Math-484 Homework #6

I will finish this homework before 11 am Oct 12 and bring it to class. If I have troubles with my work I may come to the study session on Oct 10, 5-7 pm, 145 Altgeld Hall. If I spot a mathematical mistake I will let the lecturer know as soon as possible.

I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I am D14 (4 hours student).

Exercise 1: (Can I do least squares solution for not just linear regression?)

Compute best least square fit for polynomial

$$p(t) = x_0 + x_1 t + x_2 t^2$$

and data

t_i	-2	-1	0	1	2	3	4
s_i	-5	-1	4	7	6	5	-1

Exercise 2: (Can I compute and use least squares using QR factorization?) Find best least squares solution to inconsistent linear system using QR factorization.

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 4 & 6 \\ 1 & 1 & 0 \\ 1 & 4 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 4 \\ 4 \\ 2 \\ 2 \end{pmatrix}$$

Exercise 3: (What is minimum norm solution?)

Find the minimum norm solution of the underdetermined linear system

$$2x_1 + x_2 + x_3 + 5x_4 = 8$$
$$-x_1 - x_2 + 3x_3 + 2x_4 = 0$$

Exercise 4: (What is the projection?)

Find vector $\mathbf{x} \in \mathbb{R}^3$ that is closest to (1, 1, 1) where $\alpha, \beta \in \mathbb{R}$ and

$$\mathbf{x} = \alpha(1, 1, 2) + \beta(2, -1, 1)$$

Exercise 5: (Do I understand definitions?)

Let A be a matrix with linearly independent columns. Prove that:

a) $AA^{\dagger}A = A$

b) $A^{\dagger}A = (A^{\dagger}A)^{\dagger}$

- c) $P_{R(A)}$ is symmetric
- d) $P_{R(A)}^2 = P_{R(A)}$

Exercise 6: (Gradient and orthogonal complements. D14 only)

Let $f(\mathbf{x})$ be a function on \mathbb{R}^n with continuous first partial derivatives and let M be a subspace of \mathbb{R}^n . Suppose $\mathbf{x}^* \in M$ minimizes f(x) on M. Show $\nabla f(\mathbf{x}^*) \in M^{\perp}$. If, in addition, f(x) is convex, then show that any $\mathbf{x}^* \in M$ such that $\nabla f(\mathbf{x}^*) \in M^{\perp}$ is a global minimizer of $f(\mathbf{x})$ on M.