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Therefore, we can select an arbitrary vertex v0 ∈ V (G) and
define the density of a set X ⊆ V (G) as

δ(X ) = lim sup
r→∞

|Br (v0) ∩ X |
|Br (v0)|

.

This definition is used for problems where we minimize the
density.

We would use lim inf for maximizing the density.
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Example Discharging Argument
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5 pulls an extra 1
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Why does it work?
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Discharging Arguments

There are a few subtle points:

We may also have a charge function ν(f ) on the faces:
ν(f ) = 0.

When we discharge with the faces, we must have resulting
charge ν′(f ) ≥ 0 always.

The equality

lim sup
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holds only when our discharging sends a bounded amount of
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Discharging Arguments

There are a few subtle points:

We may also have a charge function ν(f ) on the faces:
ν(f ) = 0.

When we discharge with the faces, we must have resulting
charge ν′(f ) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of
charge a bounded distance.



Discharging Arguments

There are a few subtle points:

We may also have a charge function ν(f ) on the faces:
ν(f ) = 0.

When we discharge with the faces, we must have resulting
charge ν′(f ) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of
charge a bounded distance.



Discharging Arguments

There are a few subtle points:

We may also have a charge function ν(f ) on the faces:
ν(f ) = 0.

When we discharge with the faces, we must have resulting
charge ν′(f ) ≥ 0 always.

The equality

lim sup
r→∞

∑v∈Br (v0) µ(v)
|Br (v0)|

= lim sup
r→∞

∑v∈Br (v0) µ′(v)
|Br (v0)|

holds only when our discharging sends a bounded amount of
charge a bounded distance.



Discharging Arguments

The main difficulty with designing discharging arguments is to
balance

I Low-charge objects receive enough charge to match the
goal value.

I High-charge objects maintain enough charge to match the
goal value.



We replace the manual “guess-and-check” method with a
framework for producing discharging arguments.
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Results

Rule N Vertex Face
1,758 Realizations 1,758 Constraints 663,662 Constraints

Theorem

Let X be an identifying code in the hexagonal grid. The adage proof
using rule N demonstrates a lower bound of
δ(X ) ≥ 23

55 −
1

496496 ≈ 0.418181.

This improves the previous-best lower bound of Cuickerman & Yu
( 5

12 = 0.416) but does not match the current-best upper bound
(3

7 ≈ 0.42857).
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Results for Variations on Identifying Codes

Set Type Hexagonal Grid Square Grid Triangular Grid

Dominating Set V1
1
4 ≈ 0.250000* V1

1
5 ≈ 0.200000* V1

1
7 ≈ 0.142857*

Identifying Code N 23
55 ≈ 0.418182† V2

7
20 ≈ 0.350000* V1

1
4 ≈ 0.250000*

Strong Identify-
ing Code

V2
8
17 ≈ 0.470588 C1 ∪C2

7
18 ≈ 0.388889 C+

1 ∪C+
2

4
13 ≈ 0.307692

Locating-
Dominating
Code

V2
1
3 ≈ 0.333333* V2

3
10 ≈ 0.300000* C1 ∪C2

12
53 ≈ 0.226415

Open-Locating-
Dominating
Code

V2
1
2 ≈ 0.500000* C+

1
2
5 ≈ 0.400000* C+

1
4

13 ≈ 0.307692*
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