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Graphs

Combinatorial Object: Graphs

A graph G of order n is composed of a set V (G) of n vertices and a
set E(G) of edges, where the edges are unordered pairs of vertices.
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Graphs

Two Flavors of Graph Theory

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Extremal Graph Theory:

Given some structure, what size restrictions are guaranteed?

Stolee (ISU) MATH 101 3 / 31



Graphs

Two Flavors of Graph Theory

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Extremal Graph Theory:

Given some structure, what size restrictions are guaranteed?

Stolee (ISU) MATH 101 3 / 31



Graphs

Two Flavors of Graph Theory

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Extremal Graph Theory:

Given some structure, what size restrictions are guaranteed?

Stolee (ISU) MATH 101 3 / 31



Graphs

Two Flavors of Graph Theory

Structural Graph Theory:

What conditions guarantee that certain substructures exist?

Extremal Graph Theory:

Given some structure, what size restrictions are guaranteed?

Stolee (ISU) MATH 101 3 / 31



Structural Graph Theory

TONCAS Theorems
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Structural Graph Theory

Connectedness

A graph is connected if for every pair u, v of vertices in G there exists
a path from u to v in G.
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Structural Graph Theory

Connectedness

A graph is connected if for every pair u, v of vertices in G there exists
a path from u to v in G.

Think of the “6-Degrees of Kevin Bacon” game, played on the IMDB
graph.
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Structural Graph Theory

Connectedness : A TONCAS Theorem

A graph is connected if for every pair u, v of vertices in G there exists
a path from u to v in G.

Theorem A graph G is connected if and only if for every set
S ⊆ V (G) where S 6= ∅ and S 6= V (G) there exists at least one edge
uv ∈ E(G) where u ∈ S and v /∈ S.

Stolee (ISU) MATH 101 6 / 31



Structural Graph Theory

Connectedness : A TONCAS Theorem

A graph is connected if for every pair u, v of vertices in G there exists
a path from u to v in G.

Theorem A graph G is connected if and only if for every set
S ⊆ V (G) where S 6= ∅ and S 6= V (G) there exists at least one edge
uv ∈ E(G) where u ∈ S and v /∈ S.

Stolee (ISU) MATH 101 6 / 31



Structural Graph Theory

Connectedness : A TONCAS Theorem

A graph is connected if for every pair u, v of vertices in G there exists
a path from u to v in G.

Theorem A graph G is connected if and only if for every set
S ⊆ V (G) where S 6= ∅ and S 6= V (G) there exists at least one edge
uv ∈ E(G) where u ∈ S and v /∈ S.

Stolee (ISU) MATH 101 6 / 31



Structural Graph Theory

Connectedness : A TONCAS Theorem

A graph is connected if for every pair u, v of vertices in G there exists
a path from u to v in G.

Theorem A graph G is connected if and only if for every set
S ⊆ V (G) where S 6= ∅ and S 6= V (G) there exists at least one edge
uv ∈ E(G) where u ∈ S and v /∈ S.

Stolee (ISU) MATH 101 6 / 31



Structural Graph Theory

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly
once.
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Structural Graph Theory

TONCAS for Perfect Matchings

Theorem (Tutte’s Theorem) A graph has a perfect matching if and
only if there is no set S ⊆ V (G) so that the number of odd components
in G− S is greater than |S|.
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Extremal Graph Theory

Extremal Graph Theory

Given specified structure, determine bounds on size.

“Size” usually means “number of edges”

Another perspective: Specific values of one parameter influence the
value of another.
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Extremal Graph Theory

Turán’s Theorem

An r -clique is a set of r vertices that are pairwise adjacent.

Theorem (Turán’s Theorem) If G is a graph of order n and has no
r -clique, then G has at most ≈ (1− 1

r−1 )
n2

2 edges.

Stolee (ISU) MATH 101 10 / 31



Extremal Graph Theory

Turán’s Theorem

An r -clique is a set of r vertices that are pairwise adjacent.

Theorem (Turán’s Theorem) If G is a graph of order n and has no
r -clique, then G has at most ≈ (1− 1

r−1 )
n2

2 edges.

Stolee (ISU) MATH 101 10 / 31



Extremal Graph Theory

Turán’s Theorem

An r -clique is a set of r vertices that are pairwise adjacent.

Theorem (Turán’s Theorem) If G is a graph of order n and has no
r -clique, then G has at most ≈ (1− 1

r−1 )
n2

2 edges.

Stolee (ISU) MATH 101 10 / 31



Extremal Graph Theory

Perfect Matchings
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once.
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Φ(G) = 3
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A perfect matching is a set of edges which cover each vertex exactly
once.

Φ(G) = 3 Φ(G) = 3
8 edges 11 edges
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Extremal Graph Theory

Perfect Matchings

A perfect matching is a set of edges which cover each vertex exactly
once.

Question (Dudek, Schmitt, 2010) What is the maximum number of
edges in a graph with exactly n vertices and p perfect matchings?

Definition Let n be an even number and fix p ≥ 1.

f (n,p) = max{|E(G)| : |V (G)| = n,Φ(G) = p}.

Graphs attaining this number of edges are p-extremal.
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Extremal Graph Theory

Hetyei’s Theorem

Theorem (Hetyei’s Theorem, 1986) For all even n ≥ 2,

f (n,1) =
n2

4
.
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Extremal Graph Theory

The Form of f (n,p)

Theorem (Dudek, Schmitt, 2010) For each p, there exist constants

np, cp so that for all n ≥ np,

f (n,p) =
n2

4
+ cp.

p 1 2 3 4 5 6
cp 0 1 2 2 2 3

H Dudek, Schmitt, 2010
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Extremal Graph Theory

Structure Theorem

Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed p, every
graph G with n vertices, p perfect matchings, and f (n,p) = n2

4 + cp
edges is composed of a finite list of fundamental graphs combined in
specified ways.

Proof involves several classic structural theorems from matching
theory in an extremal setting.

For p ≤ 10, the graphs have order at most 12.

We should “simply” list all graphs of this size and pick the best ones!
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Generating Graphs

Example: Generating Graphs by Edges

We can build graphs starting at Kn by adding edges.
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Generating Graphs

Example: Generating Graphs by Edges
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Generating Graphs

Example: Generating Graphs by Edges

An isomorphism between G1 and G2 is a bijection from V (G1) to
V (G2) that induces a bijection from E(G1) to E(G2).
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Generating Graphs

Labeled Versus Unlabeled Objects

A labeled graph has a linear ordering on the vertices.

An unlabeled graph represents an isomorphism class of graphs.

Most interesting graph properties are invariant under isomorphism.
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n Number of unlabeled connected graphs of order n
2 1
3 2
4 5
5 19
6 85
7 509
8 4,060
9 41,301
10 510,489
11 7,319,447
12 117,940,535
13 2,094,480,864
14 40,497,138,011
15 845,480,228,069
16 1,894,152,284,590
17 453,090,162,062,723
18 11,523,392,072,541,432
19 310,467,244,165,539,782
20 8,832,736,318,937,756,165

OEIS Sequence A002851 Grows 2Ω(n2).
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Requires about 1 day of CPU Time.



n Number of unlabeled connected graphs of order n
2 1
3 2
4 5
5 19
6 85
7 509
8 4,060
9 41,301
10 510,489
11 7,319,447
12 117,940,535
13 2,094,480,864
14 40,497,138,011
15 845,480,228,069
16 1,894,152,284,590
17 453,090,162,062,723
18 11,523,392,072,541,432
19 310,467,244,165,539,782
20 8,832,736,318,937,756,165

Requires over 1 year of CPU Time.



Back to Perfect Matchings

Structure Theorem

Theorem (Hartke, Stolee, West, Yancey, 2013) For a fixed p, every
graph G with n vertices, p perfect matchings, and f (n,p) = n2

4 + cp
edges is composed of a finite list of fundamental graphs combined in
specified ways.

Proof involves several classic structure theorems from matching theory
in an extremal setting.

For p ≤ 10, the graphs have order at most 12.

We should “simply” list all graphs of this size and pick the best ones!
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Back to Perfect Matchings

Fundamental Graphs for 2 ≤ p ≤ 10

p = 2 p = 3 p = 4 p = 5 p = 5

p = 6 p = 6 p = 7 p = 8 p = 8

p = 8 p = 9 p = 10
Stolee (ISU) MATH 101 20 / 31



Back to Perfect Matchings

cp for small p

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4

H Dudek, Schmitt 2010 HSWY 2011

Q: Is cp monotone in p?

Stolee (ISU) MATH 101 21 / 31



Back to Perfect Matchings

cp for small p

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4

H Dudek, Schmitt 2010 HSWY 2011

Q: Is cp monotone in p?

Stolee (ISU) MATH 101 21 / 31



Back to Perfect Matchings

Structural Theorem, Redux

Without more involved computational methods, brute force methods
cannot go farther.
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Back to Perfect Matchings

Computational Method

Developed a computational method from:

1. Augmentations: Lovász Two Ear Theorem.

2. Isomorphs: McKay’s Isomorph-Free Generation Method.

3. Pruning: Developed new structural and extremal theorems.

Before: Stuck at p ≤ 10 when searching on most 12 vertices.

Now: Found graphs for all p ≤ 27 on up to 22 vertices.
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Back to Perfect Matchings

Fundamental Graphs for 11 ≤ p ≤ 27

p = 11 p = 11 p = 12 p = 13 p = 13 p = 13 p = 13 p = 13

p = 13 p = 14 p = 14 p = 15 p = 16 p = 16 p = 16 p = 16

p = 17 p = 17 p = 18 p = 18 p = 19 p = 19 p = 19 p = 19

p = 19 p = 19 p = 20 p = 21 p = 21 p = 21 p = 22 p = 23

p = 24 p = 24 p = 25 p = 25 p = 26 p = 26 p = 26 p = 27
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Back to Perfect Matchings

cp for small p
p 1 2 3 4 5 6 7 8 9 10

cp 0 1 2 2 2 3 3 3 4 4
H Dudek, Schmitt HSWY

p 11 12 13 14 15 16 17 18 19 20
cp 3 5 3 4 6 4 4 5 4 5

Stolee

p 21 22 23 24 25 26 27
cp 5 5 5 6 5 5 6

Stolee

Stolee (ISU) MATH 101 25 / 31



Back to Perfect Matchings

cp for small p
p 1 2 3 4 5 6 7 8 9 10

cp 0 1 2 2 2 3 3 3 4 4
H Dudek, Schmitt HSWY

p 11 12 13 14 15 16 17 18 19 20
cp 3 5 3 4 6 4 4 5 4 5

Stolee

p 21 22 23 24 25 26 27
cp 5 5 5 6 5 5 6

Stolee

cp not monotonic in p !
Blue numbers match conjectured upper bound.
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What can you do?

What can you do?

Does this sound interesting? Here are some things you can do:

1 Take MATH 304 (Combinatorics) and/or 314 (Graph Theory)
2 Participate in an REU!
3 Participate in the Discrete Mathematics Seminar:

http://orion.math.iastate.edu/dept/seminar/dmseminar.htm

Stolee (ISU) MATH 101 26 / 31
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