Math-484 Homework #7 (Random mix I)

I will finish the homework before 10am Oct 24. If I spot a mathematical mistake I will let the lecturer know as soon as possible.

I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I am C14 (4 hours student).

1: (Can I work with H-norm?)

Use minimum H-norm approach to solve the following program (P).

(P)
$$\begin{cases} \text{Minimize} & f(x, y, z) = 2x^2 + 2xy + 2y^2 + z^2 \\ \text{subject to} & x - y + z = 3 \\ & 9x + 6y + 2z = 5 \end{cases}$$

2: (*I* want to know what is epigraph.)

Let $D \subset \mathbb{R}^n$ be convex and $f: D \to \mathbb{R}$. The *epigraph* of f is a subset of \mathbb{R}^{n+1} defined by

$$epi(f) = \{ (\mathbf{x}, \alpha) : \mathbf{x} \in D, \alpha \in \mathbb{R}, f(\mathbf{x}) \le \alpha \}.$$

a) Sketch the epigraphs of functions

 $f(x) = e^x$ for $x \in \mathbb{R}$

 $f(x_1, x_2) = x_1^2 + x_2^2$ for $(x_1, x_2) \in \mathbb{R}^2$

b) Show that $f(\mathbf{x})$ is convex if and only if epi(f) is convex.

c) Show that if $f(\mathbf{x})$ and $g(\mathbf{x})$ are convex functions defined on a convex set C then $h(\mathbf{x}) := \max\{f(\mathbf{x}), g(\mathbf{x})\}\$ is also a convex function on C by showing that

$$\operatorname{epi}(\max\{f(\mathbf{x}), g(\mathbf{x})\}) = \operatorname{epi}(f(\mathbf{x})) \cap \operatorname{epi}(g(\mathbf{x})).$$

3: (*More about orthogonal complements*)

Let M be a subspace of \mathbb{R}^n . Prove that the orthogonal complement M^{\perp} of M is closed.

4: (What is an interior?)

Prove that if M is a subspace of \mathbb{R}^n such that $M \neq \mathbb{R}^n$, then the interior M^0 of M is empty.

5: (What are closest vectors?)

Let C be a closed convex subset of \mathbb{R}^n . If $\mathbf{y} \notin C$, show that $\mathbf{x}^* \in C$ is the closest vector to \mathbf{y} in C if and only if $(\mathbf{x} - \mathbf{y})^T (\mathbf{x}^* - y) \ge ||\mathbf{x}^* - \mathbf{y}||^2$ for all $\mathbf{x} \in C$.

6: (*Do I remember ancient stuff?*) Show that

$$\left(\frac{x}{2} + \frac{y}{3} + \frac{z}{12} + \frac{w}{12}\right)^4 \le \frac{1}{2}x^4 + \frac{1}{3}y^4 + \frac{1}{12}z^4 + \frac{1}{12}w^4$$

holds with equality if and only if x = y = z = w.

7: (Can I separate things? C14 only) Let $C_1, C_2 \subset \mathbb{R}^n$ be both convex, $C_1^0 \neq \emptyset$ and $C_1^0 \cap C_2 = \emptyset$. Prove that there exist $0 \neq \mathbf{a} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ such that

$$\mathbf{x}^T \mathbf{a} \le \alpha \le \mathbf{y}^T \mathbf{a}$$

for all $\mathbf{x} \in C_1$ and $\mathbf{y} \in C_2$. In other words, there is a hyperplane separating C_1 and C_2 (but both C_1 and C_2 can intersect the hyperplane).