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Searching (looking for objects)
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Search by Augmentations

While generating [combinatorial object]

we start at [base
object] and augment by all possible [augmentations] but keep
in mind [symmetries].

This technique leads to an isomorphism class appearing once
for every possible augmentation sequence that generates that
unlabeled object.

So, we define a canonical deletion which is an invariant
reversal of the augmentation.

Stick in results from [your favorite combinatorics], and you
may have an efficient algorithm!
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Search by Augmentations

While generating triangle free graphs we start at an isolated
vertex and augment by all possible vertices (with
independent neighbors) but keep in mind set orbits.

This technique leads to an isomorphism class appearing once
for every possible augmentation sequence that generates that
unlabeled object.

So, we define a canonical deletion which is an invariant
reversal of the augmentation.

Stick in results from graph theory, and you may have an
efficient algorithm!



Generating with Vertex Augmentations
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Search as a Poset

Say H � G if G is reachable from H via a sequence of
augmentations.

This defines a partial order on partial objects.
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Canonical Labeling

A canonical labeling takes a labeled graph G

and applies
labels σG(v) to each v ∈ V (G) so that any H ∼= G with labels
σH(v) has an isomorphism σ−1

H (σG(v)) from G to H.

Canonical labels can be computed by McKay’s nauty software.
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Brendan McKay

“Isomorph-free exhaustive generation”

258 citations on Google Scholar.



How it works

Remove isomorphs by:

1. Define a canonical deletion (the augmentation that
“should” have generated this graph).

2. The canonical deletion must be invariant.

3. Reject any augmentations not isomorphic to canonical
deletion.

4. Optimization: Use deletion rule to reduce number of
attempted augmentations (e.g. minimum degree).
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(take a drink)







Isomorph-free Generation Examples

1. Triangle-Free Graphs

2. Posets (up to order 16)

3. Latin Squares

4. Steiner Triple Systems

5. Verify Reconstruction Conjecture (up to 11 vertices).



Isomorph-free Generation Examples

1. Triangle-Free Graphs

2. Posets (up to order 16)

3. Latin Squares

4. Steiner Triple Systems

5. Verify Reconstruction Conjecture (up to 11 vertices).



Isomorph-free Generation Examples

1. Triangle-Free Graphs

2. Posets (up to order 16)

3. Latin Squares

4. Steiner Triple Systems

5. Verify Reconstruction Conjecture (up to 11 vertices).



Isomorph-free Generation Examples

1. Triangle-Free Graphs

2. Posets (up to order 16)

3. Latin Squares

4. Steiner Triple Systems

5. Verify Reconstruction Conjecture (up to 11 vertices).



Isomorph-free Generation Examples

1. Triangle-Free Graphs

2. Posets (up to order 16)

3. Latin Squares

4. Steiner Triple Systems

5. Verify Reconstruction Conjecture (up to 11 vertices).



Examples in Software

Canonical augmentation appears in the following software:

1. McKay’s geng and genbg programs.

2. Sage.org’s Graph library: graphs() and digraphs()
methods.
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Examples in Software

Canonical augmentation by ears appears in the following
software:

1. Sage.org’s Graph library: graphs() and digraphs()
methods.

(Use the flag augment=’edges’)



Augmentations by Ears
All 2-connected graphs have an ear decomposition.
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Ear Augmentation Applications

1. Edge-Reconstruction Conjecture.

2. Extremal graphs with a fixed number of perfect matchings.

3. Uniquely Kr -saturated graphs.
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Uniquely Kr -Saturated Graphs

Definition

A graph G is uniquely Kr -saturated if G contains no Kr and for
every edge e ∈ G admits exactly one copy of Kr in G + e.

(a) 1-book (b) 2-book (c) 3-book

Figure: The (r − 2)-books are uniquely Kr saturated.
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Dominating Vertices

Adding a dominating vertex to a uniquely Kr -saturated graph
creates a uniquely Kr+1-saturated graph.

Removing a dominating vertex from a uniquely Kr -saturated
graph creates a uniquely Kr−1-saturated graph.

Q: Which uniquely Kr -saturated graphs have no dominating
vertex?

A: Known for r ∈ {2, 3}.
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Joshua Cooper Paul Wenger

Two Conjectures:

1. For each r , there are a finite number of uniquely
Kr -saturated graphs with no dominating vertex.

2. For each r , every uniquely Kr -saturated graph with no
dominating vertex is regular.

Previously verified to 9 vertices.



Uniquely Kr -Saturated Graphs

1. Uniquely Kr -saturated graphs have diameter 2 (and are
2-connected).

2. Strength: K4-free is a sparse, monotone property.
3. Verified for r = 4 and n ≤ 12.
4. Verified for r ∈ {5, 6} and n ≤ 11.



(a) (b) (c)

The only uniquely K4-saturated graphs on up to 12 vertices with
no dominating vertex.



Coupled Augmentations

Idea: Let the problem constraints dictate the augmentation
type.



Caveat Programmer

Balance: Number of Nodes vs. Computation per Node
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Kr -completions

Consider searching for uniquely Kr -saturated graphs.

Every non-edge requires a K−r completion.

Augmentation: Pick a vertex pair to be “completed” non-edge,
also select where to place the K−r completion.
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Canonical Non-Edge

A “deletion” requires picking a canonical completed non-edge.

Remove all edges which came from that edge’s completion.

But only if they don’t appear in another completion!

Extra Step: Try filling all open pairs with edges.
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Results

(d) (e)

Joint with Stephen G. Hartke (N = 13)

The only uniquely K4-saturated graph on 14 vertices is the
2-book with 12 pages.



To learn more...

I B. D. McKay. Isomorph-free exhaustive generation.
I B. D. McKay. Small graphs are reconstructible.
I D. Stolee. Isomorph-free generation of 2-connected graphs

with applications.
I D. Stolee. Generating p-extremal graphs.
I F. Margot. Pruning by isomorphism in branch-and-cut.
I B. D. McKay, A. Meynert. Small latin squares, quasigroups,

and loops.
I G. Brinkmann, B. D. McKay. Posets on up to 16 points.
I P. Kaski, P. R. J. Östergard. The Steiner triple systems of

order 19.
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