∑f∈F (G) D(f , v) ≥ w ∀v ∈ V (G) \ X
0 − ∑v∈V (G) D(f , v) ≥ 0 ∀f ∈ F (G)

Solving the Linear Program

To assign value to the rules, we create the following linear program:

max w
∑f∈F (G) D(f , v) − w ≥ −1 ∀v ∈ X
∑f∈F (G) D(f , v) − w ≥ 0 ∀v ∈ V (G) \ X

−∑v∈V (G) D(f , v) ≥ 0 ∀f ∈ F (G)
D(f , v), w free

Results

Theorem

Let X be an identifying code in the hexagonal grid. The adage proof using rule N
demonstrates a lower bound of δ(X) ≥ 23

55 = 0.418.

This improves the previous-best lower bound of Cuickerman & Yu (5
12 = 0.416) but

does not match the current-best upper bound (3
7 ≈ 0.42857).

Results

Theorem

Let X be an identifying code in the hexagonal grid. The adage proof using rule N
demonstrates a lower bound of δ(X) ≥ 23

55 = 0.418.

This improves the previous-best lower bound of Cuickerman & Yu (5
12 = 0.416) but

does not match the current-best upper bound (3
7 ≈ 0.42857).

Other Rule Sets in Hexagonal Grid

Constraint
Rules Confgurations

V1

V2

N

N+

V3

Constraint
Rules Confgurations

N

J2

V3

F6

N

F1,3

Ysize

Other Rule Sets in Square Grid

Constraint
Rules Confgurations

V1

N

V2

C+
1

Constraint
Rules Confgurations

C+
1

C+
2

C+
3

Other Rule Sets in Triangular Grid

Constraint
Rules Confgurations

V1

S

N+

V2

Constraint
Rules Confgurations

C+
1

C+
2

V1

J2

Results for Variations on Identifying Codes

Set Type Hexagonal Grid Square Grid Triangular Grid

Dominating Set V1
1
4 ≈ 0.250000∗ V1

1
5 ≈ 0.200000∗ V1

1
7 ≈ 0.142857∗

Identifying Code N 23
55 ≈ 0.418182† V2

7
20 ≈ 0.350000∗ V1

1
4 ≈ 0.250000∗

Strong Identify-
ing Code

V2
8
17 ≈ 0.470588 C1 ∪C2

7
18 ≈ 0.388889 C+

1 ∪C+
2

4
13 ≈ 0.307692

Locating-
Dominating
Code

V2
1
3 ≈ 0.333333∗ V2

3
10 ≈ 0.300000∗ C1 ∪C2

12
53 ≈ 0.226415

Open-Locating-
Dominating
Code

V2
1
2 ≈ 0.500000∗ C+

1
2
5 ≈ 0.400000∗ C+

1
4

13 ≈ 0.307692∗

Future Work

1. More discharging rules, more adage proofs. Can we do better?

2. Build a white-box implementation of linear programming. Perhaps use a
primal-dual algorithm?

3. Extend framework to coloring problems on planar graphs.

4. Use discharging as combinatorial dual for finite combinatorial optimization
problems.

Future Work

1. More discharging rules, more adage proofs. Can we do better?

2. Build a white-box implementation of linear programming. Perhaps use a
primal-dual algorithm?

3. Extend framework to coloring problems on planar graphs.

4. Use discharging as combinatorial dual for finite combinatorial optimization
problems.

Future Work

1. More discharging rules, more adage proofs. Can we do better?

2. Build a white-box implementation of linear programming. Perhaps use a
primal-dual algorithm?

3. Extend framework to coloring problems on planar graphs.

4. Use discharging as combinatorial dual for finite combinatorial optimization
problems.

Future Work

1. More discharging rules, more adage proofs. Can we do better?

2. Build a white-box implementation of linear programming. Perhaps use a
primal-dual algorithm?

3. Extend framework to coloring problems on planar graphs.

4. Use discharging as combinatorial dual for finite combinatorial optimization
problems.

Future Work

1. More discharging rules, more adage proofs. Can we do better?

2. Build a white-box implementation of linear programming. Perhaps use a
primal-dual algorithm?

3. Extend framework to coloring problems on planar graphs.

4. Use discharging as combinatorial dual for finite combinatorial optimization
problems.

Automated Discharging Arguments for Density Problems in
Grids

Derrick Stolee

Iowa State University
dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/

September 2, 2014
Mathematics Department Colloquium

