Computational Combinatorics

Derrick Stolee

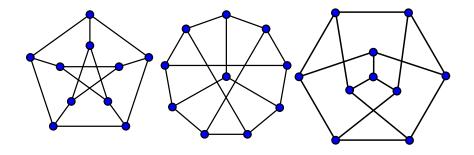
Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

> November 3 & 5, 2014 Math 101

Combinatorial Object: Graphs

A graph *G* of order *n* is composed of a set V(G) of *n* vertices and a set E(G) of edges, where the edges are unordered pairs of vertices.



Structural Graph Theory:

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Extremal Graph Theory:

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Extremal Graph Theory:

Given some structure, what size restrictions are guaranteed?

т 0

N C

A S

The 0 Ν С Α S

The

Obvious

Ν

С

A

The

Obvious

Neccessary

С

A

The

Obvious

Neccessary

Condition

A

The

Obvious

Neccessary

Condition is A S

The

Obvious

Neccessary

Condition is Also

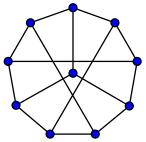
The

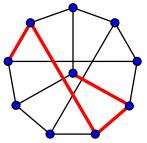
Obvious

Neccessary

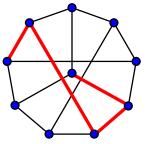
Condition is Also

Sufficient





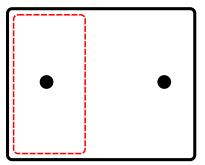
A graph is **connected** if for every pair u, v of vertices in G there exists a **path** from u to v in G.



Think of the "6-Degrees of Kevin Bacon" game, played on the IMDB graph.

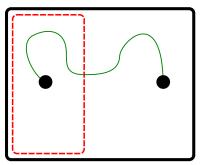
A graph is **connected** if for every pair u, v of vertices in G there exists a **path** from u to v in G.

Theorem A graph *G* is connected **if and only if** for every set $S \subseteq V(G)$ where $S \neq \emptyset$ and $S \neq V(G)$ there exists at least one edge $uv \in E(G)$ where $u \in S$ and $v \notin S$.



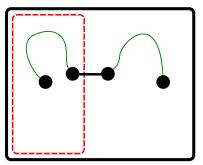
A graph is **connected** if for every pair u, v of vertices in G there exists a **path** from u to v in G.

Theorem A graph *G* is connected **if and only if** for every set $S \subseteq V(G)$ where $S \neq \emptyset$ and $S \neq V(G)$ there exists at least one edge $uv \in E(G)$ where $u \in S$ and $v \notin S$.



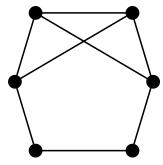
A graph is **connected** if for every pair u, v of vertices in G there exists a **path** from u to v in G.

Theorem A graph *G* is connected **if and only if** for every set $S \subseteq V(G)$ where $S \neq \emptyset$ and $S \neq V(G)$ there exists at least one edge $uv \in E(G)$ where $u \in S$ and $v \notin S$.



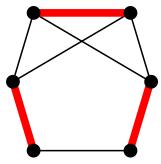
Perfect Matchings

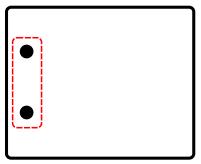
A **perfect matching** is a set of edges which cover each vertex exactly once.

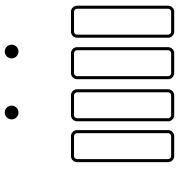


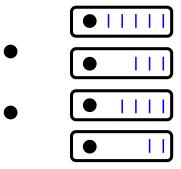
Perfect Matchings

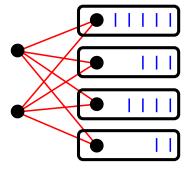
A **perfect matching** is a set of edges which cover each vertex exactly once.











Extremal Graph Theory

Given specified structure, determine bounds on size.

Extremal Graph Theory

Given specified structure, determine bounds on size.

"Size" usually means "number of edges"

Extremal Graph Theory

Given specified structure, determine bounds on size.

"Size" usually means "number of edges"

Another perspective: Specific values of one parameter influence the value of another.

Turán's Theorem

An *r*-clique is a set of *r* vertices that are pairwise adjacent.

Turán's Theorem

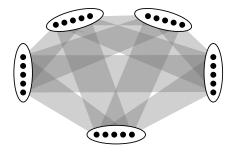
An *r*-clique is a set of *r* vertices that are pairwise adjacent.

Theorem (Turán's Theorem) If *G* is a graph of order *n* and has no *r*-clique, then *G* has at most $\approx (1 - \frac{1}{r-1})\frac{n^2}{2}$ edges.

Turán's Theorem

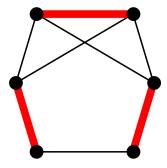
An *r*-clique is a set of *r* vertices that are pairwise adjacent.

Theorem (Turán's Theorem) If *G* is a graph of order *n* and has no *r*-clique, then *G* has at most $\approx (1 - \frac{1}{r-1})\frac{n^2}{2}$ edges.



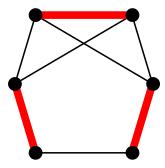
Perfect Matchings

A **perfect matching** is a set of edges which cover each vertex exactly once.



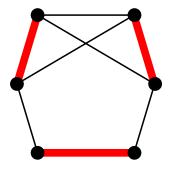
A **perfect matching** is a set of edges which cover each vertex exactly once.

 $\Phi(G)$ is the number of perfect matchings in the graph *G*.



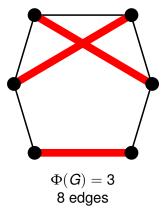
A **perfect matching** is a set of edges which cover each vertex exactly once.

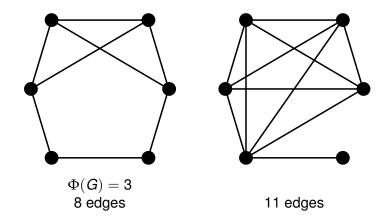
 $\Phi(G)$ is the number of perfect matchings in the graph *G*.

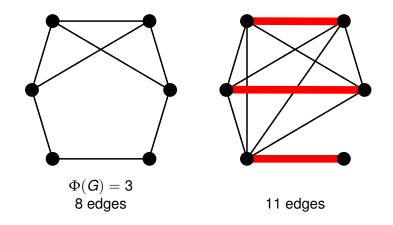


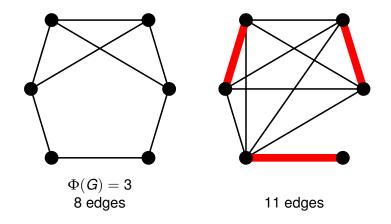
A **perfect matching** is a set of edges which cover each vertex exactly once.

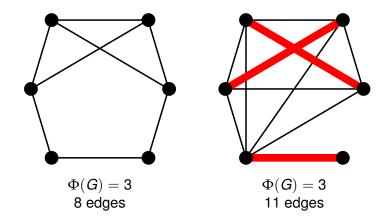
 $\Phi(G)$ is the number of perfect matchings in the graph *G*.











A **perfect matching** is a set of edges which cover each vertex exactly once.

Question (Dudek, Schmitt, 2010) What is the maximum number of edges in a graph with exactly *n* vertices and *p* perfect matchings?

Definition Let *n* be an even number and fix $p \ge 1$.

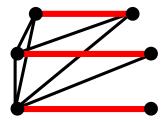
$$f(n,p) = \max\{|E(G)| : |V(G)| = n, \Phi(G) = p\}.$$

Graphs attaining this number of edges are *p*-extremal.

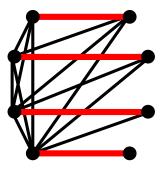
$$f(n,1)=\frac{n^2}{4}.$$

$$f(n,1)=\frac{n^2}{4}.$$

$$f(n,1)=\frac{n^2}{4}.$$



$$f(n,1)=\frac{n^2}{4}.$$



The Form of f(n, p)

Theorem (Dudek, Schmitt, 2010) For each p, there exist constants

 n_p , c_p so that for all $n \ge n_p$,

$$f(n,p)=\frac{n^2}{4}+c_p.$$

The Form of f(n, p)

Theorem (Dudek, Schmitt, 2010) For each p, there exist constants

 n_p , c_p so that for all $n \ge n_p$,

$$f(n,p)=\frac{n^2}{4}+c_p.$$

p	1	2	3	4	5	6
Cp	0	1	2	2	2	3
	Н	Dudek, Schmitt, 2010				

Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed *p*, every graph *G* with *n* vertices, *p* perfect matchings, and $f(n, p) = \frac{n^2}{4} + c_p$ edges is composed of a finite list of **fundamental graphs** combined in specified ways.

Proof involves several classic **structural theorems** from matching theory in an **extremal setting**.

Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed *p*, every graph *G* with *n* vertices, *p* perfect matchings, and $f(n, p) = \frac{n^2}{4} + c_p$ edges is composed of a finite list of **fundamental graphs** combined in specified ways.

Proof involves several classic **structural theorems** from matching theory in an **extremal setting**.

For $p \leq 10$, the graphs have order at most 12.

Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed *p*, every graph *G* with *n* vertices, *p* perfect matchings, and $f(n, p) = \frac{n^2}{4} + c_p$ edges is composed of a finite list of **fundamental graphs** combined in specified ways.

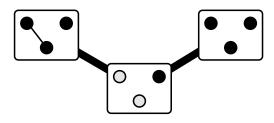
Proof involves several classic **structural theorems** from matching theory in an **extremal setting**.

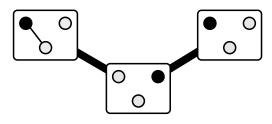
For $p \leq 10$, the graphs have order at most 12.

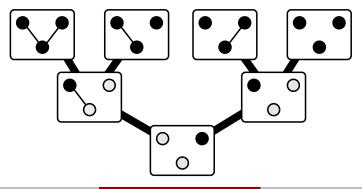
We should "simply" list all graphs of this size and pick the best ones!

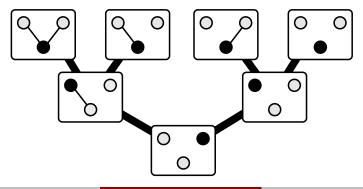
We can build graphs starting at $\overline{K_n}$ by adding edges.

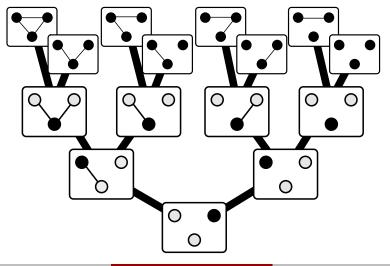
Stolee (ISU)

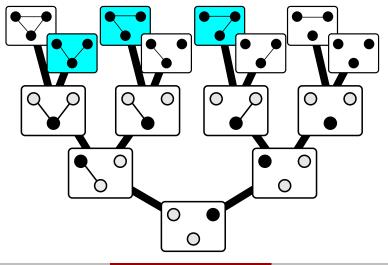


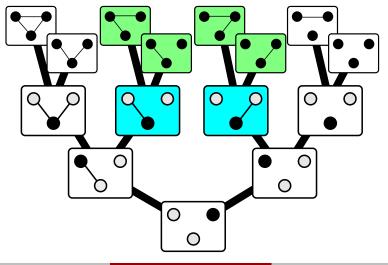


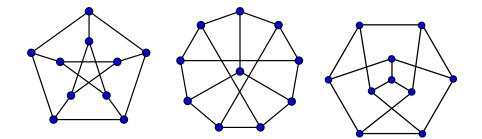


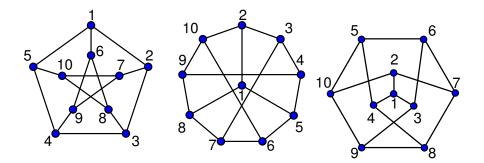




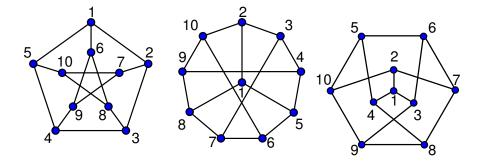








An **isomorphism** between G_1 and G_2 is a bijection from $V(G_1)$ to $V(G_2)$ that induces a bijection from $E(G_1)$ to $E(G_2)$.



Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An unlabeled graph represents an isomorphism class of graphs.

Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An **unlabeled** graph represents an isomorphism class of graphs.

Most interesting graph properties are **invariant under isomorphism**.

п	Number of unlabeled connected graphs of order n				
2	1				
3	2				
4	5				
5	19				
6	85				
7	509				
8	4,060				
9	41,301				
10	510,489				
11	7,319,447				
12	117,940,535				
13	2,094,480,864				
14	40,497,138,011				
15	845,480,228,069				
16	1,894,152,284,590				
17	453,090,162,062,723				
18	11,523,392,072,541,432				
19	310,467,244,165,539,782				
20	8,832,736,318,937,756,165				
	OEIS Sequence A002851 Grows $2^{\Omega(n^2)}$.				

n	Number of unlabeled connected graphs of order n			
2	1			
3	2			
4	5			
5	19			
6	85			
7	509			
8	4,060			
9	41,301			
10	510,489			
11	7,319,447			
12	117,940,535			
13	2,094,480,864			
14	40,497,138,011			
15	845,480,228,069			
16	1,894,152,284,590			
17	453,090,162,062,723			
18	11,523,392,072,541,432			
19	310,467,244,165,539,782			
20	8,832,736,318,937,756,165			
Requires about 1 day of CPU Time.				

n	Number of unlabeled connected graphs of order n			
2	1	-		
3	2			
4	5			
5	19			
6	85			
7	509			
8	4,060			
9	41,301			
10	510,489			
11	7,319,447			
12	117,940,535			
13	2,094,480,864			
14	40,497,138,011			
15	845,480,228,069			
16	1,894,152,284,590			
17	453,090,162,062,723			
18	11,523,392,072,541,432			
19	310,467,244,165,539,782			
20	8,832,736,318,937,756,165			
Requires over 1 year of CPU Time.				

Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed *p*, every graph *G* with *n* vertices, *p* perfect matchings, and $f(n, p) = \frac{n^2}{4} + c_p$ edges is composed of a finite list of **fundamental graphs** combined in specified ways.

Proof involves several classic structure theorems from matching theory in an extremal setting.

For $p \leq 10$, the graphs have order at most 12.

We should "simply" list all graphs of this size and pick the best ones!

Fundamental Graphs for $2 \le p \le 10$

p = 4

p = 5

p = 5

p = 6

p = 8

p = 6

p = 9

p = 7

Stolee (ISU)

MATH 101

p	1	2	3	4	5	6	7	8	9	10
Cp	0	1	2	2	2	3	3	3	4	4
	Н	Du	dek,	Schm	H	SW	Y 2	011		

p	1	2	3	4	5	6	7	8	9	10
Cp	0	1	2	2	2	3	3	3	4	4
	Н	Du	dek,	Schm	H	SW	Y 2	011		

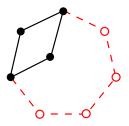
Q: Is c_p monotone in p?

Without more involved computational methods, brute force methods cannot go farther.

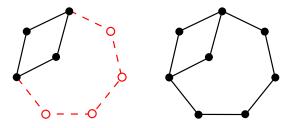
Without more involved computational methods, brute force methods cannot go farther.

Without more involved computational methods, brute force methods cannot go farther.

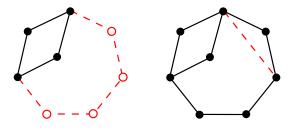
Without more involved computational methods, brute force methods cannot go farther.



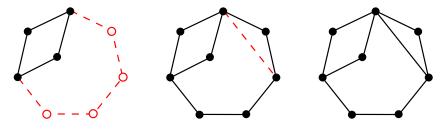
Without more involved computational methods, brute force methods cannot go farther.



Without more involved computational methods, brute force methods cannot go farther.



Without more involved computational methods, brute force methods cannot go farther.



Computational Method

Developed a computational method from:

- 1. Augmentations: Lovász Two Ear Theorem.
- 2. Isomorphs: McKay's Isomorph-Free Generation Method.
- 3. **Pruning:** Developed new structural and extremal theorems.

Computational Method

Developed a computational method from:

- 1. Augmentations: Lovász Two Ear Theorem.
- 2. Isomorphs: McKay's Isomorph-Free Generation Method.
- 3. **Pruning:** Developed new structural and extremal theorems.

Before: Stuck at $p \le 10$ when searching on most 12 vertices.

Computational Method

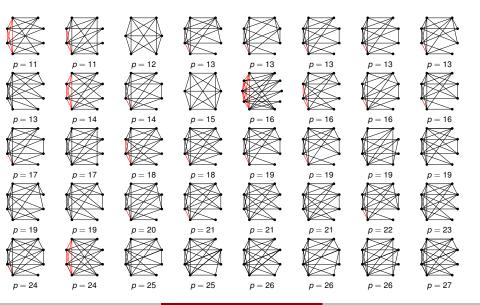
Developed a computational method from:

- 1. Augmentations: Lovász Two Ear Theorem.
- 2. Isomorphs: McKay's Isomorph-Free Generation Method.
- 3. **Pruning:** Developed new structural and extremal theorems.

Before: Stuck at $p \le 10$ when searching on most 12 vertices.

Now: Found graphs for all $p \leq 27$ on up to 22 vertices.

Fundamental Graphs for $11 \le p \le 27$



Stolee (ISU)

MATH 101

p	1	2	3	4	5	6	7	8	9	10
Cp	0	1	2	2	2	3	3	3	4	4
	Н	Dudek, Schmitt HSWY								

p	11	12	13	14	15	16	17	18	19	20
Cp	3	5	3	4	6	4	4	5	4	5
					Sto	lee				

р	21	22	23	24	25	26	27				
Cp	5	5	5	6	5	5	6				
		Stolee									

р	1	2	3	4	5	6	7	8	9	10		
Cp	0	1	2	2	2	3	3	3	4	4		
	Н		Dude	k, Sc	hmitt		HSWY					

p	11	12	13	14	15	16	17	18	19	20
Cp	3	5	3	4	6	4	4	5	4	5
					Sto	lee				

p	21	22	23	24	25	26	27				
Cp	5	5	5	6	5	5	6				
		Stolee									

 c_p not monotonic in p ! Blue numbers match conjectured upper bound.

Does this sound interesting? Here are some things you can do:

Does this sound interesting? Here are some things you can do:

Take MATH 304 (Combinatorics) and/or 314 (Graph Theory)

Does this sound interesting? Here are some things you can do:

Take MATH 304 (Combinatorics) and/or 314 (Graph Theory)
Participate in an REU!

Does this sound interesting? Here are some things you can do:

- Take MATH 304 (Combinatorics) and/or 314 (Graph Theory)
- Participate in an REU!
- Participate in the Discrete Mathematics Seminar: http://orion.math.iastate.edu/dept/seminar/dmseminar.htm

Computational Combinatorics

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/

> November 3 & 5, 2014 Math 101