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Coloring and Choosing



Colorings and List Colorings

A (proper) k -coloring of a graph is an assignment
c : V (G)→ {1, . . . , k} where

c(u) 6= c(v) for all uv ∈ E(G).

A list assignment is a function L : V (G)→ 2N. An L-coloring
is an assignment c : V (G)→N such that

c(v) ∈ L(v) and c(u) 6= c(v) for all uv ∈ E(G).
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Coloring and Choosability

A graph is k -colorable if a k -coloring exists for G.

A graph is k -choosable if an L-coloring exists for every list
assignment L with |L(v)| ≥ k .

A graph can be k -colorable but not k -choosable.
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A (k , c)-list assignment is a list assignment L where

I |L(v)| ≥ k for all v ∈ V (G)

I |L(u) ∩ L(v)| ≤ c for all uv ∈ E(G).

A graph is (k , c)-choosable if it is L-colorable for every
(k , c)-list assignment L.

Let f : V (G)→N be a funciton. A graph is (f , c)-choosable if
it is L-colorable for every list assignment L where

I |L(v)| ≥ f (v) for all v ∈ V (G)

I |L(u) ∩ L(v)| ≤ c for all uv ∈ E(G).
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(3,1)-choosability

Conjecture (Škrekovski) If G is a planar graph, then G is
(3,1)-choosable.

Theorem. Let G be a planar graph. G is (3,1)-choosable if G
avoids any of the following structures:

I 3-cycles (Kratochvı́l, Tuza, Voigt, Choi, Lidický, Stolee).
I 4-cycles (Choi, Lidický, Stolee).
I 5-cycles and 6-cycles (Choi, Lidický, Stolee).
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4-choosability

Theorem. Let G be a planar graph. G is 4-choosable if G
avoids any of the following structures:

I 3-cycles (Folklore).
I 4-cycles (Lam, Xu, Liu).
I 5-cycles (Wang and Lih).
I 6-cycles (Fijavz, Juvan, Mohar, and Škrekovski).
I 7-cycles (Farzad).
I Chorded 4-cycles and chorded 5-cycles (Borodin and

Ivanova).



(4, c)-choosability

Theorem (Kratochvı́l, Tuza, and Voigt) If G is a planar graph,
then G is (4,1)-choosable.

Theorem (Voigt) There exists a planar graph that is not
(4,3)-choosable.



(4,2)-choosability

A chorded k -cycle is a k -cycle with one additional edge.

A doubly-chorded k -cycle is a k -cycle with two additional
edges.

Theorem

Let G be a planar graph. G is (4,2)-choosable if G avoids any
of the following structures:

◦ Chorded 5-cycles.

◦ Chorded 6-cycles.

◦ Chorded 7-cycles.

◦ Doubly-chorded 6-cycles and doubly-chorded 7-cycles.
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Reducible Configurations



Configuration

I Graph C
I Set X ⊆ V (C)

I Function ex : V (C)→ {0,1,2,∞}
I Function f : X → {1,2,3,4} (roughly f (v) = 4− ex(v))



Configuration

A configuration is reducible if C is (f ,2)-choosable.



The Alon-Tarsi Theorem

A digraph D is an orientation of G if G is the underlying
undirected graph of D and D has no 2-cycles.

An Eulerian subgraph of a digraph D is a subset S ⊆ E(D)
such that d+

S (v) = d−S (v).

I EE(D): number of Eulerian subgraphs of even size.
I EO(D): number of Eulerian subgraphs of odd size.
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The Alon-Tarsi Theorem

Theorem (Alon-Tarsi) Let G be a graph and f : V (G)→N a
function. Suppose there exists an orientation D of G such that
d+

D (v) ≤ f (v)− 1 for every vertex v ∈ V (G) and
EE(D) 6= EO(D). Then G is f -choosable.



Using the Alon-Tarsi Theorem



A (4,2)-Reducibility Example

z

y

x

w

f (x) = f (z) = 3, f (w) = f (y) = 1

Let L′(x) = L(x) \ (L(y) ∪ L(w)) and
L′(z) = L(z) \ (L(y) ∪ L(w)).

If |L′(x)| = |L′(z)|, then L(x) ∩ L(z) = L(w) ∪ L(y) and hence
L′(x) ∩ L′(z) = ∅.
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Other (4,2)-Reducible Configurations



Discharging



Theorem. If G is a planar graph not containing a chorded
6-cycle, then G is (4,2)-choosable.

Suppose there exists a counterexample. Select a plane graph
G that:

I Does not contain a chorded 6-cycle.
I Has a (4,2)-list assignment L where G is not L-choosable.
I n(G) is as small as possible.



Theorem. If G is a planar graph not containing a chorded
6-cycle, then G is (4,2)-choosable.

Suppose there exists a counterexample. Select a plane graph
G that:

I Does not contain a chorded 6-cycle.
I Has a (4,2)-list assignment L where G is not L-choosable.
I n(G) is as small as possible.



What do we know about G?

Minimum degree δ(G) ≥ 4.

No 4-face adjacent to a 4-face.

No 5-face adjacent to a 3-face.

A 6+-vertex is incident to at most
⌊ 3

4d(v)
⌋

3-faces.

A 5-vertex is incident to at most three 3-faces.

G does not contain a reducible configuration.
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Initial Charge Functions

For a vertex v , let µ(v) = d(v)− 4.

For a face f , let ν(f ) = `(f )− 4.

Total Charge: −8

Goal: Move charge around so everything has nonnegative
charge, a contradiction!
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Discharging Rules

1
3

1
9
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(R1a) (R1b)

1
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4
9

(R2a) (R2b)



Verifying Discharging Rules

Case 1: Let f be a 6+-face (`(f ) ≥ 6).

ν′(f ) ≥ `(f )− 4︸ ︷︷ ︸
initial charge

− 1
3
`(f )︸ ︷︷ ︸

amount lost by (R1)

=
2
3
`(f )− 4 ≥ 0.



Verifying Discharging Rules

Case 2: Let f be a 5-face (`(f ) = 5).

ν′(f ) ≥ `(f )− 4︸ ︷︷ ︸
initial charge

− 1
9
`(f )︸ ︷︷ ︸

amount lost by (R1)

=
8
9
· `(f )− 4 ≥ 0.

(No 5-face adjacent to a 3-face.)



Verifying Discharging Rules

Case 3: Let f be a 4-face (`(f ) = 4).

ν(f ) = 0 and f does not gain or lose charge by (R1).

(No 4-face adjacent to a 4-face.)



Verifying Discharging Rules

Case 4: Let v be a 6+-vertex.

µ′(v) ≥ d(v)− 4︸ ︷︷ ︸
initial charge

− 4
9

⌊
3d(v)

4

⌋
︸ ︷︷ ︸

amount lost by (R2)

≥ 2
3

d(v)− 4 ≥ 0.

(A 6+-vertex is incident to at most
⌊ 3

4d(v)
⌋

3-faces.)



Verifying Discharging Rules

Case 5: Let v be a 5-vertex.

µ′(v) ≥ d(v)− 4︸ ︷︷ ︸
initial charge

− 1
3
· 3︸︷︷︸

amount lost by (R2)

≥ 0.

(A 5-vertex is incident to at most three 3-faces.)



Verifying Discharging Rules

Case 6: Let v be a 4-vertex.

µ(v) = 0 and v does not gain or lose charge via (R2).



Verifying Discharging Rules

Case 7: Let f be a 3-face.

ν(f ) = −1.

Not every 3-face will gain enough charge!

But we will average among 3-faces in each cluster.
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Verifying Discharging Rules

Case 7: Let f be a 3-face.

ν(f ) = −1.

Not every 3-face will gain enough charge!

But we will average among 3-faces in each cluster.



Clusters

(K3) (K4) (K5a)

(K5b) (K5c)

(These are the maximal connected sets of 3-faces that do not contain a
3−-vertex or a chorded 6-cycle.)



Cluster (K3)

Initial Charge: −1

Gained by (R1): 3 · 1
3

Charge after (R1): 0



Cluster (K5a)

Initial Charge: −3

Gained by (R1): 5 · 1
3

Charge after (R1): −4
3



Cluster (K5a)

After (R1): −4
3

(C3) (C4)



Cluster (K5a)
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6+

After (R1): −4
3 After (R2): −4

3 + 3 · 4
9 = 0

(C3) (C4)



Cluster (K5a)
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After (R1): −4
3 After (R2): −4

3 + 3 · 1
3 + 1

3 = 0

(C3) (C4)



Cluster (K5a)
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Lessons Learned



Bad News

Fewer Faculty = More Work!

Discharging needs too many details!

Know your background!



Good News

Everyone knows discharging!

Reducible configurations parallelize!

Do not settle!
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