## Math-484 Homework \#2 (semidefinite and coercive)

I will finish the homework before 11am Sep 11. If I spot a mathematical mistake I will let the lecturer know as soon as possible.
I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I am C14 (4 hours student).

1: (What is positive/negative (semi)definite?)
Try to Decide if the following matrices are positive or negative (semi)definite or indefinite using principal minors and explain why:
(a) $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5\end{array}\right)$ (b) $\left(\begin{array}{lll}3 & 1 & 2 \\ 1 & 5 & 3 \\ 2 & 3 & 7\end{array}\right)$
(c) $\left(\begin{array}{ccc}-4 & 0 & 1 \\ 0 & -3 & 2 \\ 1 & 2 & -5\end{array}\right)$ (d) $\left(\begin{array}{lll}2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1\end{array}\right)$

2: (I will recall what is a quadratic form.)
Write the quadratic form $Q_{A}(\mathbf{x})$ associated to matrix

$$
A=\left(\begin{array}{ccc}
-4 & 0 & 4 \\
0 & -3 & 2 \\
4 & 2 & 3
\end{array}\right)
$$

3: (I will recall what is coercive.)
Decide which of these functions $\mathbb{R}^{3} \rightarrow \mathbb{R}$ are coercive (of course, argue why):
(a) $f(x, y, z)=x^{3}+y^{3}+z^{3}-x y$
(b) $f(x, y, z)=x^{4}+y^{4}+z^{2}-3 x y-z$
(c) $f(x, y, z)=x^{4}+y^{4}+z^{2}-x y z^{2}$
(d) $f(x, y, z)=x^{4}+y^{4}-2 x y^{2}$

4: (Do I understand the assumptions of Theorem 1.3.3?)
Show that the principal minors of the matrix

$$
A=\left(\begin{array}{cc}
1 & -8 \\
1 & 1
\end{array}\right)
$$

are positive, but there are $\mathbf{x} \neq \mathbf{0}$ in $\mathbb{R}^{2}$ such that $\mathbf{x} \cdot A \mathbf{x}<0$. Why does this not contradict Theorem 1.3.3 in the textbook?

5: (Can I use all that stuff to find minimizers and maximizers?)
Find (local, global) minimizers and maximizers of the following functions:
(a) $f\left(x_{1}, x_{2}\right)=e^{-\left(x_{1}^{2}+x_{2}^{2}\right)}$
(b) $f\left(x_{1}, x_{2}, x_{3}\right)=\left(2 x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+\left(x_{3}-1\right)^{2}$

6: (I will check the definition of semidefinity more closely. C14 only)
Suppose that $A$ is a $n \times n$-symmetric matrix for which $a_{i i} a_{j j}-a_{i j}^{2}<0$ for some $i \neq j$. Show
that $A$ is indefinite.
Hint: See (1.3.4)(c) in the textbook.
7: (A bit more coercive thinking. C14 only)
Find a continuos function $f(x, y)$ on $\mathbb{R}^{2}$ such that for each real number $t$, we have

$$
\lim _{x \rightarrow+\infty} f(x, t x)=\lim _{y \rightarrow+\infty} f(t y, y)=+\infty
$$

but such that $f(x, y)$ is not coercive.

