Math-589 Homework #3

If I spot a mistake I will let the lecturer know as soon as possible. I will type the solution and send it as a PDF if I want to get a grade.

Alternatively, I can write two pages about my research that is using non-linear optimization.

1: (Steepest descent)

Describe general step of Steepest descent method.

Compute one step of the method on function

$$f(x,y) = 2x^2 - 4xy + 4y^2$$

with initial point $\mathbf{x}_0 = (2,3)$.

2: (*DFP* and *BFGS*)

Describe general step of BFGS method and DFP method.

Pick BFGS or DFP and compute \mathbf{x}_2 of the minimizing sequence for the function

$$f(x_1, x_2) = x_1^2 - x_1 x_2 + \frac{3}{2} x_2^2$$

where the initial point $\mathbf{x}_0 = (1,2)$ and $D_0 = I$. Suppose that $t_1 = 1$ and that $\mathbf{x}_1 = (1,\frac{1}{3})$.

3: (Describing a set using semidefinite program)

Show that set M can be described by a semidefinite program

- 1) $M = \{(x, y) \in (\mathbb{R}^+)^2 : x \ge 1/y\}$
- 2) $M = \{(x, y) \in \mathbb{R}^2 : x^4 + y^4 \le 1\}$

Note that the desired program (P) can have more variables than just x and y. The set M is then taken as a projection of the set of feasible solutions of (P) to (x, y).

4: (Functions of graphs)

Let G = ([n], E) be a graph where $[n] = \{1, ..., n\}$ and let $\alpha_{i,j} \leq \beta_{i,j}$ for every $\{i, j\} \in E$ be real numbers. Show that deciding if there exist $\mathbf{p}_1, ..., \mathbf{p}_n \in \mathbb{R}^n$ such that

$$\alpha_{i,j} \le \|\mathbf{p}_i - \mathbf{p}_j\|_2 \le \beta_{i,j}, \quad \{i, j\} \in E$$

can be formulated as a question if some semidefinite program is feasible.

5: (Approximation algorithm)

Find a probabilistic polynomial 0.878-approximation algorithm for the following problem:

MAX-2-SAT: Given a 2-CNF formula in n variables, determine the maximal number of clauses that can be simultaneously satisfied.

Note: Let X be a set of variables. A *literal* is any variable or its negation, a k-clause is a disjunction of k literals, and a k-CNF formula is a conjunction of k-clauses. A clause is satisfied by an assignment $f: X \to \{0,1\}$ if it evaluates to 1 (true) under the assignment f. For more detailes about CNF see

http://en.wikipedia.org/wiki/Conjunctive_normal_form.