Math-484 Homework #3 (convex sets and semidefinite matrices)

I will finish the homework before 11am Sep 18. If I spot a mathematical mistake I will let the lecturer know as soon as possible.

I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I am C14 (4 hours student).

1: (Local minimizer does not have to be global even if it is unique.) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by

$$f(x,y) = x^3 + e^{3y} - 3xe^y.$$

Show that f has exactly one critical point and that this point is a local minimizer but not a global minimizer.

- 2: (More exercises for deciding if matrix is (positive/negative, semi)definite)
- (a) Decide if the following matrix is (positive/negative, semi)definite:

$$A = \left(\begin{array}{ccc} -2 & 2 & 0\\ 2 & -2 & 0\\ 0 & 0 & -3 \end{array}\right)$$

(b) Decide for which $t \in \mathbb{R}$ is the following matrix is positive definite:

$$B = \left(\begin{array}{ccc} t & 1 & 0\\ 1 & t & 1\\ 0 & 1 & t \end{array}\right)$$

3: (Decomposition showing matrix is positive (semi)definite.)

Suppose that A is a square matrix and suppose that there is another matrix B such that $A = B^T B$.

1

- (a) Show that A is positive semidefinite.
- (b) Show that if B has full column rank then A is positive definite.

4: (Do I understand the definition of a convex set?)

Are the following sets D in \mathbb{R}^2 convex?

(a) $\mathbf{x} = (100, 14) \in \mathbb{R}^2, \mathbf{y} = (15, 24) \in \mathbb{R}^2.$

 $D = \{ \mathbf{w} \in \mathbb{R}^2 : \mathbf{w} = \lambda \mathbf{x} + (1 - \lambda) \mathbf{y}, \text{ where } 0.3 < \lambda \le 0.7 \}$

(b) $D = B((1,0),1) \cup (0,0)$ recall $B(\mathbf{x},r) = {\mathbf{w} : ||\mathbf{x} - \mathbf{w}|| < r}$

(c) $D = B((1,1),1) \cup (0,0)$

Note that we use ball as an open set in this exercise.

5: (Space of semidefinite matrices is convex.)

Let \mathcal{PS} be the set of all positive semidefinite definite matrices in $\mathbb{R}^{n\times n}$. Show that \mathcal{PS} is a convex set. Moreover, show that it is a closed set.

Upadte: For a matrix A use $||A|| = \sqrt{\sum_{i,j} a_{ij}^2}$.

6: (Can I formally use convex combinations?)

For $D \subseteq \mathbb{R}^n$ we define co(D) to be the intersection of all convex sets containing D. Prove Theorem 2.1.4: Let $D \subseteq \mathbb{R}^n$. Then co(D) coincides with the set C of all convex combinations of vectors from D.

Hint: 1) Show that C is a convex set containing D.

- 2) Show that if B is a convex set containing D then it also contains C.
- 3) Conclude that co(D) = C.

If the matrix

7: (Piece of Cholesky factorization. C14 only)

If $M \in \mathbb{R}^{n \times n}$ is a positive semidefinite matrix, it can be decomposed as $M = B^T B$. Such decomposition can be obtained using Cholesky factorization (an algorithm running in $O(n^3)$). Prove the following observation that is a key ingredient of the factorization.

$$M = \left(\begin{array}{cc} \alpha & \mathbf{q}^T \\ \mathbf{q} & N \end{array}\right)$$

is positive semidefinite with $\alpha > 0$, then the matrix

$$N - \frac{1}{\alpha} \mathbf{q} \mathbf{q}^T$$

is also positive semidefinite. Note that $\alpha \in \mathbb{R}$, $\mathbf{q} \in \mathbb{R}^{n-1}$ and $N \in \mathbb{R}^{n-1 \times n-1}$.