MATH 201 HW 8

due Mar 11 before class.

Staple all your papers. Write carefully, unreadable answers will not receive any credit. Write your opinion about every question - good - bad - ugly - (or some other) and difficulty.

Please write your section or time of your class on you HW.

1: (Induction in geometry) Let us draw n lines in the plane in such a way that no two are parallel and no three intersect in a common point. Prove that the plane is divided into exactly

$$\frac{n(n+1)}{2} + 1$$

)

)

parts by the lines. (This question is: good - bad - uqly? Difficulty: 0-9:

2: Prove by induction:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}.$$

(This question is: good - bad - ugly? Difficulty: 0-9:

3: Incorrect proof Find a mistake in the proof of the following theorem.

Theorem 1. Every natural number $n \ge 2$ has a unique prime factorization.

Incorrect proof by induction: Let $n \ge 2$ be a natural number. If n is a prime, then n is the unique prime factorization. If n is not a prime number, then there exist a and b natural numbers such that $n > a \ge 2$, $n > b \ge 2$ and $n = a \times b$. By induction, a has a unique prime factorization a_1, \ldots, a_k and b has a unique prime factorization b_1, \ldots, b_l . Then $a_1, \ldots, a_k, b_1, \ldots, b_l$ is the unique prime factorization of n.

Note that the base case of the induction is present - if n = 2, then n is prime and the case is discussed in the proof. I mean - the mistake is something different than the basic step. (This question is: good - bad - ugly? Difficulty: 0-9:)

4: For any integer $n \ge 0$, it follows $3|(5^{2n} - 1)$. (This question is: good - bad - ugly? Difficulty: 0-9:)

5: Tiling Use induction to show that for every natural number $n \ge 1$, it is possible to tile the grid $(1, \ldots, 2^n) \times (1, \ldots, 2^n)$, that is missing piece $(1, \ldots, 2^{n-1}) \times (1, \ldots, 2^{n-1})$ By pieces of L shape, that is

Example of the grid to tile for n = 2:

)

(This question is: good - bad - ugly? Difficulty: 0-9:

6: Let F_n is the *n*th Fibonacci number. Prove that

$$F_2 + F_4 + F_6 + F_8 + \dots + F_{2n} = F_{2n+1} - 1$$

holds for all $n \ge 1$. (This question is: good - bad - ugly? Difficulty: 0-9:)

7: Show that the greatest common divisor of any two consecutive Fibonacci numbers is 1. In other words, for all $n \ge 1$, $gcd(F_n, F_{n+1}) = 1$, where F_n is the *n*th Fibonacci number. (*This question is: good - bad - ugly? Difficulty: 0-9:*)

8: Let F_n is the *n*th Fibonacci number. Prove that

$$F_n = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}}.$$

This may require some extra study. (This question is: good - bad - ugly? Difficulty: 0-9:)