
EarSearch User Guide
Version 1.0

Derrick Stolee
University of Nebraska-Lincoln
s-dstolee1@math.unl.edu

April 14, 2011

Abstract

The Ear Search program implements isomorph-free generation of 2-connected graphs by ear aug-
mentations. This document describes the interfaces used for customized searches, as well as describes
three example searches: unique saturation, edge reconstruction, and extremal graphs with a fixed number
of perfect matchings.

1 Introduction

The EarSearch library implements the generation algorithm of [7] to generate families of 2-connected
graphs. It is based on the TreeSearch library [9]. The class EarSearchManager extends the class
SearchManager and manages the search tree, using ear augmentations to generate children. It automates
the canonical deletion selection in order to remove isomorphs.

2 Data Management

2.1 Graphs

Graphs are stored using the sparsegraph structure from the nauty library.
During the course of computation, these graphs are modified using edge and vertex deletions. To delete

the ith vertex, set the v array to −1 in the ith position. To delete the edge between the i and j vertices, set
the e array to −1 in two places: in the list of neighbors for i where j was listed and in the list of neighbors
for j where i was listed. To place the vertices or edges back, place the previous values into those places.

2.2 Augmentations and Labels

The labels for each augmentation use two 32-bit integers. The first is the order of the augmented ear. The
second is the index of the pair orbit which is used for the endpoints of the ear.

2.3 EarNode

Each level of the search tree is stored in a stack, where all data is stored in an EarNode object. All of the
members of EarNode are public, in order to easily add data structures and flags that are necessary for each
application. All pointers are initialized to 0 in the constructor and are checked to be non-zero before freeing
up any memory in the destructor.

The core data necessary for EarSearchManager is stored in the following members:

1



• ear length – the length of the augmented ear.

• ear – the byte-array description of the augmented ear.

• num ears – the number of ears in the graph.

• ear list – the list of ears in the graph (-1 terminated).

• graph – the graph at this node.

• max verts – the maximum number of vertices in all supergraphs. Default to max n from EarSearchManager.

• reconstructible – TRUE if detectably reconstructible

• numPairOrbits – the number of pair orbits for this graph.

• orbitList – the list of orbits, in a an array of arrays. Each array orbitList[i] contains pair-indices
for pairs in orbit and is terminated by -1.

• canonicalLabels – the canonical labeling of the graph, stored as an integer array of values for each
vertex

• solution data – the data of a solution on this node.

• violatingPairs – A set of pair indices which cannot be endpoints of an ear.

3 Pruning

The interface PruningAlgorithm has an abstract method for pruning nodes of the search tree. The
method checkPrune takes two EarNode objects: one for the parent and another for the child. Using this
data, the method decides if no solution exists by augmenting beyond the child node. Since the pruning al-
gorithm is called before the canonical deletion algorithm, this can also remove nodes which cannot possibly
be canonical augmentations.

4 Canonical Deletion

The interface EarDeletionAlgorithm has an abstract method for finding a canonical ear deletion.
The method getCanonical takes two EarNode objects for the parent and child and returns the array
corresponding to the canonical ear. The EarSearchManager will determine if this canonical ear is in
orbit with the augmented ear.

5 Solutions

The interface SolutionChecker is an abstract class which contains methods for finding solutions given
a search node, storing the solution data, reporting on these solutions, and reporting application-specific
statistics.

The method isSolution takes the parent, child, and depth and reports if there is a solution at the
child node. It returns a non-null string if and only if there is a solution, and that string is a buffer containing
the solution data. This buffer will be deallocated with free() by the EarSearchManager.

The method writeStatisticsData() returns a string of statistics (using the TreeSearch format)
to be reported at the end of a job.

2



6 Example 0: 2-Connected Graphs

To enumerate all 2-connected graphs, the interfaces were implemented to only prune by number of vertices
and possibly by number of edges. The search space is defined by three inputs: N, emin, and emax. These
implementations are give by the following classes:

• EnumeratePruner will prune a graph if it has more than N vertices or more than emax edges.
Also, if e(G) + (N − n(G) + 1) > emax, it will prune since we cannot add the remaining N − n(G)
edges without surpassing emax edges.

• EnumerateDeleter implements the default deletion algorithm: over all ears e in G so that G− e
is 2-connected, find one of minimum length, then use the canonical labels to select the canonical ear.

• EnumerateChecker detects “solutions” as any graph with exactly N vertices and between emin

and emax edges.

7 Example 1: Unique Saturation

The input consists of two numbers r and N , and we are searching for uniquely Kr-saturated graphs of order
N . The unique saturation problem utilizes the deletion algorithm in EnumerateDeleter, but adds some
data to EarNode in order to track the constraints. The SaturationAlgorithm class implements both
the PruningAlgorithm and SolutionChecker interfaces.

Note: The SaturationAlgorithm class is implemented only for r ∈ {4, 5, 6} in order to use
compiler optimizations for the nested loop structure.

7.1 Application-Specific Data

The following fields were added to EarNode for tracking constraints during the search. Most information
is tracked in adj matrix data, which stores information as an adjacency matrix. The others are boolean
flags which mark different properties of the current graph. These flags are set during the checkPrune
method, and are accessed by the isSolution method.

• adj matrix data – Data on the (directed) edges. For unique saturation, this gives -1 for edges,
and for non-edges counts the number of copies of H given by adding that edge. Values are in {0, 1, 2},
since when 2 is listed, then there are too many copies of H .

• any adj zero – A boolean flag: are any of the cells in adj matrix data zero?

• any adj two – A boolean flag: are any of the cells in adj matrix data at least two?

• dom vert – A boolean flag: is there a dominating vertex?

• copy of H – A boolean flag: is there a copy of H?

8 Example 2: Edge Reconstruction

The Edge Reconstruction application takes an integer N and searches over all 2-connected graphs of order
up to N and up to 1 + log2 N ! edges. The deletion is built to make graphs with the same deck be siblings.
Then, all siblings which are not detectably edge reconstructible are checked to have different edge decks.

The following three classes implement the interfaces:

3



• ReconstructionPruner implements the PruningAlgorithm interface and prunes any graph
with more than N vertices or more than 1 + log2 N ! edges.

• ReconstructionDeleter implements the EarDeletionAlgorithm interface and performs
two different deletions:

1. If the graph is detectably edge reconstructible, the deletion can be application-ignorant and uti-
lizes the standard deletion algorithm from EnumerateDeleter.

2. If the graph is NOT detectably edge reconstructible, the canonical ear is selected by using only
the edge deck. Further, if the deletion is canonical, the graph is stored in the parent EarNode
for later comparison of edge decks. The GraphData class was implemented specifically for
storing these children within the parent EarNode.

• ReconstructionChecker implements the SolutionChecker interface and compares the
current graph’s edge deck against all previous siblings. This is done using three levels of compar-
ison, which are implemented in the GraphData class.

8.1 Application-Specific Data

The GraphData class stores all information for a child graph. It implements three levels of comparison,
which are checked in order within the compare method.

1. computeDegSeq computes and stores the standard degree sequence for the current graph.

2. computeInvariant calculates and stores a more complicated function based on the degree se-
quence and the degrees of the neighborhood for each vertex.

3. computeCanonStrings computes canonical strings for every edge-deleted subgraph and sorts
the list. These are then compared, card-for-card.

In order to store these GraphData objects, the following members were added to the EarNode class:

• child data – the GraphData objects for immediate children, used for pairwise comparison.

• num child data – the number of GraphData objects currently filling the data.

• size child data – the number of pointers currently allocated.

9 Example 3: p-Extremal Graphs

This problem is investigated in [8] and is the most involved of all applications. See [1] and [3] for back-
ground on this problem. The input is given as Pmin, Pmax, C, and N . The search is for elementary graphs
with p perfect matchings (for Pmin ≤ p ≤ Pmax) with excess at least C and at most N vertices. The search
actually runs over 1-extendable and almost 1-extendable graphs, which are the graphs reachable by the ear
augmentations. A second stage adds forbidden edges to maximize excess without increasing the number of
perfect matchings.

The following classes implement the EarSearch interfaces:

• MatchingPruner implements the PruningAlgorithm interface. Graphs are pruned for three
reasons:

4



1. There are an odd number of vertices. By the Lovász Two Ear Theorem, we know that every ear
augmentation has an even number of internal vertices.

2. There are more than Pmax perfect matchings.

3. The parent graph was not 1-extendable, and neither is the current graph. By the Lovász Two Ear
Theorem, we can always go from 1-extendable to 1-extendable using at most two ear augmen-
tations.

4. Let c be the maximum excess of an elementary supergraph of the current graph, which is of order
n, and let p be the current number of perfect matchings. If c + 2(Pmax − p) − 1

4(n′ − n)(n −
2) < C for all n ≤ n′ ≤ N , then prune. Otherwise, maximize the n′ so that the inequality
c + 2(Pmax − p) − 1

4(n′ − n)(n − 2) ≥ C holds. That value of n′ is then used to bound the
length of future ear augmentations, since no graph reachable from the current graph can have
excess at least C and more than n′ vertices.

In addition to pruning, the pruning algorithm also performs the on-line algorithm for updating the list
of barriers by using the current ear augmentation.

• MatchingChecker implements the SolutionChecker interface. Given a 1-extendable graph
with between Pmin and Pmax perfect matchings, forbidden edges are added in all possible ways
and the elementary supergraphs with excess at least C are printed to output. If any are found, the
isSolution method returns with success. The algorithm for enumerating all elementary super-
graphs is implemented in the BarrierSearch.cpp file.

• MatchingDeleter implements the EarDeletionAlgorithm interface. The following se-
quence of choices describe the method for selecting a canonical ear to delete from a graph H:

1. If H is almost 1-extendable, we need to delete an ear e′ so that H − e′ is 1-extendable. By the
definition of almost 1-extendable, there is a unique such choice.

2. If H is 1-extendable, check if there exists an ear e′ so that H − e′ is 1-extendable. If one exists,
select one of minimum length and break ties using the canonical labels of the endpoints.

3. If H is 1-extendable and no single ear e′ makes H − e′ 1-extendable, then find an ear e so that
there is a disjoint ear f with H − e is almost 1-extendable and H − e− f is 1-extendable. Out
of these choices for e, choose one of minimum length and break ties using the canonical labels
of the endpoints.

9.1 Application-Specific Data

The following members were added to EarNode to help the perfect matchings application.

• extendable – A boolean flag: is the graph 1-extendable?

• numMatchings – The number of perfect matchings for this graph.

• barriers – The list of barriers of the graph, given as an array of Set pointers. This barrier list is
updated at each level by an on-line algorithm.

• num barriers – the number of barriers in the graph.

5



9.2 Perfect Matching Algorithms

There are a few algorithms that are implemented in order to solve certain sub-problems, such as counting
perfect matchings or enumerating independent sets. These are computationally complex problems, but the
implementations are very fast for these small instances. The algorithms are mostly un-optimized and rely on
simple instructions and low overhead in order to be run many many times during the course of the search.

• countPM(G, P ) counts the number of perfect matchings in a graph G, with an upper bound of P .
It operates recursively, selecting an edge e in G and attempts to extend the current matching using e
and not using e. When a perfect matching is found, the counter increases. There are two shortcutting
strategies:

1. If there is ever a vertex with no available edges, the recursion is halted with a count of zero
perfect matchings, since the current matching does not extend to a perfect matching.

2. If the current count of perfect matchings ever surpasses P , then the current value is returned.
During the search, we only care about graphs with at most Pmax perfect matchings, so graphs
with many more will only be pruned.

• isExtendable(G) tests if the given graph is 1-extendable. This is done by storing an array of
boolean flags for each edge, marking each as they are found to be in perfect matchings. This algo-
rithm is explicitly used in the deletion algorithm. During the pruning algorithm, where a specific
augmentation is given, we can detect 1-extendability by asking if there is a perfect matching using the
proper alternating path within the augmented ear.

• enumerateAllBarrierExtensions(G,B, C) and searchAllBarrierExtensions(G,B)
are two methods which take a 1-extendable graph G with barrier list B and attempts to add forbidden
edges to G to attain the maximum excess. The difference is that enumerateAllBarrierExtensions
will output any graphs with excess at least C, while searchAllBarrierExtensions will sim-
ply return the largest excess. The algorithm essentially enumerates all independent sets within the
barrier conflict graph B, where conflicts are computed on the fly. The enumeration is recursive, sim-
ply testing if the next available barrier should be added to the current independent set. As each set
is added, it tests which barriers with larger index are in conflict with this graph. These barriers are
then not considered in deeper recursive calls. Due to the low overhead for each independent set, this
simple algorithm runs fast enough for the search to be feasible.

References

[1] A. Dudek and J. Schmidt. On extremal graphs with a constant number of 1-factors. submitted. 2010.

[2] S. G. Hartke and A. J. Radcliffe. Mckay’s canonical graph labeling algorithm. In Communicating Math-
ematics, volume 479 of Contemporary Mathematics, 99111. 2009.

[3] S. G. Hartke, D. Stolee, D. B. West, and M. Yancey. On extremal graphs with a fixed number of perfect
matchings. in preparation. 2011.

[4] B. D. McKay. Small graphs are reconstructible. Australas. J. Combin., 15:123 126, 1997.

[5] B. D. McKay, Isomorph-free exhaustive generation J. Algorithms, 26(6):306-324. 1998.

[6] B. D. McKay, nauty user’s guide (version 2.4) Dept. Computer Science, Astral. Nat. Univ., 2006.

6



[7] D. Stolee, Isomorph-free generation of 2-connected graphs with applications, in preparation, 2011.

[8] D. Stolee, Generating p-extremal graphs, in preparation, 2011.

[9] D. Stolee, TreeSearch user guide, available at http://www.github.com/derrickstolee/TreeSearch/ 2011.

7

http://www.github.com/derrickstolee/TreeSearch/

	Introduction
	Data Management
	Graphs
	Augmentations and Labels
	EarNode

	Pruning
	Canonical Deletion
	Solutions
	Example 0: 2-Connected Graphs
	Example 1: Unique Saturation
	Application-Specific Data

	Example 2: Edge Reconstruction
	Application-Specific Data

	Example 3: p-Extremal Graphs
	Application-Specific Data
	Perfect Matching Algorithms


