Isomorph-free generation of 2-connected graphs with applications

Derrick Stolee University of Nebraska-Lincoln s-dstolee1@math.unl.edu

March 19, 2011

Computer Search

Computers are extremely useful to graph theorists:

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Computer Search

Computers are extremely useful to graph theorists:

• Find examples/counterexamples.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

Computer Search

Computers are extremely useful to graph theorists:

- Find examples/counterexamples.
- Verify conjectures (on small examples).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Computer Search

Computers are extremely useful to graph theorists:

- Find examples/counterexamples.
- Verify conjectures (on small examples).
- Generate theorems.

Generation ••••••

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

2-connected graphs

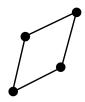
A graph is 2-connected if there are no cut vertices.

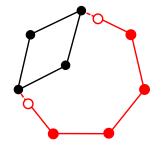
▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

2-connected graphs

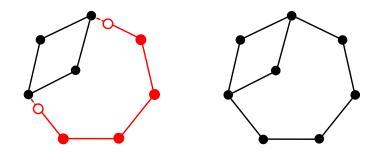
A graph is 2-connected if there are no cut vertices.

2-connected graphs are exactly the graphs with ear decompositions.

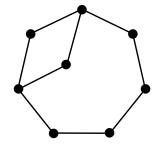


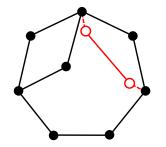


▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

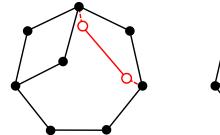


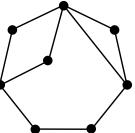
▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ





2-connected graphs and ear augmentations





▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Generating by Ear Augmentations

Starting at each cycle, adding all possible ear augmentations will generate all 2-connected graphs.

Generating by Ear Augmentations

Starting at each cycle, adding all possible ear augmentations will generate all 2-connected graphs.

LOTS of redundancy!

Brendan McKay

"Isomorph-free Exhaustive Generation"

イロト イヨト イヨト イヨト

æ

Isomorph-free Exhaustive Generation

The goal:

Generate all graphs of a given type with each isomorphism class represented exactly once.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Isomorph-free Exhaustive Generation

The goal:

Generate all graphs of a given type with each isomorphism class represented exactly once.

The recipe:

Isomorph-free Exhaustive Generation

The goal:

Generate all graphs of a given type with each isomorphism class represented exactly once.

The recipe:

An augmentation (vertex, edge, leaf, ear).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Isomorph-free Exhaustive Generation

The goal:

Generate all graphs of a given type with each isomorphism class represented exactly once.

The recipe:

- An augmentation (vertex, edge, leaf, ear).
- A canonical deletion.

イロト イ理ト イヨト イヨト ヨー のくぐ

Isomorph-free Exhaustive Generation

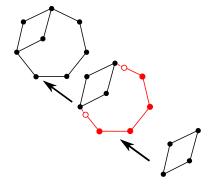
The goal:

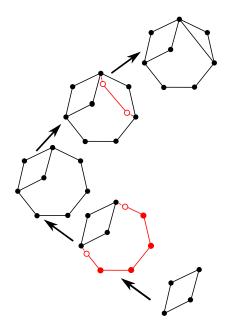
Generate all graphs of a given type with each isomorphism class represented exactly once.

The recipe:

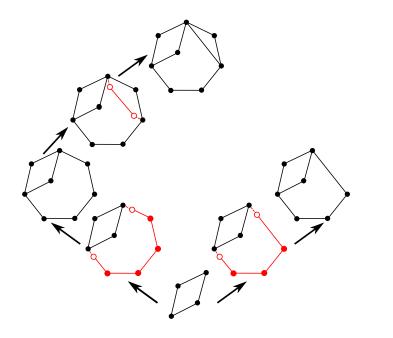
- An augmentation (vertex, edge, leaf, ear).
- A canonical deletion.
- A pruning procedure.

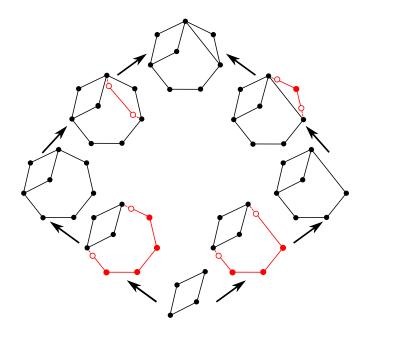
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

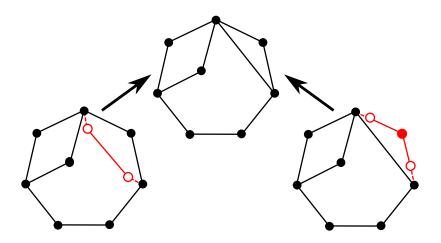




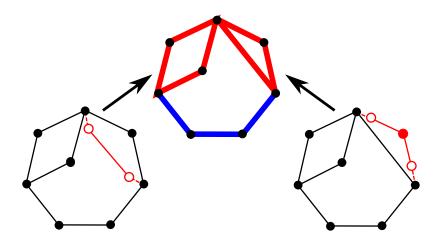
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



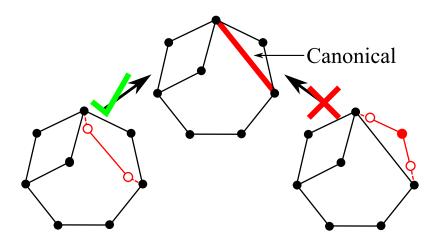




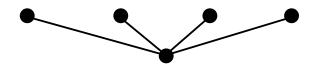
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

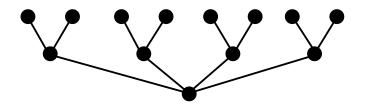


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

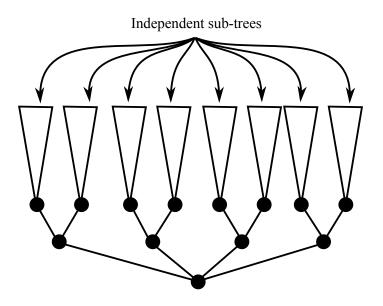


・ロト ・雪 ・ ・ヨ ・ ヨ ・ シュの





- イロト イヨト イヨト イヨト ヨー のへで



| ◆ □ ▶ | ◆ □ ▶ | ◆ □ ▶ | ● | ● ○ ○ ○ ○

Implementation

Implemented in the TreeSearch library for parallelization in the Condor scheduler.

Executed on the Open Science Grid, a collection of supercomputers around the country.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Generating 2-connected Graphs

Ν	C_N	CPU time
5	10	0.01s
6	56	0.11s
7	468	0.26s
8	7123	10.15s
9	194066	5m 17.27s
10	9743542	7h 39m 28.47s
11	900969091	71d 22h 22m 49.12s

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Generating 2-connected Graphs

	Ν	C_N	CPU time
_	5	10	0.01s
	6	56	0.11s
	7	468	0.26s
	8	7123	10.15s
	9	194066	5m 17.27s
	10	9743542	7h 39m 28.47s
	11	900969091	71d 22h 22m 49.12s

Slower than vertex-augmentations, faster than edge-augmentations.

Future Work

Three Applications

Three Applications

Uniquely K_r-Saturated Graphs

Strength: ear-monotone constraints and sparse family.

イロト イ理ト イヨト イヨト ヨー のくぐ

Three Applications

- Uniquely K_r-Saturated Graphs
 - Strength: ear-monotone constraints and sparse family.
- 2 Edge Reconstruction Conjecture
 - Strength: sparse family and structure of search.

イロト イ理ト イヨト イヨト ヨー のくぐ

Three Applications

Uniquely K_r-Saturated Graphs

Strength: ear-monotone constraints and sparse family.

- 2 Edge Reconstruction Conjecture
 - Strength: sparse family and structure of search.
- *p*-Extremal Graphs
 - Sparse family.
 - ② Ear-monotone constraints.
 - Structure of search.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Application 3: *p*-Extremal Graphs

A *perfect matching* (or *1-factor*) is a set of edges which cover each vertex exactly once.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Application 3: *p*-Extremal Graphs

A *perfect matching* (or *1-factor*) is a set of edges which cover each vertex exactly once.

Let $\Phi(G)$ denote the number of perfect matchings in a graph *G*.

イロト イ理ト イヨト イヨト ヨー のくぐ

Application 3: *p*-Extremal Graphs

Definition

Let *n* and *p* be integers. f(n, p) is the maximum number of edges in a graph with *n* vertices and exactly *p* perfect matchings.

Application 3: *p*-Extremal Graphs

Definition

Let *n* and *p* be integers. f(n, p) is the maximum number of edges in a graph with *n* vertices and exactly *p* perfect matchings.

Definition

A graph on *n* vertices is *p*-extremal if it has *p* perfect matchings and f(n, p) edges.

Application 3: *p*-Extremal Graphs

Definition

Let *n* and *p* be integers. f(n, p) is the maximum number of edges in a graph with *n* vertices and exactly *p* perfect matchings.

Definition

A graph on *n* vertices is *p*-extremal if it has *p* perfect matchings and f(n, p) edges.

Question

How does f(n, p) behave, and which graphs are *p*-extremal?

(日) (四) (王) (王) (王)

1

Andrzej Dudek John Schmitt

"On the Size and Structure of Graphs with a Constant Number of 1-Factors"

Dudek & Schmitt

Dudek & Schmitt

• If *G* has *p* perfect matchings, n_0 vertices and $\frac{n_0^2}{4} + c$ edges, then for all $n \ge n_0$, $f(n, p) \ge \frac{n^2}{4} + c$.

Dudek & Schmitt

• If *G* has *p* perfect matchings, n_0 vertices and $\frac{n_0^2}{4} + c$ edges, then for all $n \ge n_0$, $f(n, p) \ge \frac{n^2}{4} + c$.

Definition

The *excess* of a graph is the value $c(G) = |E(G)| - \frac{n(G)^2}{4}$.

うして 山田 マイボマ エリア しょうくしゃ

Dudek & Schmitt

• If *G* has *p* perfect matchings, n_0 vertices and $\frac{n_0^2}{4} + c$ edges, then for all $n \ge n_0$, $f(n, p) \ge \frac{n^2}{4} + c$.

Definition

The excess of a graph is the value $c(G) = |E(G)| - \frac{n(G)^2}{4}$.

2 For each *p*, there exist constants n_p , c_p so that for all even $n \ge n_p$,

$$f(n,p)=\frac{n^2}{4}+c_p.$$

Dudek & Schmitt

• If *G* has *p* perfect matchings, n_0 vertices and $\frac{n_0^2}{4} + c$ edges, then for all $n \ge n_0$, $f(n, p) \ge \frac{n^2}{4} + c$.

Definition

The *excess* of a graph is the value $c(G) = |E(G)| - \frac{n(G)^2}{4}$.

2 For each *p*, there exist constants n_p , c_p so that for all even $n \ge n_p$,

$$f(n,p)=\frac{n^2}{4}+c_p.$$

Somputed c_p for $p \in \{1, \ldots, 6\}$.

うして 山田 マイボマ エリア しょうくしゃ

Dudek & Schmitt

• If *G* has *p* perfect matchings, n_0 vertices and $\frac{n_0^2}{4} + c$ edges, then for all $n \ge n_0$, $f(n, p) \ge \frac{n^2}{4} + c$.

Definition

The *excess* of a graph is the value $c(G) = |E(G)| - \frac{n(G)^2}{4}$.

Por each *p*, there exist constants *n_p*, *c_p* so that for all even *n* ≥ *n_p*,

$$f(n,p)=\frac{n^2}{4}+c_p.$$

- Somputed c_p for $p \in \{1, \ldots, 6\}$.
- Sound structure for *p*-extremal graphs with $p \in \{1, 2, 3\}$.

Stephen G. Hartke

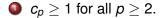
Douglas B. West

Derrick Stolee

Matthew Yancey

"On extremal graphs with a given number of perfect matchings"

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●



▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

- $c_p \geq 1$ for all $p \geq 2$.
- **2** Bounded $n_p = O(\sqrt{p})$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

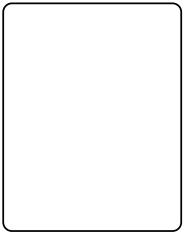
- $c_p \geq 1$ for all $p \geq 2$.
- **2** Bounded $n_p = O(\sqrt{p})$.
- Used naive search to find c_p and structure of *p*-extremal graphs for $p \le 10$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

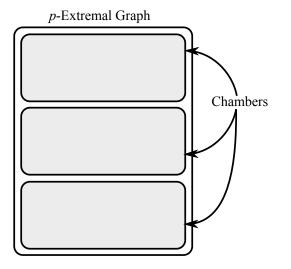
- $c_p \geq 1$ for all $p \geq 2$.
- **2** Bounded $n_p = O(\sqrt{p})$.
- Used naive search to find c_p and structure of *p*-extremal graphs for $p \le 10$.

p	1	2	3	4	5	6	7	8	9	10
Cp	0	1	2	2	2	3	3	3	4	4
n_p	2	4	4	6	6	6	6	6	6	6
	[DS10]						[HSWY11+]			

p-Extremal Graph



◆ロト ◆聞 ト ◆ 臣 ト ◆ 臣 ト ○臣 - のへで



・ロト ・ 理 ・ モ ト ・ モ ・ う へ の・

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

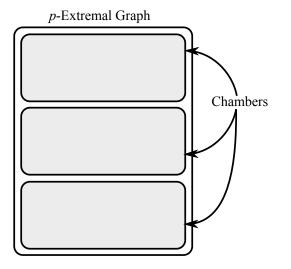
The Structure of *p*-Extremal Graphs

Chambers are the connected components in the subgraph of edges appearing in perfect matchings (*allowable* edges).

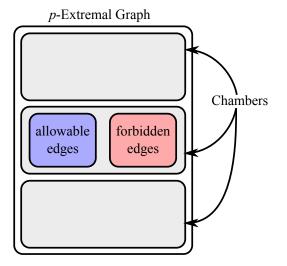
For *G* a graph with chambers G_1, \ldots, G_k ,

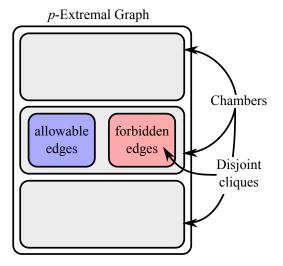
$$\Phi(G) = \prod_{i=1}^{k} \Phi(G_i).$$

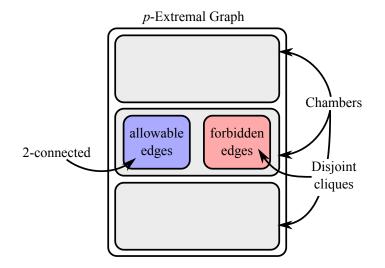
$$c(G) \leq \sum_{i=1}^{k} c(G_i).$$



・ロト ・ 理 ・ モ ト ・ モ ・ う へ の・







The Structure of Allowable Edges

A connected graph with all edges allowable is 1-extendable.

The Structure of Allowable Edges

A connected graph with all edges allowable is 1-extendable.

Theorem (Lovász Two-Ears Theorem)

If H is a 1-extendable graph, there is a graded ear decomposition $H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$ So that

The Structure of Allowable Edges

A connected graph with all edges allowable is 1-extendable.

Theorem (Lovász Two-Ears Theorem)

If H is a 1-extendable graph, there is a graded ear decomposition $H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$ So that

•
$$H_0 \cong C_{2\ell}$$
 for some ℓ and $H_k = H$.

The Structure of Allowable Edges

A connected graph with all edges allowable is 1-extendable.

Theorem (Lovász Two-Ears Theorem)

If H is a 1-extendable graph, there is a graded ear decomposition $H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$ So that

•
$$H_0 \cong C_{2\ell}$$
 for some ℓ and $H_k = H$.

The Structure of Allowable Edges

A connected graph with all edges allowable is 1-extendable.

Theorem (Lovász Two-Ears Theorem)

If H is a 1-extendable graph, there is a graded ear decomposition $H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$ So that

()
$$H_0 \cong C_{2\ell}$$
 for some ℓ and $H_k = H$.

Solution $H_i \subset H_{i+1}$ uses one or two ears.

The Structure of Allowable Edges

A connected graph with all edges allowable is 1-extendable.

Theorem (Lovász Two-Ears Theorem)

If H is a 1-extendable graph, there is a graded ear decomposition $H_0 \subset H_1 \subset H_2 \subset \cdots \subset H_k$ So that

1
$$H_0 \cong C_{2\ell}$$
 for some ℓ and $H_k = H$.

2 Each
$$H_i$$
 is 1-extendable.

Solution $H_i \subset H_{i+1}$ uses one or two ears.

Graphs which appear "between" two 1-extendable graphs in a two-ear augmentation are *almost 1-extendable* graphs.

Generation

The Search Space

Input: *p*, *N*, *c*.

The Search Space

Input: *p*, *N*, *c*.

Graphs: 1-extendable and almost 1-extendable graphs H with

The Search Space

Input: *p*, *N*, *c*.

Graphs: 1-extendable and almost 1-extendable graphs H with

• At most N vertices.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

The Search Space

Input: *p*, *N*, *c*.

Graphs: 1-extendable and almost 1-extendable graphs H with

- At most N vertices.
- At most *p* perfect matchings.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ ○ ヘ

The Search Space

Input: *p*, *N*, *c*.

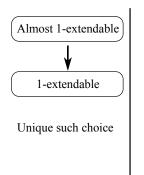
Graphs: 1-extendable and almost 1-extendable graphs H with

- At most N vertices.
- At most *p* perfect matchings.

Solutions: Chambers *G* with *p* perfect matchings and $c(G) \ge c$.

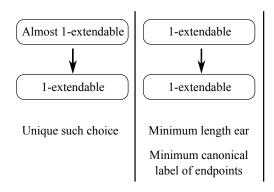
Canonical Deletion

Canonical Deletion

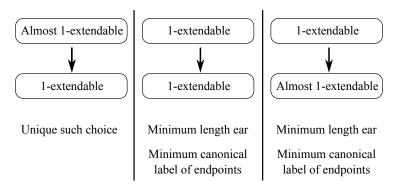


▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Canonical Deletion



Canonical Deletion



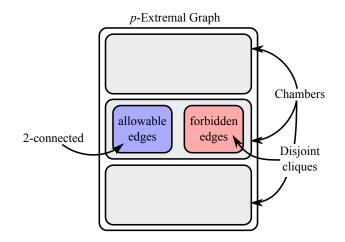
Finding Solutions

Question

How do we transition from 1-extendable graphs to extremal chambers?

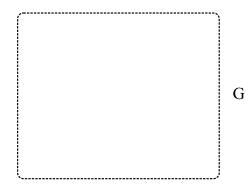
▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Finding Solutions



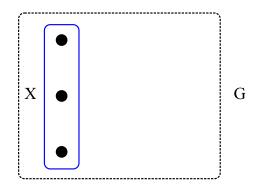
Finding Solutions

Use barriers:



Finding Solutions

Use barriers:

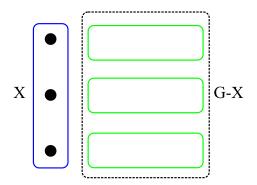


▲ロト ▲園 ト ▲臣 ト ▲臣 ト → 臣 → の々で

▲□▶▲圖▶▲≧▶▲≧▶ 差 うくぐ

Finding Solutions

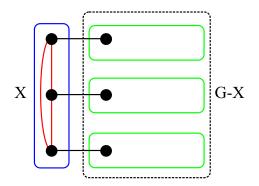
Use barriers:



▲□▶▲圖▶▲≧▶▲≧▶ 差 うくぐ

Finding Solutions

Use barriers:



▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Finding Solutions

Definition

A *barrier* in a graph G with $\Phi(G) > 0$ is a set $X \subset V(G)$ so that $c_o(G - X) = |X|$.

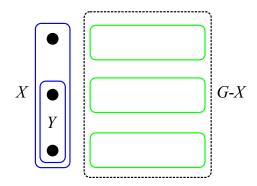
In a *p*-extremal chamber, every barrier is a clique of forbidden edges.

Conflicting Barriers

Two barriers X, Y conflict if:

Conflicting Barriers

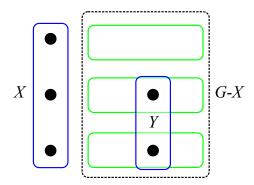
Two barriers X, Y conflict if:



◆□> ◆□> ◆豆> ◆豆> ・豆 ・ ��や

Conflicting Barriers

Two barriers X, Y conflict if:



Finding Solutions

{Maximal chamber supergraphs of H}

{Maximal sets of non-conflicting barriers in *H*}

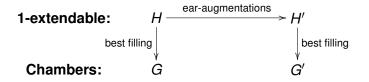
Pruning

We want to prune when the excess can never reach *c*, no matter what augmentations we use.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

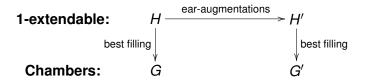
Pruning

We want to prune when the excess can never reach *c*, no matter what augmentations we use.



Pruning

We want to prune when the excess can never reach *c*, no matter what augmentations we use.



$$c(G') \le c(G) + 2(\Phi(H') - \Phi(H)) - \frac{1}{4}(n(H') - n(H))(n(H) - 2)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

Pruning and Optimizations

Let H be the current 1-extendable graph and G a best filling.

Pruning and Optimizations

Let H be the current 1-extendable graph and G a best filling.

1 If
$$c(G) + 2(p - \Phi(H)) < c$$
, then prune.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Pruning and Optimizations

Let H be the current 1-extendable graph and G a best filling.

1 If
$$c(G) + 2(p - \Phi(H)) < c$$
, then prune.

2 Let N be the maximum so that

$$c(G) + 2(p - \Phi(H)) - \frac{1}{4}(N - n(H))(n(H) - 2) \ge c.$$

We do not need to augment beyond N vertices.

Pruning and Optimizations

Let H be the current 1-extendable graph and G a best filling.

1 If
$$c(G) + 2(p - \Phi(H)) < c$$
, then prune.

2 Let N be the maximum so that

$$c(G) + 2(p - \Phi(H)) - \frac{1}{4}(N - n(H))(n(H) - 2) \ge c.$$

We do not need to augment beyond N vertices.

If adding an ear at endpoints x, y increases $\Phi(H)$ beyond p, never augment on that pair again.

Results

		1				6				
Cp	0	1	2	2	2	3	3	3	4	4
n _p	2	4	4	6	6	6	6	6	6	6

	р	11	12	13	14	15	16	17	18	19	20
C	р	3	5	3	4	6	4	4	5	4	5
n	l _p	8	6	8	8	6	8	8	8	8	8

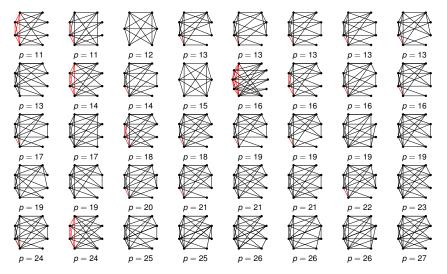
p	21	22	23	24	25	26	27		
Cp	5	5	5	6	5	5	6		
n _p	8	8	8	8	8	8	8		

Timing

-

р	Nρ	c _p	Total CPU Time							
11	14	3					43.29s			
12	14	5					44.01s			
13	14	3				6m	39.80s			
14	16	4				12m	10.40s			
15	16	6				12m	42.72s			
16	16	4			2h	07m	58.60s			
17	16	4			6h	46m	07.72s			
18	18	5			11h	45m	01.95s			
19	18	4		2d	17h	12m	31.85s			
20	18	5		4d	05h	28m	11.79s			
21	18	5		13d	17h	29m	12.45s			
22	20	5		42d	20h	40m	30.41s			
23	20	5		118d	07h	38m	36.84s			
24	20	6		209d	10h	09m	54.98s			
25	20	5	2y	187d	21h	48m	46.31s			
26	20	5	7y	75d	13h	55m	10.27s			
27	22	6	10y	247d	21h	03m	13.94s			

p-Extremal Chambers



▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Future Work

For *p*-extremal graphs:

- Find a "strong" upper bound on c_p for an infinite family of values of p.
- A start: prove the complete graphs on 2*t* vertices are *p*-extremal for p = (2t 1)!!.
- **(a)** A lower bound on c_p which grows in the limit.

Future Work

For the technique:

- More applications!
- Ø More optimizations?

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ シ へ つ ヘ

Future Work

For the tools:

- Implement vertex/edge/leaf augmentations.
- Apply to new problems.
- Ompare to current applications.

Isomorph-free generation of 2-connected graphs with applications

Derrick Stolee¹ University of Nebraska-Lincoln s-dstolee1@math.unl.edu

March 19, 2011

¹Supported by NSF grants CCF-0916525 and DMS-0914815

3

Application 1: Uniquely K_r -Saturated Graphs

Definition

A graph *G* is *uniquely* K_r -saturated if *G* contains no K_r and for every edge $e \in \overline{G}$ admits exactly one copy of K_r in G + e.

(a) 1-book

(b) 2-book

(c) 3-book

Figure: The (r - 2)-books are uniquely K_r saturated.

Joshua Cooper Paul Wenger

Two Conjectures:

1. For each r, there are a finite number of uniquely K_r -saturated graphs with no dominating vertex.

2. For each r, every uniquely K_r -saturated graph with no dominating vertex is regular.

Previously verified to 9 vertices.

Application 1: Uniquely K_r -Saturated Graphs

- Uniquely K_r-saturated graphs have diameter 2 (and are 2-connected).
- **2** Strength: K_4 -free is a sparse, monotone property.
- Solution Verified for r = 4 and $n \le 12$.
- Verified for $r \in \{5, 6\}$ and $n \le 11$.

