
MATH 484 - Final Exam Section D13 D14 Name: .................................
Date: Dec 13 2011
Work on your own. Write clearly. Ask if something is not clear. If you need more paper, let me know.
Good luck!

This is not exam - it just contains some list of definitions and theorems. It will be updated
over time. If you see some a mistake or a typo, please let me know.
This version is from: 12:12 December 12, 2011. It should contain all theoretical questions.
Of course, there will be many computational questions on the exam too!

Question 1:
Write definitions of the following terms:
- (global,local)(strict)minimizer and maximizer of a real function page 2
- critical point of a real function page 2
- cosine of two vectors page 6
- ball B(x, r) (what is x and r?) page 6
- interior D0 of set D ⊆ Rn page 6, page 164
- open set D ⊆ Rn page 6
- closed set D ⊆ Rn page 7
- compact set D ⊆ Rn page 6
- (global,local)(strict)minimizer and maximizer of a function f : Rn → R page 8
- critical point of a function f : Rn → R page 8
- gradient ∇f(x) where f : Rn → R page 10
- Hessian Hf(x) where f : Rn → R page 10
- quadratic form associated with a matrix A page 12
- (positive,negative)(semi)definite matrix page 13
- indefinite matrix page 13
- ∆k, the kth principal minor of a matrix A page 16
- f : Rn → R being coercive page 25
- eigenvalues and eigenvectors of a matrix A page 29
- C ⊂ Rn being convex page 38
- closed and open half-spaces in Rn page 40
- convex combination of k vectors from Rn 41
- convex hull of D ⊆ Rn 42
- (strictly) convex and concave function f : C → R, where C ⊆ Rn page 49
- posynomial page 67
- primal and dual geometric program page 67,68
- best least squares kth degree polynomial page 135
- linear regression line page 135
- best least squares solution of (inconsistent) linear system page 136
- generalized inverse of a matrix A page 136
- inconsistent linear system page 136–137
- orthonormal vectors page 138
- subspace of Rn page 141
- orthogonal complement of a subspace of Rn page 142
- PM - orthogonal projection of Rm onto M page 144
- underdetermined system of linear equations page 145
- H-inner product page 149
- H-norm page 149
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- H-orthogonal vectors page 149
- H-orthogonal complement page 149
- H-generalized inversepage 150
- hyperplane H in Rn page 158
- boundary point of C ⊂ Rn page 158
- closure A of A ⊂ Rn page 163
- subgradient of f : Rn → R page 168
- subdifferential of f : Rn → R page 168
- feasible vector of a program (P ) page 169
- feasible region of a program (P ) page 169
- consistent program (P ) page 169
- superconsistent program (P ) page 169
- convex program and dual convex program pages 169, 200, 201
- supremum of a real valued function defined on C ⊆ Rn page 170
- infimum of a real valued function defined on C ⊆ Rn page 170
- MP for program (P ) - also define (P ) page 171
- MP (z) for program (P (z)) - also define (P (z)) page 171
- sensitivity vector of a program (P ) page 177
- Lagrangian L(x, λ) of a program (P ) - also define (P) page 182
- complementary slackness conditions - also define (P) page 184
- constrained geometric program (GP ) and its dual (DGP ) page 193
- linear program (LP ) and its dual (DLP ) pages 173,201,202
- duality gap page 209
- Absolute value penalty function page 217
- penalty parameter page 217
- Courant-Beltrami penalty function page 219
- generalized penalty function page 223
- exact penalty function page 226
- program (P ε) page 230
- Tr(A) - a trace of a matrix A [SDP notes]
- primal and dual form of a semidefinite program (SDP ) [SDP notes]
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Question 2:
State theorems which give answers to the following questions: (without proofs)

- What are the implications of first and second derivatives on minimizers and maximizers of f : R→ R?
Theorem 1.1.5
- What are the implications of first and second partial derivatives on minimizers and maximizers of a
function f : Rn → R? Theorem 1.2.5
- What are implications of definiteness Hf(x) on global minimizers and maximizers? Therorem 1.2.9
- What are implications of definiteness Hf(x) on local minimizers and maximizers? Therorem 1.3.6
- What can you say about extremes of a coercive function? Theorem 1.4.4
- What is the relationship between eigenvalues and positive(negative)(semi)definiteness of a symmetric
matrix A? Theorem 1.5.1
- What is the relation between convex hull and set of all convex combinations of vectors from D ⊆ Rn?
Theorem 2.1.4
- What do you know about minimizers of (strictly) convex functions (in Rn)? Theorem 2.3.4, Corollary
2.3.6
- Is there relationship between begin s (strictly) convex function and having continuous first partial deriva-
tives (in Rn)? Theorem 2.3.5
- Is there relationship between begin (strictly) convex function and having continuous second partial deriva-
tives (condition using Hf(x)) (in Rn)? Theorem 2.3.7
- State Aithmetic-Geometric Mean Inequality. Include also when it is equality! Theorem 2.4.1
- State duality theorem for geometric programs. Theorem 2.5.2
- What does and how to compute PM? (orthogonal projection of Rm onto M) Theorem 4.2.5
- What is the form of solutions of underdetermined systems? Theorem 4.3.1
- What is the form of minimum norm solutions of underdetermined systems? Theorem 4.3.2
- What is the form of minimum H-norm solutions of underdetermined systems? Theorem 4.4.2
- What is the way of computing of the closest vector of a convex set to a given vector? Theorem 5.1.1
- What is the characterization of the closest vector of a convex set to a given vector using orthogonal
complement? Theorem 5.1.2
- What is a sufficient condition for existence of a closest vector from a set C to a given vector x? Theorem
5.1.3
- What is a sufficient condition for existence of a unique closest vector from a set C to a given vector x?
Corollary 5.1.4
- State basic separation theorem. Theorem 5.1.5
- State Support theorem. Theorem 5.1.9
- What can you say about MP (z) if (P) is super consistent? (Theorem 5.2.6)
- Can MP be computed from the sensitivity vector? (Theorem 5.2.11)
- State Karush-Kuhn-Tucker Theorem (Saddle point version) Theorem 5.2.13
- State Karush-Kuhn-Tucker Theorem (Gradient form) Theorem 5.2.14
- State Extended Arithmetic-Geometric Mean Inequality Include also when it is equality! Theorem 5.3.1
- What are sufficient condition for a constrained geometric program (GP ) to have no duality gap? Theorem
5.3.5
- State the duality theorem of linear programming page 203
- State duality theorem of convex programming Theorem 5.4.6
- What are sufficient conditions for a constrained convex program (P ) to have no duality gap? Theorem
6.3.1
- State the duality theorem for semidefinite programming SDP notes - first theorem
- What do you know about solvability of SDP? SDP notes - second theorem
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Question 3:
Answer the following:
- Is product of two convex functions convex?
- How to express best least square solution using QR factorization? What is advantage of QR over using
generalized inverse?
- Describe the intuition using angles behind the Theorem stating what is the closest vector from a convex
set to a given vector.Theorem 5.1.1, page 159
- Does every convex set always contain a vector that is closest to a given vector? Why?
- Is MP (z) always continuous?
- Why do we consider MP and MD instead of min and max?
- What is relation between KKT multipliers and sensitivity vector?
- Why is it necessary to use extended (AG) for bounding gi(t) while solving constrained geometric pro-
grams?
- How can you (in theory) try to solve geometric program using its dual? (page 201) - What is a disad-
vantage of Courant-Beltrami penalty function? Answer: ”isn’t exact” - but more details are expected ;-)
- What are advantages (or consequences) of having no duality gap? Answer: ”primal-dual algorithm,
algorithms with guaranteed performance, certificate of optimality” - but more details are expected - like
what is what ;-)
- Describe how is it possible to change the objective function of a convex program such that the objective
is coercive. What is the reason for doing it? pages 229,230
- Can be ANY linear program expressed as SDP?
- Why is semidefinite programming important? Answer hints: What can you express as SDP? Can you
solve it? - Give example how can you use the condition that a matrix is positive semidefinite while trying
to express a problem as semidefinite program. Answer: You can use ”quadratic constraint” and write
express it as x∗y−z2 and this ”corresponds” to determinant of a 2×2 matrix. Or if you can express your
variables as vectors, you may use that every positive semidefinite matrix A has a unique decomposition
A = UTU . See SDP notes for both of these two. Maybe you can give a small example.
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Question 4: [Computational question on SDP will look like this:]
Express the following program as a semidefinite program. (Do not solve the resulting program.) See SDP
notes for examples and your notes for (LP )→ (SDP ) example.
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Question X: D14 only (D13 may try too if they wish)
- State and prove the theorem relating local and global minimizers of a convex function (in Rn). Theorem
2.3.4
- State and prove Arithmetic-Geometric Mean Inequality. Include also when it is equality. Theorem 2.4.1
- State and prove basic separation theorem. Theorem 5.1.5
- State and prove Support theorem. Theorem 5.1.9
- Derive dual geometric program from primal using AG inequality. page 67–68
- State and prove Karush-Kuhn-Tucker Theorem in Saddle point version. Theorem 5.2.13
- State and prove extended arithmetic geometric mean inequality. Theorem 5.3.1
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