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Abstract

The TreeSearch library abstracts the structure of a search tree in order to manage jobs in a distributed

computation. This document details the strategy of TreeSearch along with implementation, compilation,

and execution details. An example application is also given.

1 Introduction

The computation path of a dynamic search frequently takes the form of a rooted tree. One important property

of each node in this tree is that the computation at that node depends only on the previous nodes in the

ancestral path leading to the root of the computation. If the search is implemented in the usual way, subtrees

operate independently.

For a search of this type, all search nodes at a given depth can be generated by iterating through the

search tree, but backtracking once the target depth is reached. Each of the subtrees at this depth can be

run independently, and hence it is common to run these jobs concurrently (See [2] Chapter 5 for more

information). Since the subtrees are independent, no communication is necessary for these jobs, and the

jobs can be run on a distributed machine such as a cluster or grid.

The TreeSearch library was built to maximize code reuse for these types of search. It abstracts the struc-

ture of the tree and the recursive nature of the search into custom components available for implementation

by the user. Then, the ability to generate a list of jobs, run individual jobs, and submit the list of jobs to a

cluster are available with minimal extra work.
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TreeSearch is intended for execution on a distributed machine using Condor [3], a job scheduler that uses

idle nodes of a cluster or grid. Condor was chosen as its original development was meant for installation in

computer labs and office machines at the University of Wisconsin–Madison to utilize idle computers.

The C++ portion of TreeSearch is independent of Condor. The Python scripts which manage the input

and output files as well as modifying the submission script are tied to Condor, but could be adapted for use

in other schedulers.

1.1 Acquiring TreeSearch

The latest version of TreeSearch and its documentation is publicly available on GitHub [1] at the address

http://www.github.com/derrickstolee/TreeSearch/.

2 Strategy

Let us begin by describing the general structure and process of an abstract tree-based search. There is a

unique root node at depth zero. Each node in the tree searches in a depth-first, recursive manner. There are

a number of children to select at each node. One may select this child through iteration or selecting via a

numerical label. Before searching below the child, a pruning procedure may be called to attempt to rule

out the possibility of a solution below that child. Another procedure may be used to find if this node is a

solution. Now, the search recurses at this node until its children are exhausted and the search continues back

to its parent.

2.1 Subtrees as Jobs

This tree structure allows for search nodes to be described via the list of children taken at each node. Typ-

ically, the breadth of the search will be small and these descriptions take very little space. This allows for

a method of describing a search node independently of what data is actually stored by the specific search

application. Moreover, the application may require visiting the ancestor search nodes in order to have con-

sistent internal data. With the assumption that each subtree is computationally independent of other subtrees

at the same level, one can run each subtree in a different process in order to achieve parallelization. These

path descriptions make up the input for the specific processes in this scheme.
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Each path to a search node qualifies as a single job, where the goal is to expand the entire search tree

below that node. A collection of nodes where no pair are in an ancestor-descendant relationship qualifies as

a list of independent jobs. Recognizing that the amount of computation required to expand the subtree at a

node is not always a uniform value, TreeSearch allows a maximum amount of time within a given job. In

order to recover the state of the search when the execution times out, the concept of partial jobs was defined.

A partial job describes the path from the root to the current search node. In addition, it describes which node

in this path is the original job node. The goal of a partial job is to expand the remaining nodes in the subtree

of the job node, without expanding any nodes to the left of the last node in this path. See Figure 1 to an

example partial job and its position in the job subtree.

2.2 Job Descriptions

Figure 1: A partial job description.

The descriptions of jobs and partial jobs are described using text files in order to minimize the I/O constraints

on the distributed system. The first is the standard job, given by a line starting with the letter J. Following

this letter are a sequence of numbers in hexadecimal. The first two should be the same, corresponding to the

depth of the node. The remaining numbers correspond to the child values at each depth from the root to the

job node.

A partial job is described by the letter P. Here, the format is the same as a standard job except the first

number describes the depth of the job node and the second number corresponds to the depth of the current

node. For example, the job and partial job given in Figure 1 are described by the strings below:

J 3 3 10 14 2

P 3 5 10 14 2 4 3

2.3 Customization

The TreeSearch library consists of an iterative implementation of the abstract search. The corresponding

actions for a specific application are contacted via extending the SearchManager class and implementing

certain virtual functions. The list of functions available are given in Table 1.

In addition to supplying the logic behind these functions, protected members of the SearchManager

class can be modified to change the operation of the search. These parameters are listed in Table 2.
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LONG T pushNext() Deepen the search to the next child of the current
node.

LONG T pushTo(LONG T child) Deepen the search to the specified child of the cur-
rent node.

LONG T pop() Remove the current node and move up the tree.
int prune() Perform a check to see if this node should be

pruned.
int isSolution() Perform a check to see if a solution exists at this

point.
char* writeSolution() Create a buffer that contains a description of the

solution.
char* writeStatistics() Create a buffer that contains custom statistics.

Table 1: List of virtual functions in the SearchManager class.

Type Name Option Description
int maxdepth -m [N] The maximum depth the search will go. In

generate mode, a job will be output with job
description given by the current node.

int killtime -k [N] Number of seconds before the search is
halted. If the search has not halted naturally,
a partial job is output at the current node.

int maxSolutions --maxsols [N] The maximum number of solutions to output.
When this number of solutions is reached, a
partial job is output and the search halts.

int maxJobs --maxjobs [N] The maximum number of jobs to output (gen-
erate mode). When this number of jobs is
reached, a partial job is output and the search
halts.

bool haltAtSolutions --haltatsols [yes/no] If true, the search will stop deepening
if isSolution() signals a solution. If
false, the search will continue until spec-
ified by prune() or maxdepth.

Table 2: List of members in the SearchManager class.

3 Integration with TreeSearch

This section details the specific interfaces for implementation with TreeSearch.

It is important to understand the order of events when the search is executing. The search begins when

the doSearch()methd is called. The first call initializes the search, including starting the kill timer. Then,

each recursive call expands the current search node at the top of the stack. Figure 3 describes the actions

taken by the recursive doSearch() method takes at each search node.

4



Figure 2: The conceptual operation of the doSearch() method.

3.1 Virtual Functions

The two most important methods are the pushNext() and pushTo(LONG T child) methods. Both

deepen the search, manage the stack, and control the job descriptions. Each returns a child description (of

type LONG T)

pushNext(): Advance the search stack using the next augmentation available at the current node. Return

a label of LONG T type which describes the augmentation. Return −1 if there are no more augmentations

to attempt at this stage, signaling a pop() operation.

pushTo(LONG T child): Advance the search stack using the augmentation specified by child. If

the augmentation fails as specified, return −1, and the search will terminate in error. Note: If this method

is called during the partial portion of a job description, the later augmentations will be called using the

pushNext() method, so the current augmentation must be stored for later.

pop(): Clean up any memory used for the current level and/or revert any data structures to the previous

level.

prune(): Check if the current node should be pruned (i.e. detect if there are no solutions reachable

from the current node by performing the specified augmentation). Return 1 if the node should be pruned, 0

otherwise. A prune signal will be followed by the pop() method.

isSolution(): Check if there is a solution at this node. If there is a solution, store the solution data

and return 1. The writeSolution() method will be called to pass the solution data to output. If the

haltAtSolutions option is set, a solution will trigger a pop() method. Otherwise, the node will be

used for augmentations until the maximum depth is reached or the prune() method signals a prune for all

later nodes.

writeSolution(): Return a buffer containing the solution data for the output. This data will be sent

to standard out along with the job description of the current node (with an ‘S’ prefix). If your data is
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Figure 3: The full operation of the doSearch() method.
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prohibitively large for sending over the network, this job description can be used to generate the current

node where the solution data can be recovered. Note: The buffer must be allocated using malloc, as it

will be deallocated using free.

writeStatistics(): Write a buffer of custom statistics information. Each line must follow the format

T [TYPE] [ID] [VALUE]

where [TYPE] is one of “SUM”, “MAX”, or “MIN”, [ID] is a specified name, and [VALUE] is a number.

These statistics are combined by the compactjobs script using the [TYPE] specifier (either sum the

values or store the maximum or minimum) and the statistics are placed in the allstats.txt file. The

combinestats script converts the allstats.txt file into a comma separated value file, grouping by

depth over variables with [ID] of the form [SUBID] AT [#]. This allows per-depth statistics tracking.

3.2 Helper Methods

The following methods are useful when constructing a TreeSearch application.

importArguments(int argc, char** argv): Take the command line arguments and set the

standard search options. The options from Table 2 such as killtime, maxJobs, and maxdepth are all

set in this way.

readJob(FILE* file): Read a job from the given input source, such as standard in. It will read only

one line, and prepare the manager for the doSearch() method.

doSearch(): This method starts the search on the current job as well as returns the status of the search:

1 if completed with a solution, 0 if completed with no solution, and −1 if halted early due to error or time

constraints.

3.3 Compilation

To compile TreeSearch, run make in the source directory. This command compiles the object file SearchManager.o

which must be linked into your executable. Moreover, it compiles the example application presented

in Section 5. Your code must reference the header file SearchManager.hpp and link the object file

SearchManager.o.
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4 Execution and Job Management

To execute a single process, simply run your executable with the proper arguments. However, to run a

distributed job via Condor, a set of scripts were created to manage the input and output files, the Condor

submission file, and monitor the progress of the submission during execution.

4.1 Management Scripts

The TreeSearch library works best with independent subtrees and hence does not suffer from scaling issues

when the parallelism is increased. However, managing these large lists of jobs requires automation.

4.1.1 Expanding jobs before a run

When the generation step is run, a list of jobs is presented in a single file. Condor requires a separate input

and output file for each process. The role of the expandjobs script is to split the jobs into individual files

and to set up the Condor submission file for the number of jobs that are found.

There are a few customizable options for this script.

• -f [folder] – change the folder where the jobs are created. Default is ./.

• -m [maximum] – set the maximum number of jobs allowed. Default is unlimited.

• -g [groupsize] – set the number of jobs per process. Default is 1.

Inside the specified folder, the file condorsubmit.sub.tmp is modified and copied to condorsubmit.sub

with the proper queue size based on the number of jobs found. Any remaining jobs that did not fit within

the maximum are held as back jobs. They will be added to the job pool when the jobs are completed.

4.1.2 Collecting data after a run

Once Condor has completed the requested jobs, the output must be collected to discover which jobs com-

pleted fully, which are partially complete, and how many solutions have been found. The script compactjobs

was built for this purpose.

This script takes the output files and reads all new jobs that may have been generated using the staging

feature, finds if the input job completed or is partial, and reports on the total number of jobs of each type.

Moreover, it will find and store the solutions found, along with the corresponding data.
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Finally, it compiles statistics from each run. Using the writeStatistics method, the application

may report statistics by starting the line with a “T” followed by the type (MAX, MIN, SUM), variable name,

and variable value. These are collected using the specified type and compiled with existing statistics from

previous batches.

5 Example Application

An example application is given in the file example.cpp. This example application takes an extra option

--bits [k], where k is an integer no more than the maximum depth specified (m). The solutions are the

incidence vectors for all subsets of [m] which have exactly k elements. The augmentation procedure places

a 0 or 1 in the next bit of the incidence vector, corresponding to the choice of placing d in the set (0 it is out,

1 it is in) where d is the current depth. The prune() method prunes when there are more than k elements

selected.

This example should highlight a few nuances when working with the TreeSearch library, specifically

how the root node is used to hold the latest label of the first node, and how the SearchNode class is

extended to include necessary information for the current node so that the prune() and isSolution()

methods do not need to access more than one position in the stack.

6 Example Workflow

When managing a distributed search, there are several choices to make as the user. What depth should I

generate to? How many jobs should I run? How long should I set the kill time? These questions are answered

based on your application and experience. This section guides you through the use of the management scripts

as well as strategies for different situations.

6.1 Create the Submission Template

The file condorsubmit.sub contains the necessary information for submission to the Condor scheduler.

The number of processes is automatically managed by the expandjobs script. However, you may modify

the arguments of the run depending on the type of job you want to run. More on this later.
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6.2 Generate initial jobs

To create a beginning list of jobs, run a single process in generate mode with a reasonably small max-

imum depth. Send the output to a file called “out.0” in order to have it viewed by the compactjobs

script. To start at the root search node, use the job description “J 0 0”. The jobs created could be reason-

ably small.

6.3 Compact data

After any run, use the compactjobs script to combine the list of results, partial jobs, and new jobs from

the output files into a collection of data files. This will also give you the number of jobs which completed,

failed, are partial, or are new.

6.4 Evaluate Number of Jobs

Based on this number of jobs, you have a few options.

1. You have a lot of jobs (≥ 20, 000 for instance). This is probably too many to run each job as a single

process, so they must be grouped together. When using the expandjobs script, use the -g flag

to group jobs together into processes, so that there are a reasonable number of total processes. For

example, if there were 100, 000 jobs, using expandjobs -g 10 would result in a list of 10, 000

processes. After running expandjobs, modify the generated condorsubmit.sub script to set

the killtime so that all of the jobs in the process can complete. For example, if I want to run the

previous list of 10, 000 processes for an hour each, I want to set the per-job killtime to six minutes, or

360 seconds.

Hopefully, many of your processes will complete in this short time interval, and you can run the

remaining processes for a longer period. If this does not occur, and you still have many jobs remaining,

perhaps using the -m flag on the expandjobs script to bound the total number of jobs will allow

fewer jobs per process while storing the remaining jobs for execution later.

2. You have a decent number of jobs (between 2, 500 and 20, 000). This is a good number for run-

ning each as an individual process. Running expandjobs with no grouping will allow a bijection
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between processes and jobs. Modifying the generated condorsubmit.sub file for a per-process

killtime of one hour (3600 seconds) will allow a reasonable amount of computation per job.

3. You have very few jobs (below 2, 500) which did not terminate in an hour of computation. With

the number of jobs, just repeating another hour-per-job submission will not take full advantage of

parallelism. Use the expandjobs script (possibly with grouping) to generate a list of input files

for your jobs. Modify the condorsubmit.sub script to be in generate mode with a maximum

depth beyond your current job-depth. Depending on the density of your application’s branching, this

could be between one to ten or more levels beyond the current job depth. It is usually a good goal

to create a large number (≥ 20, 000) of jobs which can be run with grouping at a small computation

time in order to quickly remove small subtrees of the search. This hopefully isolates the “hard cases”

that kept the current list of jobs from completing.

6.5 Submit Script

Using the condor submit script, submit the processes using the condorsubmit.sub submission

script. Now, wait for the processes to complete. You can monitor progress by using two Condor commands:

1. condor status -submitters will give you a list of running/idle/held jobs for each submitter.

This is a good way to watch your queue when many jobs are running.

2. condor q [-submitter username] or condor q [clusterid]will return a per-process

list of run times, statuses, and other useful information. This is not recommended when there are many

processes running, but when there are less than 100 processes, this can help to find processes that are

not completing or when you should expect the processes to complete. Use the -currentrun flag

to see how long the processes have run since their last eviction or suspension.

If the above methods are not telling you the information you want, view the tail of the log file (as

specified in your submission script). This contains the most up-to-date information including the amount of

memory each process is using and the reasons for evictions or other failures.

If your processes are not completing, or you have found that you incorrectly set the submission script,

remove the jobs using the condor rm [clusterid] command.

11



7 Summary

You should now have the necessary information to develop your own applications using the TreeSearch

library. For support questions or bug reports, please email the author at s-dstolee1@math.unl.edu.
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