due Mar 13 before class, answer without justification will receive 0 points. Staple all your papers.

1: (P. 257, \#1) Let $f_{0}, f_{1}, f_{2}, \cdots, f_{n}, \cdots$ denote the Fibonacci sequence. By evaluating each of the following expressions for small values of n, conjecture a general formula and then prove it, using mathematical induction and the Fibonacci recurrence:
(a) $f_{1}+f_{3}+f_{5}+\cdots+f_{2 n-1}$
(b) $f_{0}+f_{2}+f_{4}+\cdots+f_{2 n}$
(c) $f_{0}-f_{1}+f_{2}-f_{3}+\cdots+(-1)^{n} f_{n}$
(d) $f_{0}^{2}+f_{1}^{2}+f_{2}^{2}+\cdots+f_{n}^{2}$

2: (P. 257, \#3) Prove the following about the Fibonacci numbers:
(a) f_{n} is even if and only if n is divisible by 3 .
(b) f_{n} is divisible by 3 if and only if n is divisible by 4 .
(c) f_{n} is divisible by 4 if and only if n is divisible by 6 .

3: (P. 258, \#11) The Lucas numbers $l_{0}, l_{1}, l_{2}, \ldots, l n, \ldots$ are defined using the same recurrence relation defining the Fibonacci numbers, but with different initial conditions:

$$
l_{n}=l_{n-1}+l_{n-2},(n \geq 2), l_{0}=2, l_{1}=1 .
$$

Prove that
(a) $l_{n}=f_{n-1}+f_{n+1}$ for $n \geq 1$
(b) $l_{0}^{2}+l_{1}^{2}+\ldots+l_{n}^{2}=l_{n} l_{n+1}+2$ for $n \geq 0$.

4: Find generating functions for the following sequences:
(a) $0,0,0,6,-6,6,-6,6,-6,6,-6, \ldots$
(b) $1,2,4,1,3,9,1,4,16,1,5,25,1,6,36, \ldots$
(c) $\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{5}{6}, \frac{6}{7}, \frac{7}{8}, \ldots$

5: For every $n \geq 0$ determine the coefficient at x^{n} in $(1+x)^{2}\left(1+x^{2}\right)^{2}(1+$ $\left.x^{4}\right)^{2}\left(1+x^{8}\right)^{2} \cdots$ which is equal to $\prod_{i=0}^{\infty}\left(1+x^{2^{i}}\right)^{2}$.

6: (P. 259, \#15) Determine the generating function for the sequence of cubes

$$
0,1,8,27, \ldots, n^{3}, \ldots
$$

7: (P. 259, \#18) Determine the generating function for the number h_{n} of nonnegative integral solutions of

$$
2 e_{1}+5 e_{2}+e_{3}+7 e_{4}=n .
$$

