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will generate all 2-connected graphs.
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Brendan McKay

“Isomorph-free Exhaustive Generation”
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Isomorph-free Exhaustive Generation

The goal:

Generate all graphs of a given type with each isomorphism
class represented exactly once.

The recipe:

1 An augmentation (vertex, edge, leaf, ear).
2 A canonical deletion.
3 A pruning procedure.
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Independent sub-trees
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Implementation

Implemented in the TreeSearch library for parallelization in the
Condor scheduler.

Executed on the Open Science Grid, a collection of
supercomputers around the country.



Generation 2-Connected Applications Future Work

Generating 2-connected Graphs

N CN CPU time
5 10 0.01s
6 56 0.11s
7 468 0.26s
8 7123 10.15s
9 194066 5m 17.27s

10 9743542 7h 39m 28.47s
11 900969091 71d 22h 22m 49.12s

Slower than vertex-augmentations, faster than
edge-augmentations.
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Three Applications

1 Uniquely Kr -Saturated Graphs
1 Strength: ear-monotone constraints and sparse family.

2 Edge Reconstruction Conjecture
1 Strength: sparse family and structure of search.

3 p-Extremal Graphs
1 Sparse family.
2 Ear-monotone constraints.
3 Structure of search.
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A perfect matching (or 1-factor) is a set of edges which cover
each vertex exactly once.

Let Φ(G) denote the number of perfect matchings in a graph G.
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Application 3: p-Extremal Graphs

Definition
Let n and p be integers. f (n, p) is the maximum number of
edges in a graph with n vertices and exactly p perfect
matchings.

Definition
A graph on n vertices is p-extremal if it has p perfect matchings
and f (n, p) edges.

Question
How does f (n, p) behave, and which graphs are p-extremal?
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Andrzej Dudek John Schmitt

“On the Size and Structure of Graphs with a Constant
Number of 1-Factors”
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Dudek & Schmitt

1 If G has p perfect matchings, n0 vertices and n2
0

4 + c edges,
then for all n ≥ n0, f (n, p) ≥ n2

4 + c.

Definition

The excess of a graph is the value c(G) = |E(G)| − n(G)2

4 .

2 For each p, there exist constants np, cp so that for all even
n ≥ np,

f (n, p) =
n2

4
+ cp.

3 Computed cp for p ∈ {1, . . . , 6}.
4 Found structure for p-extremal graphs with p ∈ {1, 2, 3}.
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Stephen G. Hartke Derrick Stolee

Douglas B. West Matthew Yancey

“On extremal graphs with a given number of perfect
matchings”
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Hartke, Stolee, West, & Yancey

1 cp ≥ 1 for all p ≥ 2.
2 Bounded np = O(

√
p).

3 Used naive search to find cp and structure of p-extremal
graphs for p ≤ 10.

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4
np 2 4 4 6 6 6 6 6 6 6

[DS10] [HSWY11+]
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The Structure of p-Extremal Graphs

Chambers are the connected components in the subgraph of
edges appearing in perfect matchings (allowable edges).

For G a graph with chambers G1, . . . , Gk ,

Φ(G) = ∏k
i=1 Φ(Gi).

c(G) ≤ ∑k
i=1 c(Gi).
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The Structure of Allowable Edges

A connected graph with all edges allowable is 1-extendable.

Theorem (Lovász Two-Ears Theorem)
If H is a 1-extendable graph, there is a graded ear
decomposition H0 ⊂ H1 ⊂ H2 ⊂ · · · ⊂ Hk So that

1 H0
∼= C2` for some ` and Hk = H.

2 Each Hi is 1-extendable.
3 Each ear augmentation Hi ⊂ Hi+1 uses one or two ears.

Graphs which appear “between” two 1-extendable graphs in a
two-ear augmentation are almost 1-extendable graphs.
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The Search Space

Input: p, N, c.

Graphs: 1-extendable and almost 1-extendable graphs H with

At most N vertices.
At most p perfect matchings.

Solutions: Chambers G with p perfect matchings and
c(G) ≥ c.
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Finding Solutions

Question
How do we transition from 1-extendable graphs to extremal
chambers?
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Finding Solutions
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Finding Solutions

Definition
A barrier in a graph G with Φ(G) > 0 is a set X ⊂ V (G) so that
co(G− X ) = |X |.

In a p-extremal chamber, every barrier is a clique of forbidden
edges.
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Conflicting Barriers

Two barriers X , Y conflict if:
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Finding Solutions

{Maximal chamber supergraphs of H}
⇐⇒

{Maximal sets of non-conflicting barriers in H}
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Pruning

We want to prune when the excess can never reach c, no
matter what augmentations we use.

1-extendable: H

best filling
��

ear-augmentations // H ′

best filling
��

Chambers: G G′

c(G′) ≤ c(G)
+ 2(Φ(H ′)−Φ(H))

− 1
4
(n(H ′)− n(H))(n(H)− 2).
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Pruning and Optimizations

Let H be the current 1-extendable graph and G a best filling.

1 If c(G) + 2(p−Φ(H)) < c, then prune.
2 Let N be the maximum so that

c(G) + 2(p−Φ(H))− 1
4
(N − n(H))(n(H)− 2) ≥ c.

We do not need to augment beyond N vertices.
3 If adding an ear at endpoints x , y increases Φ(H) beyond

p, never augment on that pair again.
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Results

p 1 2 3 4 5 6 7 8 9 10
cp 0 1 2 2 2 3 3 3 4 4
np 2 4 4 6 6 6 6 6 6 6

p 11 12 13 14 15 16 17 18 19 20
cp 3 5 3 4 6 4 4 5 4 5
np 8 6 8 8 6 8 8 8 8 8

p 21 22 23 24 25 26 27
cp 5 5 5 6 5 5 6
np 8 8 8 8 8 8 8
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Timing

p Np cp Total CPU Time
11 14 3 43.29s
12 14 5 44.01s
13 14 3 6m 39.80s
14 16 4 12m 10.40s
15 16 6 12m 42.72s
16 16 4 2h 07m 58.60s
17 16 4 6h 46m 07.72s
18 18 5 11h 45m 01.95s
19 18 4 2d 17h 12m 31.85s
20 18 5 4d 05h 28m 11.79s
21 18 5 13d 17h 29m 12.45s
22 20 5 42d 20h 40m 30.41s
23 20 5 118d 07h 38m 36.84s
24 20 6 209d 10h 09m 54.98s
25 20 5 2y 187d 21h 48m 46.31s
26 20 5 7y 75d 13h 55m 10.27s
27 22 6 10y 247d 21h 03m 13.94s
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p-Extremal Chambers

p = 11 p = 11 p = 12 p = 13 p = 13 p = 13 p = 13 p = 13

p = 13 p = 14 p = 14 p = 15 p = 16 p = 16 p = 16 p = 16

p = 17 p = 17 p = 18 p = 18 p = 19 p = 19 p = 19 p = 19

p = 19 p = 19 p = 20 p = 21 p = 21 p = 21 p = 22 p = 23

p = 24 p = 24 p = 25 p = 25 p = 26 p = 26 p = 26 p = 27
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Future Work

For p-extremal graphs:
1 Find a “strong” upper bound on cp for an infinite family of

values of p.
2 A start: prove the complete graphs on 2t vertices are

p-extremal for p = (2t − 1)!!.
3 A lower bound on cp which grows in the limit.
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Future Work

For the technique:
1 More applications!
2 More optimizations?
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Future Work

For the tools:
1 Implement vertex/edge/leaf augmentations.
2 Apply to new problems.
3 Compare to current applications.
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Application 1: Uniquely Kr -Saturated Graphs

Definition
A graph G is uniquely Kr -saturated if G contains no Kr and for
every edge e ∈ G admits exactly one copy of Kr in G + e.

(a) 1-book (b) 2-book (c) 3-book

Figure: The (r − 2)-books are uniquely Kr saturated.



Joshua Cooper Paul Wenger

Two Conjectures:

1. For each r , there are a finite number of uniquely
Kr -saturated graphs with no dominating vertex.

2. For each r , every uniquely Kr -saturated graph with no
dominating vertex is regular.

Previously verified to 9 vertices.
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Application 1: Uniquely Kr -Saturated Graphs

1 Uniquely Kr -saturated graphs have diameter 2 (and are
2-connected).

2 Strength: K4-free is a sparse, monotone property.
3 Verified for r = 4 and n ≤ 12.
4 Verified for r ∈ {5, 6} and n ≤ 11.



(a) (b) (c)

(d) (e)

New! Joint with Stephen G. Hartke


