(4, 2)-Choosability of Planar Graphs with Forbidden Structures A Working Seminar Report

Derrick Stolee

Iowa State University

dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/r/choosesep.htm

September 8, 2015 ISU Discrete Math Seminar

Zhanar Berikkyzy

Chris Cox

Michael

Dairyko

Kirsten

Hogenson

Mohit Kumbhat

Bernard Lidický

Kacy Messerschmidt

Kevin Moss

Nowak

Kevin Palmowski

Working Seminar 2014–15

Coloring and Choosing

Colorings and List Colorings

A (proper) *k*-coloring of a graph is an assignment $c: V(G) \rightarrow \{1, ..., k\}$ where

 $c(u) \neq c(v)$ for all $uv \in E(G)$.

Colorings and List Colorings

A (proper) *k*-coloring of a graph is an assignment $c: V(G) \rightarrow \{1, ..., k\}$ where

$$c(u) \neq c(v)$$
 for all $uv \in E(G)$.

A list assignment is a function $L: V(G) \to 2^{\mathbb{N}}$. An *L*-coloring is an assignment $c: V(G) \to \mathbb{N}$ such that

 $c(v) \in L(v)$ and $c(u) \neq c(v)$ for all $uv \in E(G)$.

Coloring and Choosability

A graph is *k*-colorable if a *k*-coloring exists for *G*.

Coloring and Choosability

A graph is *k*-colorable if a *k*-coloring exists for *G*.

A graph is *k*-choosable if an *L*-coloring exists for every list assignment *L* with $|L(v)| \ge k$.

Coloring and Choosability

A graph is *k*-colorable if a *k*-coloring exists for *G*.

A graph is *k*-choosable if an *L*-coloring exists for every list assignment *L* with $|L(v)| \ge k$.

A graph can be *k*-colorable but not *k*-choosable.

A (k, c)-list assignment is a list assignment L where

•
$$|L(v)| \ge k$$
 for all $v \in V(G)$

▶ $|L(u) \cap L(v)| \le c$ for all $uv \in E(G)$.

A (k, c)-list assignment is a list assignment L where

•
$$|L(v)| \ge k$$
 for all $v \in V(G)$

►
$$|L(u) \cap L(v)| \le c$$
 for all $uv \in E(G)$.

A graph is (k, c)-choosable if it is *L*-colorable for every (k, c)-list assignment *L*.

A (k, c)-list assignment is a list assignment L where

•
$$|L(v)| \ge k$$
 for all $v \in V(G)$

► $|L(u) \cap L(v)| \le c$ for all $uv \in E(G)$.

A graph is (k, c)-choosable if it is *L*-colorable for every (k, c)-list assignment *L*.

Let $f : V(G) \to \mathbb{N}$ be a funciton. A graph is (f, c)-choosable if it is *L*-colorable for every list assignment *L* where

•
$$|L(v)| \ge f(v)$$
 for all $v \in V(G)$

► $|L(u) \cap L(v)| \le c$ for all $uv \in E(G)$.

(3, 1)-choosability

Conjecture (Škrekovski) If G is a planar graph, then G is (3, 1)-choosable.

Conjecture (Škrekovski) If G is a planar graph, then G is (3, 1)-choosable.

Theorem. Let *G* be a planar graph. *G* is (3, 1)-choosable if *G* avoids any of the following structures:

- 3-cycles (Kratochvíl, Tuza, Voigt, Choi, Lidický, Stolee).
- 4-cycles (Choi, Lidický, Stolee).
- ► 5-cycles and 6-cycles (Choi, Lidický, Stolee).

4-choosability

Theorem. Let G be a planar graph. G is 4-choosable if G avoids any of the following structures:

- 3-cycles (Folklore).
- 4-cycles (Lam, Xu, Liu).
- 5-cycles (Wang and Lih).
- ► 6-cycles (Fijavz, Juvan, Mohar, and Škrekovski).
- 7-cycles (Farzad).
- Chorded 4-cycles and chorded 5-cycles (Borodin and Ivanova).

Theorem (Kratochvíl, Tuza, and Voigt) If G is a planar graph, then G is (4, 1)-choosable.

Theorem (Voigt) There exists a planar graph that is not (4, 3)-choosable.

(4, 2)-choosability

A **chorded** *k***-cycle** is a *k*-cycle with one additional edge.

A **doubly-chorded** *k***-cycle** is a *k*-cycle with two additional edges.

(4, 2)-choosability

A **chorded** *k***-cycle** is a *k*-cycle with one additional edge.

A **doubly-chorded** *k***-cycle** is a *k*-cycle with two additional edges.

Theorem

Let G be a planar graph. G is (4, 2)-choosable if G avoids any of the following structures:

- Chorded 5-cycles.
- Chorded 6-cycles.
- Chorded 7-cycles.
- Doubly-chorded 6-cycles and doubly-chorded 7-cycles.

Reducible Configurations

Configuration

- ► Graph C
- Set $X \subseteq V(C)$
- Function ex : $V(C) \rightarrow \{0, 1, 2, \infty\}$
- Function $f: X \rightarrow \{1, 2, 3, 4\}$ (roughly f(v) = 4 ex(v))

Configuration

A configuration is **reducible** if *C* is (f, 2)-choosable.

A digraph D is an *orientation* of G if G is the underlying undirected graph of D and D has no 2-cycles.

A digraph D is an *orientation* of G if G is the underlying undirected graph of D and D has no 2-cycles.

An *Eulerian subgraph* of a digraph *D* is a subset $S \subseteq E(D)$ such that $d_S^+(v) = d_S^-(v)$.

A digraph D is an *orientation* of G if G is the underlying undirected graph of D and D has no 2-cycles.

An *Eulerian subgraph* of a digraph *D* is a subset $S \subseteq E(D)$ such that $d_S^+(v) = d_S^-(v)$.

- ► *EE*(*D*): number of Eulerian subgraphs of even size.
- ► *EO*(*D*): number of Eulerian subgraphs of odd size.

Theorem (Alon-Tarsi) Let *G* be a graph and $f : V(G) \to \mathbb{N}$ a function. Suppose there exists an orientation *D* of *G* such that $d_D^+(v) \le f(v) - 1$ for every vertex $v \in V(G)$ and $EE(D) \ne EO(D)$. Then *G* is *f*-choosable.

Using the Alon-Tarsi Theorem

A (4, 2)-Reducibility Example

$$f(x) = f(z) = 3, f(w) = f(y) = 1$$

A (4, 2)-Reducibility Example

$$f(x) = f(z) = 3, f(w) = f(y) = 1$$

Let
$$L'(x) = L(x) \setminus (L(y) \cup L(w))$$
 and $L'(z) = L(z) \setminus (L(y) \cup L(w))$.

A (4, 2)-Reducibility Example

$$f(x) = f(z) = 3, f(w) = f(y) = 1$$

Let
$$L'(x) = L(x) \setminus (L(y) \cup L(w))$$
 and $L'(z) = L(z) \setminus (L(y) \cup L(w))$.

If |L'(x)| = |L'(z)|, then $L(x) \cap L(z) = L(w) \cup L(y)$ and hence $L'(x) \cap L'(z) = \emptyset$.

Other (4, 2)-Reducible Configurations

Discharging

Theorem. If G is a planar graph not containing a chorded 6-cycle, then G is (4, 2)-choosable.

Theorem. If G is a planar graph not containing a chorded 6-cycle, then G is (4, 2)-choosable.

Suppose there exists a **counterexample**. Select a plane graph *G* that:

- Does not contain a chorded 6-cycle.
- Has a (4, 2)-list assignment *L* where *G* is not *L*-choosable.
- n(G) is as small as possible.

Minimum degree $\delta(G) \geq 4$.

Minimum degree $\delta(G) \ge 4$.

No 4-face adjacent to a 4-face.

Minimum degree $\delta(G) \ge 4$.

No 4-face adjacent to a 4-face.

No 5-face adjacent to a 3-face.

Minimum degree $\delta(G) \geq 4$.

No 4-face adjacent to a 4-face.

No 5-face adjacent to a 3-face.

A 6⁺-vertex is incident to at most $\left|\frac{3}{4}d(v)\right|$ 3-faces.

Minimum degree $\delta(G) \geq 4$.

No 4-face adjacent to a 4-face.

No 5-face adjacent to a 3-face.

A 6⁺-vertex is incident to at most $\left|\frac{3}{4}d(v)\right|$ 3-faces.

A 5-vertex is incident to at most three 3-faces.

Minimum degree $\delta(G) \geq 4$.

No 4-face adjacent to a 4-face.

No 5-face adjacent to a 3-face.

A 6⁺-vertex is incident to at most $\left|\frac{3}{4}d(v)\right|$ 3-faces.

A 5-vertex is incident to at most three 3-faces.

G does not **contain** a reducible configuration.

Initial Charge Functions

For a vertex v, let $\mu(v) = d(v) - 4$.

For a face f, let $\nu(f) = \ell(f) - 4$.

Initial Charge Functions

For a vertex v, let $\mu(v) = d(v) - 4$.

For a face f, let $\nu(f) = \ell(f) - 4$.

Total Charge: -8

Initial Charge Functions

For a vertex v, let $\mu(v) = d(v) - 4$.

For a face f, let $\nu(f) = \ell(f) - 4$.

Total Charge: -8

Goal: Move charge around so everything has nonnegative charge, a contradiction!

Discharging Rules

Case 1: Let *f* be a 6⁺-face ($\ell(f) \ge 6$).

Case 2: Let *f* be a 5-face ($\ell(f) = 5$).

(No 5-face adjacent to a 3-face.)

Case 3: Let *f* be a 4-face ($\ell(f) = 4$).

v(f) = 0 and f does not gain or lose charge by (R1).

(No 4-face adjacent to a 4-face.)

Case 4: Let v be a 6⁺-vertex.

(A 6⁺-vertex is incident to at most $\left|\frac{3}{4}d(v)\right|$ 3-faces.)

Case 5: Let v be a 5-vertex.

(A 5-vertex is incident to at most three 3-faces.)

Case 6: Let v be a 4-vertex.

 $\mu(v) = 0$ and v does not gain or lose charge via (R2).

Case 7: Let *f* be a 3-face.

 $\nu(f) = -1.$

Case 7: Let f be a 3-face.

 $\nu(f) = -1.$

Not every 3-face will gain enough charge!

Case 7: Let f be a 3-face.

 $\nu(f) = -1.$

Not every 3-face will gain enough charge!

But we will average among 3-faces in each cluster.

Clusters

(These are the maximal connected sets of 3-faces that do not contain a 3^- -vertex or a chorded 6-cycle.)

Initial Charge: -1Gained by (R1): $3 \cdot \frac{1}{3}$ Charge after (R1): 0

Cluster (K5a)

Initial Charge: -3

Gained by (R1): $5 \cdot \frac{1}{3}$

Charge after (R1): $-\frac{4}{3}$

Cluster (K5a)

After (R2): $-\frac{4}{3} + 3 \cdot \frac{4}{9} = 0$

Cluster (K5a)

After (R2): $-\frac{4}{3} + 3 \cdot \frac{1}{3} + \frac{1}{3} = 0$

After (R2): $-\frac{4}{3} + 3 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} = 0$

Cluster (K5a)

After (R2): $-\frac{4}{3} + 3 \cdot \frac{1}{3} + 2 \cdot \frac{1}{3} = 0$

Lessons Learned

Bad News

Fewer Faculty = More Work!

Discharging needs too many details!

Know your background!

Good News

Everyone knows discharging!

Reducible configurations parallelize!

Do not settle!

(4, 2)-Choosability of Planar Graphs with Forbidden Structures A Working Seminar Report

Derrick Stolee

Iowa State University

dstolee@iastate.edu

http://www.math.iastate.edu/dstolee/r/choosesep.htm

September 8, 2015 ISU Discrete Math Seminar