Math-484 Homework #2 (semidefinite and coercive)

I will finish the homework before 11am Sep 11. If I spot a mathematical mistake I will let the lecturer know as soon as possible.

I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I am C14 (4 hours student).

1: (What is positive/negative (semi)definite?)

Try to Decide if the following matrices are positive or negative (semi)definite or indefinite using principal minors and explain why: $\begin{pmatrix} 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 3 & 1 & 2 \end{pmatrix}$

(a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 5 \end{pmatrix}$$
 (b) $\begin{pmatrix} 3 & 1 & 2 \\ 1 & 5 & 3 \\ 2 & 3 & 7 \end{pmatrix}$
(c) $\begin{pmatrix} -4 & 0 & 1 \\ 0 & -3 & 2 \\ 1 & 2 & -5 \end{pmatrix}$ (d) $\begin{pmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

2: (*I will recall what is a quadratic form.*) Write the quadratic form $Q_A(\mathbf{x})$ associated to matrix

$$A = \left(\begin{array}{rrr} -4 & 0 & 4\\ 0 & -3 & 2\\ 4 & 2 & 3 \end{array}\right).$$

3: (*I will recall what is coercive.*) Decide which of these functions $\mathbb{R}^3 \to \mathbb{R}$ are coercive (of course, argue why): (a) $f(x, y, z) = x^3 + y^3 + z^3 - xy$ (b) $f(x, y, z) = x^4 + y^4 + z^2 - 3xy - z$ (c) $f(x, y, z) = x^4 + y^4 + z^2 - xyz^2$ (d) $f(x, y, z) = x^4 + y^4 - 2xy^2$

4: (*Do I understand the assumptions of Theorem 1.3.3?*) Show that the principal minors of the matrix

$$A = \left(\begin{array}{rr} 1 & -8\\ 1 & 1 \end{array}\right)$$

are positive, but there are $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^2 such that $\mathbf{x} \cdot A\mathbf{x} < 0$. Why does this not contradict Theorem 1.3.3 in the textbook?

5: (Can I use all that stuff to find minimizers and maximizers?) Find (local, global) minimizers and maximizers of the following functions: (a) $f(x_1, x_2) = e^{-(x_1^2 + x_2^2)}$ (b) $f(x_1, x_2, x_3) = (2x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - 1)^2$

6: (*I will check the definition of semidefinity more closely.* **C14** only) Suppose that A is a $n \times n$ -symmetric matrix for which $a_{ii}a_{jj} - a_{ij}^2 < 0$ for some $i \neq j$. Show that A is indefinite. Hint: See (1.3.4)(c) in the textbook.

7: (A bit more coercive thinking. **C14 only**) Find a continuos function f(x, y) on \mathbb{R}^2 such that for each real number t, we have

$$\lim_{x \to +\infty} f(x, tx) = \lim_{y \to +\infty} f(ty, y) = +\infty$$

but such that f(x, y) is not coercive.