due Mar 12 before class, answer without justification will receive 0 points. Staple all your papers.

1: (P. 158, \#36) Prove

$$
\sum_{k=0}^{n}\binom{m_{1}}{k}\binom{m_{2}}{n-k}=\binom{m_{1}+m_{2}}{n}
$$

using binomial theorem and the relation $(1+x)^{m_{1}}(1+x)^{m_{2}}=(1+x)^{m_{1}+m_{2}}$.
2: (P. 159, \#40) What is the coefficient of $x_{1}^{3} x_{2}^{3} x_{3} x_{4}^{2}$ in the expansion of

$$
\left(x_{1}-x_{2}+2 x_{3}-2 x_{4}\right)^{9} ?
$$

3: (P. 160, \#46) Use Newton's binomial theorem to approximate $\sqrt{30}$. (Hint: See page 148 and 149. First three digits after the decimal point is enough.)

4: If you pick an integer between 1 and 1000 (including 1 and 1000), what is the probability that it is either divisible by 7 or 5 or even (or two or all of these)?

5: How many multisets of 3 letters can be formed from letters M,I,S,S,I,S,S,I,P,P,I?

6: Count the number of integer solutions of

$$
x_{1}+x_{2}+x_{3}+x_{4}=28,
$$

where $0 \leq x_{1} \leq 6,0 \leq x_{2} \leq 10,0 \leq x_{3} \leq 15,0 \leq x_{4} \leq 21$.
7: How many ways are there to distribute k distinct objects into five (distinct) boxes with at least one empty box?

8: Count the number of placements of 8 tokens on 4×4 board such that there exists a row or a column containing 4 tokens.

