MATH 201 HW 9-section D, 1pm

due Mar 25 before class.
Staple all your papers. Write carefully, unreadable answers will not receive any credit. Write your opinion about every question - good - bad - ugly - (or some other) and difficulty.

Please write your section or time of your class on you HW.

1: Let X and Y be subsets on integers. For the following sentence, write it in symbolic logic, then negate it and write it as an English sentence.

For ever positive number from the set Y holds that if it is even, then its square is also even and its square belongs to the set X.
(This question is: good - bad - ugly? Difficulty: 0-9:)
2: Prove by contradiction: If a and b are positive real numbers, then $a+b \geq 2 \sqrt{a b}$.
(This question is: good - bad - ugly? Difficulty: 0-9:)
3: Given an integer a, then $a^{3}+a^{2}+a$ is even if and only if a is even.
(This question is: good - bad - ugly? Difficulty: 0-9:)
4: Prove without using Venn diagrams that if A, B and C are sets, then $A \times(B \cup C)=$ $(A \times B) \cup(A \times C)$.
(This question is: good - bad - ugly? Difficulty: 0-9:)
5: Prove or disprove it: There exist unique prime numbers p and q for which $p-q=17$.
(This question is: good - bad - ugly? Difficulty: 0-9:)

6: Use induction to show that for every natural number $n \geq 1$, it is possible to tile the grid $\left(1, \ldots, 2^{n}\right) \times\left(1, \ldots, 2^{n}\right)$, that is missing arbitrary one piece 1×1 by pieces of L shape, that is

Examples of the grid to tile for $n=2$, the dark piece is missing. Notice that there are several different cases for every n.

(This question is: good - bad - ugly? Difficulty: 0-9:)

