MATH413 HW 9

due Apr 18 strictly before class Solutions without explanation will receive no points.

1: Find the number of possibilities to build stairs of height n using n rectangular bricks. All the possibilities for n = 4 are depicted.

2: *P.* 315, # 2 Prove that the number of 2-by-*n* arrays

 $\begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \end{bmatrix}$

that can be made from numbers $1, 2, \ldots, 2n$ such that

$$\begin{aligned} x_{11} < x_{12} < \cdots < x_{1n} \\ x_{21} < x_{22} < \cdots < x_{2n} \\ x_{11} < x_{21}, x_{12} < x_{22}, \dots, x_{1n} < x_{2n}, \end{aligned}$$

equals the n^{th} Catalan number, C_n .

3: *P.* 316, # 12 Prove that the Stirlling numbers of the second S(n,k) kind satisfy the following relations: (a) S(n,1) = 1 for $n \ge 1$ (b) $S(n,2) = 2^{n-1} - 1$ for $n \ge 2$ (c) $S(n,n-1) = {n \choose 2}$ for $n \ge 1$ (d) $S(n,n-2) = {n \choose 3} + 3{n \choose 4}$ for $n \ge 2$ 4: Let $[x]_n = x \cdot (x-1) \cdot (x-2) \cdot (x-3) \cdots (x-n+1)$ and S(n,k) be the Stirling number of the second kind. Show that

$$x^n = \sum_{k=1}^n S(n,k)[x]_k.$$

5: *P.* 317, # 16 Compute the Bell number B_8 .

6: *P. 317, \#19* Prove that the Stirling numbers of the first kind satisfy the following formulas:

- (a) |s(n,1)| = (n-1)! for $n \ge 1$
- (b) $|s(n, n-1)| = {n \choose 2}$ for $n \ge 1$