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1 Introduction

Definition 1.1. Let G be a graph. A matching in G is a set M ⊆ E(G) so that for any
pair of edges e1, e2 ∈M , e1 and e2 have no common endpoint (i.e. e1 ∩ e2 = ∅). A matching
M is perfect if 2|M | = |V (G)|.

Definition 1.2. Given a graph G, Φ(G) is the number of perfect matchings in G. A graph
G is saturated if for every edge e ∈ E(G), Φ(G + e) > Φ(G).

There are two main structural theorems in the theory of matchings:

1. The Edmonds–Gallai Structure Theorem specializes in the structure of graphs
with no perfect matchings. It says nothing about graphs with perfect matchings (two
of the three parts of the given partition are empty).

2. The Lovász Cathedral Theorem specializes in the structure of saturated graphs
with perfect matchings.

Note that while the Edmonds–Gallai structure theorem gives essentially no information
on a graph with perfect matchings, there is a graph lurking below the surface with no
perfect matchings: G− v for any vertex v ∈ V (G). The Lovász Cathedral Theorem uses the
Edmonds–Gallai structure of these subgraphs extensively in the proofs.

Our goal is to develop a working knowledge of the definitions and statements of the Lovász
Cathedral Theorem in order to apply it to extremal problems on perfect matchings. Hence,
we shall not state the definitions in their full generality and will not prove the theorem itself.
An interested reader is directed to Chapters 3 and 5 of Lovász and Plummer’s Matching
Theory, the standard reference in this topic. These notes are based on that book and we
borrow its notation for consistency.

1.1 An Introductory Matching Problem

Problem 1.3. Let n, p be integers (assume n is even). Define

f(n, p) = max{|E(G)| : |V (G)| = n, Φ(G) = p}.

That is, f(n, p) is the maximum number of edges in a graph on n vertices with exactly p
perfect matchings.

Theorem 1.4 (Hetyei). f(n, 1) = n2

4
.

We shall only prove the lower bound at the moment.
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Proof that f(n, 1) ≥ n2

4
. Note that if n = 2, K2 has exactly one perfect matching and 22

4
= 1

edge. Proceed by induction on even n.
If G is a graph with one perfect matching on n vertices with n2

4
edges, then join G with

a vertex (add an edge from each vertex in V (G) to a new vertex) and add a leaf at the new
vertex. This is given as H = (G∪K1)∨K1. H has n + 2 vertices and n2

4
+ (n + 1) + 1 edges,

which equals (n+2)2

4
edges. Moreover, the leaf can only be matched with its only neighbor,

so any perfect matching must match vertices in V (G) with V (G), giving the unique perfect
matching.

Later, we will show a quick proof that this is also the largest number of edges using the
Cathedral Theorem.

Theorem 1.5 (DS). For all p ≥ 1, there exist constants np, cp so that −(p − 1)(p − 2) ≤
cp ≤ p− 1 and for all n ≥ np,

f(n, p) =
n2

4
+ cp.

There are multiple points to this theorem, but the most important is that as n increases,
the difference between f(n, p) and n2

4
can only increase.

Claim 1.5.1. f(n + 2, p) ≥ (n+2)2

4
+
(
f(n, p)− n2

4

)
Proof. Let G have n vertices and f(n, p) edges. Set cn,p = f(n, p) − n2

4
. Consider H =

(G ∪ K1) ∨ K1. H has n + 2 vertices and f(n, p) + n + 1 edges. This works out to be
(n+2)2

4
− n2

4
+ f(n, p) = (n+2)2

4
+ cn,p edges.

Since cn,p is an increasing sequence in n, but is bounded above by p− 1, we know it has
a limit. This is the value cp. Dudek and Schmitt conjectured that this constant is positive
for p ≥ 2. We answered this positively.

Theorem 1.6 (HSWY). Let p ≥ 2 be a constant. Then, for all n ≥ 2blog2 pc + 2, cn,p ≥
wt2(p− 1) (where wt2(m) is the number of 1s in the binary expansion of an integer m).

In particular, cp ≥ wt2(p− 1) ≥ 1.

There are many open questions on this problem, including:

1. Is cp monotone in p?
2. What is the maximum growth rate of cp?
3. What is the growth rate of the minimum np?

2 Saturated and Elementary Graphs

Definition 2.1. An edge is

- forbidden if it is not contained in any perfect matching.
- allowable if it is contained in some perfect matching.
- vital if it is contained in every perfect matching.
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Definition 2.2. A connected graph is

- 1-extendable if every edge is allowable;
- elementary if the set of allowable edges is connected;
- saturated if adding any edge increases the number of perfect matchings.

If Φ(G) > 0, then there are allowable edges in G. The components given by the subgraph
of allowable edges induce the maximal elementary subgraphs of G. The Cathedral Theorem
will take a saturated graph G, split it into its maximal elementary subgraphs and then
control the way they are connected.

Note that if Φ(G) > 0 but G is not saturated, there exists a saturated supergraph G′ ⊃ G
so that Φ(G′) = Φ(G) by adding edges as long as they do not increase the number of perfect
matchings. If G has f(|V (G)|, Φ(G)) edges, it is automatically saturated.

2.1 Barriers

Theorem 2.3 (Tutte’s Theorem). A graph G has a perfect matching if and only if for every
set S ⊆ V (G), the number of odd components in G− S is at most the number of vertices in
S. That is, co(G− S) ≤ |S|.

The intuition of Tutte’s Theorem is that odd components cannot have perfect matchings
themselves, so they must be matched with vertices in S. If S is too small, then no perfect
matching can exist.

This gives a certificate of lacking a perfect matching: a Tutte set is a set S ⊆ V (G) so
that co(G− S) > |S|. If Φ(G) > 0, then we have no Tutte sets, but we can consider the sets
which are as close as possible to such a set.

Definition 2.4. If G has at least one perfect matching, a barrier is a set X ⊆ V (G) so that
the number of odd components in G−X is equal to the number of vertices in X.

Lemma 2.5. Given a graph G with Φ(G) > 0, the set of maximal barriers partitions the
vertex set. This partition is denoted P(G).

Proposition 2.6. If G is a saturated graph, each barrier S ∈ P(G) is a clique in G.

Proof. All of the perfect matchings in G must match S to a vertex in an odd component
of G − S. Adding missing edges between vertices of S does not change the connectivity of
G− S, and hence does not increase the number of perfect matchings.

3 The Cathedral Construction

Definition 3.1 (The Cathedral Construction). Let G0 be a saturated elementary graph.
Let P(G0) = {S1, . . . , Sk} and denote GSi

as a (possibly null) saturated graph associated
with the barrier Si ∈ P(G0). The cathedral given by G0, GS1 , . . . , GSk

is the graph given by
the disjoint union of G0

⋃
∪k

i=1GSi
and edges added between each vertex of Si to each vertex

of GSi
for each i ∈ {1, . . . , k}.

The graph G0 is called the foundation. The graphs GSi
are the towers.
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Theorem 3.2 (Lovász’s Cathedral Theorem). A graph G is saturated if and only if there is
a saturated elementary graph G0 and a saturated graph GS for each S ∈ P(G0) so that G is
isomorphic to the Cathedral Construction given by these graphs. Moreover, the graph G0 is
uniquely determined by the Edmonds–Gallai structure theorem of graphs G− v.

Note that this theorem implies that the graphs GS are cathedrals themselves, giving a
recursive structure.

PICTURE HERE!

We will not prove that every saturated graph is of this type, but we shall prove that
every cathedral is itself saturated.

Proof. Let G0 be saturated elementary graph with a tower GS for each S ∈ P(G0) and G is
the resulting cathedral. Use induction to guarantee that GS is itself a cathedral.

Claim 3.2.1. All allowed edges in the cathedral are in the elementary subgraphs.

Note that for each S ∈ P(G0), co(G0 − S) = |S|. This holds also for co(G − S), since
S cuts G0 into components which are connected to some number of towers (which are even
graphs themselves) and cuts GS into its own connected component.

Now, all vertices in S must be matched to vertices of odd components in G − S, but
these edges must be in G0. So, all vertices in G0 are matched to vertices in G0 and also all
matchings on GS are matched within GS (by induction gives that the edges are within the
elementary parts).

Claim 3.2.2. Φ(G) = Φ(G0) ·
∏

S∈P Φ(GS)

Since the matchings are independently chosen from the foundation and the towers, they
multiply.

Claim 3.2.3. If e ∈ E(G), Φ(G + e) > Φ(G).

If e is added within a tower GS (which is saturated), we have Φ(GS + e) > Φ(GS) so
Φ(G + e) > Φ(G). Similarly if e is added to G0.

We can assume by induction that e is added between towers or between a vertex x of G0

and a tower GS so that x /∈ S. At minimum, we know that one endpoint of e is in a tower
GS and the other endpoint is not in S. Let M be a matching in G.

There is an M -alternating path from the endpoints of e that takes an edge in each level of
the cathedral then goes down a level until it reaches G0, then travels between barriers using
an M -alternating path. By adding e to this path, we have an M -alternating cycle. Take
the perfect matching given by M but swapping the M -edges in the cycle with the others,
making a new perfect matching.

Therefore, G is saturated.

Corollary 3.3. If G is saturated with exactly one perfect matching, then the foundation of
the cathedral is a single edge.

Proof. 1 = Φ(G) = Φ(G0) ·
∏

S∈P(G0) Φ(GS). Since Φ(G0) = 1, the allowable edges of G0

are given by the single perfect matching. But these edges should yield a connected graph!
Thus, G0 = K2.

4



Lemma 3.4 (HSWY). Fix n, p and let G be a graph with n vertices, p perfect matchings, and
f(n, p) edges. Then, the Cathedral structure of G has a single tower of elementary graphs
G0, G1, . . . , G` where the barrier chosen in Gi has maximum size in P(Gi).

Proof. Let I be an index set on the elementary subgraphs of G, where Gi denotes the
elementary subgraph for i ∈ I. Let Si be a maximum-order barrier in Gi. There is a partial-
order ≤ on I given by i ≤ j if Gj is in a tower above Gi. Note that the poset (I,≤) is a tree
with a root.

Let ≤′ be a total order on I that extends ≤. Replace G by the graph G′, defined as

G′ = ∪i∈IGi + ∪i≤′j
i 6=j

E(Si ∨Gj).

Note that G′ has at least as many edges as G, since the edges in each Gi have not changed,
and for every i ≤ j, the number of edges joining a barrier of Gi to Gj in G is at most the
number of edges joining Si to Gj in G′. Moreover, if G has more than one tower, there exists
an ≤-incomparable pair i, j which are now comparable in ≤′ which increases the number of
edges. Since Φ(G′) =

∏
i∈I Φ(Gi) = Φ(G), we conclude that G was not extremal.

We are now well-equipped to prove the other inequality in Hetyei’s theorem.

Proof that f(n, p) ≤ n2

4
. If G has f(n, p) edges, then it has a single tower of n/2 copies of

K2 foundations. The barriers of K2 are the endpoints. Counting the edges gives n2

4
.

While the previous lemma gave us some nice control on the structure of extremal graphs
with Φ(G) = p, we in fact have even more control, based on the relative sizes of the barriers
in each level.

Lemma 3.5 (HSWY). Let G have n vertices, p perfect matchings, and f(n, p) edges. Let
G0, G1, . . . , Gk be the elementary subgraphs of G in order from the foundation to the highest
tower. Denote ni = |V (Gi)| and si as the order of the maximum-size barrier in Gi.

1. For each pair i ≤ j, 1
2
≥ si

ni
≥ sj

nj
.

2. If the set {0, . . . , k} is partitioned by the equivalence i ∼ j if and only if si

ni
=

sj

nj
,

then any reordering of the Gi within each equivalence class gives a graph with the same
number of edges.

Proof. Note that the fraction si

ni
is always at most half, since any barrier Xi in Gi has

|Xi| = co(Gi −Xi) ≤ n(Gi)− |Xi|.
Let i be the smallest i so that si

ni
< si+1

ni+1
(if this does not occur, then (1) holds). Let G′

be the graph given by the tower G0, . . . , Gi−1, Gi+1, Gi, Gi+2, . . . , Gk where the barriers are
chosen the same. The only edges that have changed are those between Gi+1 and Gi. There
are now sj · ni > si · nj edges, which increases the number of edges from G. Hence, G was
not extremal.

Note that if si

ni
=

sj

nj
, then sj · ni = si · nj. Hence, the number of edges between Gi and

Gj does not change if they are reordered in the tower of G. (2) follows.
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