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Coloring and Choosing



Colorings and List Colorings
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Colorings and List Colorings

A (proper) k-coloring of a graph is an assignment
c:V(G)—{1,..., k} where

c(u) # c(v) forall uv € E(G).

A list assignment is a function L : V(G) — 2N. An L-coloring
is an assignment ¢ : V(G) — IN such that

c(v) € L(v) and c(u) # c(v) for all uv € E(G).
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Coloring and Choosability

A graph is k-colorable if a k-coloring exists for G.

A graph is k-choosable if an L-coloring exists for every list
assignment L with |L(v)| > k.

A graph can be k-colorable but not k-choosable.
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A (k, c)-list assignment is a list assignment L where

» |[L(v)| > kforallv e V(G)
» |[L(u)yNnL(v)| < cforalluv € E(G).

A graph is (k, c)-choosable if it is L-colorable for every
(k, c)-list assignment L.

Let f: V(G) — N be a funciton. A graph is (f, c)-choosable if
it is L-colorable for every list assignment L where

|L(v)| > f(v) forall v € V(G)
|IL(u) N L(v)| < cforall uv € E(G).
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(3, 1)-choosability

Conjecture (Skrekovski) If G is a planar graph, then G is
(8, 1)-choosable.



(3, 1)-choosability

Conjecture (Skrekovski) If G is a planar graph, then G is
(8, 1)-choosable.

Theorem. Let G be a planar graph. Gis (3, 1)-choosable if G
avoids any of the following structures:

» 3-cycles (Kratochvil, Tuza, Voigt, Choi, Lidicky, Stolee).
» 4-cycles (Choi, Lidicky, Stolee).
» 5-cycles and 6-cycles (Choi, Lidicky, Stolee).



4-choosability

Theorem. Let G be a planar graph. G is 4-choosable if G
avoids any of the following structures:

v

3-cycles (Folklore).
(Lam, Xu, Liu).
(

(

v

4-cycles

v

5-cycles (Wang and Lih).
6-cycles (Fijavz, Juvan, Mohar, and ékrekovski).
7-cycles (Farzad).

Chorded 4-cycles and chorded 5-cycles (Borodin and
Ivanova).

v

v

v



(4, c)-choosability

Theorem (Kratochvil, Tuza, and Voigt) If G is a planar graph,
then G is (4, 1)-choosable.

Theorem (Voigt) There exists a planar graph that is not
(4, 3)-choosable.



(4, 2)-choosability

A chorded k-cycle is a k-cycle with one additional edge.

A doubly-chorded k-cycle is a k-cycle with two additional
edges.



(4, 2)-choosability

A chorded k-cycle is a k-cycle with one additional edge.

A doubly-chorded k-cycle is a k-cycle with two additional
edges.

Theorem

Let G be a planar graph. G is (4,2)-choosable if G avoids any
of the following structures:

o

Chorded 5-cycles.

o

Chorded 6-cycles.

(e]

Chorded 7-cycles.

@)

Doubly-chorded 6-cycles and doubly-chorded 7-cycles.



Reducible Configurations



Configuration

/NN

v

Graph C

Set X C V(C)

Functionex : V(C) — {0,1,2,00}

Function f: X — {1,2,3,4} (roughly f(v) = 4 —ex(v))

v

v

v



Configuration

/NN

A configuration is reducible if C is (f, 2)-choosable.



The Alon-Tarsi Theorem

A digraph D is an orientation of G if G is the underlying
undirected graph of D and D has no 2-cycles.
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The Alon-Tarsi Theorem

A digraph D is an orientation of G if G is the underlying
undirected graph of D and D has no 2-cycles.

An Eulerian subgraph of a digraph D is a subset S C E(D)
such that dd (v) = dg (v).

» EE(D): number of Eulerian subgraphs of even size.
» EO(D): number of Eulerian subgraphs of odd size.



The Alon-Tarsi Theorem

Theorem (Alon-Tarsi) Let Gbe agraphand f: V(G) - N a
function. Suppose there exists an orientation D of G such that
dj (v) < f(v) — 1 for every vertex v € V(G) and

EE(D) # EO(D). Then G is f-choosable.



Using the Alon-Tarsi Theorem




A (4, 2)-Reducibility Example




A (4, 2)-Reducibility Example




A (4, 2)-Reducibility Example

It |L(x)] = |L'(2)],

| hen L(x) N L(z) = L(w) U L(y) and hence
U'(x)nl'(z) =.






Discharging



Theorem. If Gis a planar graph not containing a chorded
6-cycle, then Gis (4, 2)-choosable.



Theorem. If Gis a planar graph not containing a chorded
6-cycle, then Gis (4, 2)-choosable.

Suppose there exists a counterexample. Select a plane graph
G that:

» Does not contain a chorded 6-cycle.
» Has a (4, 2)-list assignment L where G is not L-choosable.
» n(G) is as small as possible.
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What do we know about G?

Minimum degree 6(G) > 4.
No 4-face adjacent to a 4-face.
No 5-face adjacent to a 3-face.

A 6" -vertex is incident to at most | 2d(v)| 3-faces.



What do we know about G?

Minimum degree §(G) > 4.

No 4-face adjacent to a 4-face.
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What do we know about G?

Minimum degree §(G) > 4.

No 4-face adjacent to a 4-face.

No 5-face adjacent to a 3-face.

A 6" -vertex is incident to at most | 2d(v)| 3-faces.
A 5-vertex is incident to at most three 3-faces.

G does not contain a reducible configuration.



Initial Charge Functions

For a vertex v, let u(v) = d(v) — 4.

For aface f, let v(f) = ¢(f) — 4.
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Initial Charge Functions

For a vertex v, let u(v) = d(v) — 4.
For aface f, let v(f) = ¢(f) — 4.
Total Charge: —8

Goal: Move charge around so everything has nonnegative
charge, a contradiction!



Discharging Rules

1

1©O|—=

1
o=

(R2a) (R2b)



Verifying Discharging Rules

Case 1: Let f be a 67-face (¢(f) > 6).

V/(f) > ((f)—4 — §£(f)
initial charge —~

amount lost by (R1)



Verifying Discharging Rules

Case 2: Let f be a 5-face (¢(f) = 5).

V(> U4~ Lin =0 -420
initial charge —

amount lost by (R1)

(No 5-face adjacent to a 3-face.)



Verifying Discharging Rules

Case 3: Let f be a 4-face (¢(f) = 4).

v(f) = 0 and f does not gain or lose charge by (R1).

(No 4-face adjacent to a 4-face.)



Verifying Discharging Rules

Case 4: Let v be a 6T -vertex.

4 3d(v)J 2

vwzdw-4- g% =

initial charge S——
amount lost by (R2)

(A 6% -vertex is incident to at most | 3d(v)| 3-faces.)



Verifying Discharging Rules

Case 5: Let v be a 5-vertex.

1
W(v)>dv)—4— 5-3 > 0.
h\,—/
initial charge —~

amount lost by (R2)

(A 5-vertex is incident to at most three 3-faces.)



Verifying Discharging Rules

Case 6: Let v be a 4-vertex.

u(v) = 0 and v does not gain or lose charge via (R2).



Verifying Discharging Rules

Case 7: Let f be a 3-face.

v(f) = —1.



Verifying Discharging Rules

Case 7: Let f be a 3-face.
v(f) = —1.

Not every 3-face will gain enough charge!



Verifying Discharging Rules

Case 7: Let f be a 3-face.
v(f) = —1.
Not every 3-face will gain enough charge!

But we will average among 3-faces in each cluster.



Clusters

VANRVAVARVAVAN

(K3) (K4) (K5a)
(K5b) (K5c)

(These are the maximal connected sets of 3-faces that do not contain a
3~ -vertex or a chorded 6-cycle.)



Cluster (K3)

/ N\ Initial Charge: —1
Gained by (R1): 3+ }

Charge after (R1): 0



Cluster (K5a)

Initial Charge: —3

Gained by (R1):5- 1

Charge after (R1): —3



Cluster (K5a)

After (R1): —3




Cluster (K5a)

After (R1): —

4
3

4



Cluster (K5a)

wl—
W=

o C

After (R1): —3

(C3) (C4)



Cluster (K5a)

5
After (R1): —4 After (R2): —3+3-3+3=0



Cluster (K5a)

After (R1): —3

5
After (R2): —3+3-3+2-

(C4)



Cluster (K5a)

A

5
After (R1): —% After (R2): —3+3-3+2-3=0




Cluster (K5a)

After (R1): —3

& C



Cluster (K5a)

After (R1): —3

(C4)



Cluster (K5a)

After (R1): —% After (R2): —3+4-1=0



Lessons Learned



Bad News

Fewer Faculty = More Work!

Discharging needs too many details!

Know your background!



Good News

Everyone knows discharging!

Reducible configurations parallelize!

Do not settle!
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