MATH201 MIDTERM 3

April 20

Name: Answer as many problems as you can. Show your work. An answer with no explanation will receive no credit.

GOOD LUCK!

[Problem 1	Problem 2	Problem 3	Problem 4	Problem 5	Problem 6

1: There are five different equivalence relations on the set $A = \{a, b, c\}$. Describe them all. Diagrams will suffice. Recall that equivalence relation on A is the same thing as a partition of A.

(This question is: good - bad - ugly? Difficulty: 0-9:)

2: Solve the following set of equations over \mathbb{Z}_5 .

$$4x + 2y + z = 2$$
$$x + 4y + 3z = 1$$
$$2x + y + 4z = 4$$

The result should be numbers from \mathbb{Z}_5 , not fractions! (*This question is: good - bad - ugly? Difficulty: 0-9:*) **3:** Let $f : \mathbb{R} \to \mathbb{R}$ and $g : \mathbb{R} \to \mathbb{R}$. Assume $g \circ f$ is a bijective function. Is it true that f or g must be bijective? (*This question is: good - bad - ugly? Difficulty: 0-9:*) 4: Prove or disprove: The set \mathbb{Q}^{100} is countably infinite. Recall that \mathbb{Q} is the set of rational numbers. (*This question is: good - bad - ugly? Difficulty: 0-9:*)

Prove that the sequence $\{\frac{4n-1}{3n}\}_{n=1}^{\infty}$ has limit $\frac{4}{3}$ directly by using the definition of a 5: limit.)

(This question is: good - bad - ugly? Difficulty: 0-9:

6: Prove that the sequence $\{\frac{2n-1}{3n}\}_{n=1}^{\infty}$ is Cauchy by verifying that the sequence satisfies the definition of begin Cauchy.

(This question is: good - bad - ugly? Difficulty: 0-9:)

Blank page in case you need more space.