Math-484 Homework \#5 (($A-G$) inequality, geometric programming)

I will finish the homework before 11am Oct 2. If I spot a mathematical mistake I will let the lecturer know as soon as possible.
I will write clearly and neatly as the grader is not an expert in cryptography. I will sign each paper of my work and indicate if I $a \not 4$ credits student.

1: (I will recall convexity of a function (how we proved ($A-G$) inequality)) Show that for all positive x and y :

$$
\frac{x}{4}+\frac{3 y}{4} \leq \sqrt{\ln \left(\frac{e^{x^{2}}}{4}+\frac{3}{4} e^{y^{2}}\right)}
$$

Hint: The desired inequality follows from convexity of an appropriate function.
2: (Applications of $(A-G))$
Solve the following classical calculus problems by making use of $(A-G)$ inequality.
a) Find the largest circular cylinder that can be inscribed in a sphere of a given radius.
b) Find the smallest radius r such that a circular cylinder of volume 8 cubic units can be inscribed in the sphere of radius r.

3: (I want to know (GP))
State the dual ($D G P$) of the following $(G P)$ and solve the $(G P)$ using ($D G P$). Solving means, finding optimal $\mathbf{x}^{*}=\left(x_{1}, x_{2}\right)$ and value of the objective function.

$$
(G P) \begin{cases}\text { Minimize } & \left(5^{4}\right) \frac{x_{2}^{2}}{x_{1}}+\frac{x_{3}}{5 x_{1} x_{2}^{2}}+\frac{25 x_{1}}{2}+\frac{1}{10 x_{1} x_{3}^{2}} \\ \text { subject to } & x_{1}, x_{2}, x_{3}>0\end{cases}
$$

After solving $(G P)$ by hand, input the program to http://www. wolframalpha.com to check your solution and an enclose both your manual solution and prinout of the Wolfram solution to your homework.

4: (I wanna be a (GP) master! C14 only)
Solve the following $(G P)$ where c_{1}, c_{2}, c_{3} are positive numbers:

$$
(G P) \begin{cases}\text { Minimize } & f(x, y)=c_{1} x+c_{2} x^{-2} y^{-3}+c_{3} y^{4} \\ \text { subject to } & x, y>0\end{cases}
$$

Hint: (The result is not particularly nice.)

