MATH201 MIDTERM 3 - Practice problems

1: 11.2.9 Define a relation R on \mathbb{Z} as xRy if and only if 4|(x+3y). Prove R is an equivalence relation. Describe its equivalence classes.

2: 11.4.6 Suppose $[a], [b] \in \mathbb{Z}_6$ and $[a] \cdot [b] = [0]$. Is it necessarily true that either [a] = [0] or [b] = [0]?

3: 12.4.10 Consider the function $f : \mathbb{R}^2 \to \mathbb{R}^2$ defined by the formula $f(x, y) = (xy, x^3)$. Find a formula for $f \circ f$.

4: 12.5.6 The function $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ defined by the formula f(m, n) = (5m + 4n, 4m + 3n) is bijective. Find its inverse.

5: Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. Assume $g \circ f$ is a surjective function. Is it true that f or g must be surjective? (*This question is: good - bad - ugly? Difficulty: 0-9:*)

6: 13.3.2 Prove that the set \mathbb{C} of complex numbers is uncountable.

7: 13.2.? Prove or disprove: The set \mathbb{Z}^{100} is countably infinite.

8: 1.3.? Show reverse triangle inequality. That is for all $a, b \in \mathbb{R}$ we have

$$||a| - |b|| \le |a - b|.$$

9: 2.1.? Show that if If $\{x_n\}$ is a convergent sequence, then $\{|x_n|\}$ is convergent and $\lim_{n\to\infty} |x_n| = |\lim_{n\to\infty} x_n|$ (This question is: good had yield? Difficulty: 0.9:

(This question is: good - bad - ugly? Difficulty: 0-9:)

10: 2.1.? Let $r, s \in \mathbb{R}$. Prove that for every $\varepsilon > 0$, $r + \varepsilon > s$ if and only if $r \ge s$.

11: 2.2.5 Let $x_n = n - \cos(n)$. Use the squeeze lemma to show that $\{x_n\}$ converges and find the limit.

12: 2.2.7 True or false, prove or find a counterexample. If $\{x_n\}$ is a sequence such that $\{x_n^2\}$ converges, then $\{x_n\}$ converges.

13: 2.2.8 Show that

$$\lim \frac{n^2}{2^n} = 0.$$

Hint: Ratio test.

14: 2.2.? Let $q \in (0, 1)$. Show that $\lim_{n\to\infty} n \cdot q^n = 0$. Hint: Ratio test. **15:** 2.3.2 Suppose $\{x_n\}$ is a bounded sequence. Define b_n as in Definition 2.3.1. Show that $\{b_n\}$ is an increasing sequence.

16: 2.3.7 (c) Find bounded sequences $\{x_n\}$ and $\{y_n\}$ such that

$$(\liminf_{n \to \infty} x_n) + (\liminf_{n \to \infty} y_n) < \liminf_{n \to \infty} (x_n + y_n)$$

Hint: Look for examples that do not have a limit.

17: 2.4.1 Prove that $\{\frac{n^2-1}{n^2}\}$ is Cauchy using directly the definition of Cauchy sequences.

18: 2.4.1' Prove that $\{\frac{n^2-1}{n^2}\}$ is convergent directly using the definition of a limit of a sequence.

19: 2.4.? Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two Cauchy sequences. Define $c_n = |a_n - b_n|$. Show that $\{c_n\}_{n=1}^{\infty}$ is a Cauchy sequence.