Automated Discharging Arguments for Density Problems in Grids

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/r/adage.htm

> June 19, 2014 Ron Graham Conference

Density

Therefore, we can select an arbitrary vertex $v_0 \in V(G)$ and define the **density** of a set $X \subseteq V(G)$ as

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(v_0) \cap X|}{|B_r(v_0)|}.$$

Density

Therefore, we can select an arbitrary vertex $v_0 \in V(G)$ and define the **density** of a set $X \subseteq V(G)$ as

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(v_0) \cap X|}{|B_r(v_0)|}.$$

This definition is used for problems where we **minimize** the density.

We would use lim inf for maximizing the density.

Dominating Sets

A set $X \subseteq V(G)$ is a **dominating set** if

 $\circ \ \textit{N}[\textit{v}] \cap \textit{X} \neq \varnothing \text{ for all vertices } \textit{v} \in \textit{V}(\textit{G}).$

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Dominating Sets

A set $X \subseteq V(G)$ is a **dominating set** if

∘ $N[v] \cap X \neq \emptyset$ for all vertices $v \in V(G)$.

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Forbidden Configuration

Dominating Sets

A set $X \subseteq V(G)$ is a **dominating set** if

∘ $N[v] \cap X \neq \emptyset$ for all vertices $v \in V(G)$.

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Forbidden Configuration

It is not difficult to see that the optimal density of a dominating set in the hexagonal grid is $\frac{1}{4} = 0.250000$.

Identifying Codes

A set $X \subseteq V(G)$ is an **identifying code** if

 $\circ N[v] \cap X \neq \emptyset$ for all vertices $v \in V(G)$, and

∘ $N[v] \cap X \neq N[u] \cap X$ for all distinct vertices $v, u \in V(G)$.

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Forbidden Configurations

Identifying Codes

A set $X \subseteq V(G)$ is an **identifying code** if

 $\circ N[v] \cap X \neq \emptyset$ for all vertices $v \in V(G)$, and

∘ $N[v] \cap X \neq N[u] \cap X$ for all distinct vertices $v, u \in V(G)$.

 $(N[v] \text{ is the closed neighborhood of } v: N[v] = N(v) \cup \{v\}.)$

Forbidden Configurations

Defined by Karpovsky, Chakrabarty, Levitin in 1998.

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

2000 : Cohen, Honkala, Lobstein, and Zémor: $\delta \leq \frac{3}{7} \approx 0.428571$

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

2000 : Cohen, Honkala, Lobstein, and Zémor: $\delta \leq \frac{3}{7} \approx 0.428571$

1998 : Karpovsky, Chakrabarty, and Levitin $\delta \geq \frac{2}{5} = 0.400000$

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

2000 : Cohen, Honkala, Lobstein, and Zémor: $\delta \leq \frac{3}{7} \approx 0.428571$

2000 : Cohen, Honkala, Lobstein, and Zémor $\delta \geq \frac{16}{39} \approx 0.410256$ 1998 : Karpovsky, Chakrabarty, and Levitin $\delta \geq \frac{2}{5} = 0.400000$

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

2000 : Cohen, Honkala, Lobstein, and Zémor: $\delta \leq \frac{3}{7} \approx 0.428571$

2009 : Cranston and Yu $\delta \ge \frac{12}{29} \approx 0.413793$ 2000 : Cohen, Honkala, Lobstein, and Zémor $\delta \ge \frac{16}{39} \approx 0.410256$ 1998 : Karpovsky, Chakrabarty, and Levitin $\delta \ge \frac{2}{5} = 0.400000$

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

2000 : Cohen, Honkala, Lobstein, and Zémor: $\delta \leq \frac{3}{7} \approx 0.428571$

2013 : Cuickerman and Yu $\delta \geq \frac{5}{12} \approx 0.416666$ 2009 : Cranston and Yu $\delta \geq \frac{12}{29} \approx 0.413793$ 2000 : Cohen, Honkala, Lobstein, and Zémor $\delta \geq \frac{16}{39} \approx 0.410256$ 1998 : Karpovsky, Chakrabarty, and Levitin $\delta \geq \frac{2}{5} = 0.400000$

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

 $\delta \leq \frac{3}{7} \approx 0.428571$ 2000 : Cohen, Honkala, Lobstein, and Zémor: $\delta \geq \frac{23}{55} \approx 0.418181$ 2015+: Stolee $\delta \geq \frac{5}{12} \approx 0.416666$ 2013 : Cuickerman and Yu 2009 : Cranston and Yu $\delta \geq \frac{12}{20} \approx 0.413793$ $\delta \geq \frac{16}{30} \approx 0.410256$ 2000 : Cohen, Honkala, Lobstein, and Zémor $\delta \geq \frac{2}{5} = 0.400000$ 1998 : Karpovsky, Chakrabarty, and Levitin

Let G be the hexagonal grid, and

 $\delta = \inf\{\delta(X) : X \subset V(G) \text{ is an identifying code}\}.$

2000 : Cohen, Honkala, Lobstein, and Zémor: $\delta \leq \frac{3}{7} \approx 0.428571$ $\delta \geq \frac{23}{55} - \frac{1}{459459} \approx 0.418181$ 2015+: Stolee $\delta \geq \frac{5}{12} \approx 0.416666$ 2013 : Cuickerman and Yu 2009 : Cranston and Yu $\delta \geq \frac{12}{20} \approx 0.413793$ $\delta \geq \frac{16}{39} \approx 0.410256$ 2000 : Cohen, Honkala, Lobstein, and Zémor $\delta \geq \frac{2}{5} = 0.400000$ 1998 : Karpovsky, Chakrabarty, and Levitin

Discharging demonstrates a connection between **local structure** and **global averages**.

Discharging arguments have a few components:

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

The total charge is somehow connected to our global average, but is **roughly distributed**.

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

The total charge is somehow connected to our global average, but is **roughly distributed**.

By **discharging**, we aim to distribute the charge evenly.

Discharging arguments have a few components:

Chargeable objects are assigned a numeric, "charge" value.

The total charge is somehow connected to our global average, but is **roughly distributed**.

By **discharging**, we aim to distribute the charge evenly.

If the final charge amount is bounded below by the same value, then we have a bound on the **global average**.

Let X be an identifying code in the hexagonal grid.

Let X be an identifying code in the hexagonal grid.

Define
$$\mu(\mathbf{v}) = \begin{cases} 1 & \mathbf{v} \in X \\ 0 & \mathbf{x} \notin X \end{cases}$$

Let X be an identifying code in the hexagonal grid.

Define
$$\mu(\mathbf{v}) = \begin{cases} 1 & \mathbf{v} \in X\\ 0 & x \notin X \end{cases}$$

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(\mathbf{v}_0) \cap X|}{|B_r(\mathbf{v}_0)|} = \limsup_{r \to \infty} \frac{\sum_{\mathbf{v} \in B_r(\mathbf{v}_0)} \mu(\mathbf{v})}{|B_r(\mathbf{v}_0)|}.$$

Let X be an identifying code in the hexagonal grid.

Define
$$\mu(\mathbf{v}) = \begin{cases} 1 & \mathbf{v} \in X\\ 0 & x \notin X \end{cases}$$

$$\delta(X) = \limsup_{r \to \infty} \frac{|B_r(\mathbf{v}_0) \cap X|}{|B_r(\mathbf{v}_0)|} = \limsup_{r \to \infty} \frac{\sum_{\mathbf{v} \in B_r(\mathbf{v}_0)} \mu(\mathbf{v})}{|B_r(\mathbf{v}_0)|}.$$

If we discharge such that our new charge values $\mu'(\mathbf{v})$ have $\mu'(\mathbf{v}) \geq \mathbf{w}$ always, then

$$\delta(\mathbf{X}) = \limsup_{r \to \infty} \frac{\sum_{\mathbf{v} \in \mathbf{B}_r(\mathbf{v}_0)} \mu(\mathbf{v})}{|\mathbf{B}_r(\mathbf{v}_0)|} = \limsup_{r \to \infty} \frac{\sum_{\mathbf{v} \in \mathbf{B}_r(\mathbf{v}_0)} \mu'(\mathbf{v})}{|\mathbf{B}_r(\mathbf{v}_0)|} \ge \mathbf{w}.$$

Example Discharging Argument

(R1) Every element sends charge $\frac{1}{5}$ to every adjacent nonelement.

(R2) Every nonelement with charge $\frac{1}{5}$ pulls an extra $\frac{1}{5}$ from its only adjacent element.

Example Discharging Argument

(**R1**) Every element sends charge $\frac{1}{5}$ to every adjacent nonelement.

(R2) Every nonelement with charge $\frac{1}{5}$ pulls an extra $\frac{1}{5}$ from its only adjacent element.

Why does it work?

Forbidden Configurations

There are a few subtle points:

There are a few subtle points:

We may also have a charge function $\nu(f)$ on the faces: $\nu(f) = 0$.

There are a few subtle points:

We may also have a charge function $\nu(f)$ on the faces: $\nu(f) = 0$.

When we discharge with the faces, we must have resulting charge $\nu'(f) \ge 0$ always.

There are a few subtle points:

We may also have a charge function $\nu(f)$ on the faces: $\nu(f) = 0$.

When we discharge with the faces, we must have resulting charge $\nu'(f) \ge 0$ always.

The equality

$$\limsup_{r \to \infty} \frac{\sum_{\textit{v} \in \textit{B}_r(\textit{v}_0)} \mu(\textit{v})}{|\textit{B}_r(\textit{v}_0)|} = \limsup_{r \to \infty} \frac{\sum_{\textit{v} \in \textit{B}_r(\textit{v}_0)} \mu'(\textit{v})}{|\textit{B}_r(\textit{v}_0)|}$$

holds only when our discharging sends a **bounded amount** of charge a **bounded distance**.

The main difficulty with designing discharging arguments is to balance

- Low-charge objects *receive* enough charge to match the goal value.
- High-charge objects *maintain* enough charge to match the goal value.

Automated Discharging Arguments using GEneration.

Automated Discharging Arguments using GEneration.

ADAGE

Automated Discharging Arguments using GEneration.

ADAGE

A proof using this technique is called an **adage**.

There are three main steps:

There are three main steps:

1. Define the **shape** of the rules.

There are three main steps:

- 1. Define the **shape** of the rules.
- 2. Generate **constraints** on the rule values.

There are three main steps:

- 1. Define the **shape** of the rules.
- 2. Generate constraints on the rule values.
- 3. Optimize the values.

Defining a Rule

center object chargeable objects keys kernel

Defining a Rule

center object chargeable objects keys kernel

Defining a Rule

center object chargeable objects keys kernel

 $s(0,1,2) s(0,1,1) s(0,1,0) s(0,0,_{-}) s(1,_{-},_{-})$

$$w = \frac{2}{5} = 0.40000$$

Results

Rule *N* 1,758 Realizations

Vertex 1,758 Constraints

Face 663,662 Constraints

Theorem

Let X be an identifying code in the hexagonal grid. The adage proof using rule N demonstrates a lower bound of $\delta(X) \geq \frac{23}{55} - \frac{1}{496496} \approx 0.418181.$

Results

Rule *N* 1,758 Realizations

Vertex 1,758 Constraints

Face 663,662 Constraints

Theorem

Let X be an identifying code in the hexagonal grid. The adage proof using rule N demonstrates a lower bound of $\delta(X) \geq \frac{23}{55} - \frac{1}{496496} \approx 0.418181.$

This improves the previous-best lower bound of Cuickerman & Yu $(\frac{5}{12} = 0.41\overline{6})$ but does not match the current-best upper bound $(\frac{3}{7} \approx 0.42857)$.

Results for Variations on Identifying Codes

Set Type	Hexagonal Grid		Square Grid		Triangular Grid	
Dominating Set	<i>V</i> ₁	$rac{1}{4}pprox 0.250000^{\star}$	<i>V</i> ₁	$rac{1}{5}pprox 0.200000^{\star}$	<i>V</i> ₁	$rac{1}{7}pprox 0.142857^{\star}$
Identifying Code	N	$rac{23}{55} pprox 0.418182^{+}$	V ₂	$rac{7}{20}pprox 0.350000^{\star}$	<i>V</i> ₁	$rac{1}{4}pprox 0.250000^{\star}$
Strong Identify- ing Code	V ₂	$\tfrac{8}{17}\approx 0.470588$	$C_1 \cup C_2$	$rac{7}{18}pprox 0.388889$	$C_1^+ \cup C_2^+$	$\tfrac{4}{13}\approx 0.307692$
Locating- Dominating Code	V ₂	$\tfrac{1}{3}\approx 0.333333^{\star}$	V ₂	$\tfrac{3}{10}\approx 0.300000^{\star}$	$C_1 \cup C_2$	$rac{12}{53} pprox 0.226415$
Open-Locating- Dominating Code	V ₂	$\tfrac{1}{2}\approx 0.500000^{*}$	<i>C</i> ₁ ⁺	$rac{2}{5}pprox 0.400000^{\star}$	<i>C</i> ₁ ⁺	$\frac{4}{13}\approx 0.307692^{\star}$

Automated Discharging Arguments for Density Problems in Grids

Derrick Stolee

Iowa State University

dstolee@iastate.edu http://www.math.iastate.edu/dstolee/r/adage.htm

> June 19, 2014 Ron Graham Conference