Math-484 Homework #1 (warm up)

I will finish the homework before 10am Sep 5. If I spot a mathematical mistake I will let the lecturer know as soon as possible.

I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I am D14 (4 hours student).

1: (I will check if I can find minimizers and maximizers of smooth functions)
Find the local and global minimizers and maximizers of the following functions:
(a) f(x) = x² + 2x
(b) f(x) = x²e^{-x²}
Hint: Use first and second derivatives of f(x).

2: (*I will recall few basic definitions*)

Determine the dimension of the smallest subspace of \mathbb{R}^4 that contains vectors (0, 1, 0, 1), (3, 4, 1, 2), (6, 4, 2, 0) and (-3, 1, -1, 3).

3: (*I will recall what are determinants*)

Compute determinants of the following real matrices:

(a)
$$\begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

(b) $\begin{pmatrix} 0 & -2 & 1 & 0 \\ 4 & a & b & 1 \\ 1 & c & d & 4 \\ 0 & 1 & -2 & 0 \end{pmatrix}$ where $a, b, c, d \in \mathbb{R}$ are parameters

4: (*I will recall what are eigenvalues and eigenvectors*) Compute eigenvalues and eigenvectors of the following real matrix

$$A = \left(\begin{array}{cc} 2 & 6\\ 6 & -3 \end{array}\right)$$

5: (I will check the definition of semidefinity and recall computing with matrices and vectors.) Suppose that A is a square matrix and suppose that there is another matrix B such that $A = B^T B$. Show that A is positive semidefinite. Hint: Recall that $\mathbf{y}^T B^T \mathbf{x} = (B\mathbf{y})^T \mathbf{x}$