MATH 201 HW 13 - Chapters 2.2, 2.3, 2.4, 2.5 from Basic analysis

due Apr 29 before class.

Staple all your papers. Write carefully, unreadable answers will not receive any credit. Write your opinion about every question - good - bad - ugly - (or some other) and difficulty.

Please write your section or time of your class on you HW.

1: 2.2.? Let $\{x_n\}$ be a convergent sequence with limit 2. Is it possible to use the ratio test to determine that $\{x_n\}$ is convergent? Give a counterexample or a proof. (*This question is: good - bad - ugly? Difficulty 0-9:*)

2: 2.2.? Let $\{y_n\}$ is a convergent sequence such that $\lim y_n \neq 0$ and $y_n \neq 0$ for all $n \in \mathbb{N}$. Show that

$$\lim_{n \to \infty} \frac{1}{y_n} = \frac{1}{\lim_{n \to \infty} y_n}$$

3: 2.3.? We know that a **bounded** sequence $\{x_n\}$ is convergent and converges to x if and only if every convergent subsequence $\{x_{n_k}\}$ converges to x.

Is it true that a **bounded** sequence $\{x_n\}$ is convergent and converges to x if and only if every convergent subsequence $\{x_{n_k}\}$ converges to x? (In other words, is the assumption on $\{x_n\}$ being bounded necessary?)

4: 2.3.8 (b) Find bounded sequences $\{x_n\}$ and $\{y_n\}$ such that

$$(\limsup_{n \to \infty} x_n) + (\limsup_{n \to \infty} y_n) > \limsup_{n \to \infty} (x_n + y_n)$$

Hint: Look for examples that do not have a limit.

5: 2.4.? Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be two Cauchy sequences. Define $c_n = |a_n - b_n|$. Show that $\{c_n\}_{n=1}^{\infty}$ is a Cauchy sequence.

6: 2.5.? Use the definition of convergent series to show that $\sum_{n=0}^{\infty} \frac{1}{3^n}$ is convergent.

7: 2.5.? Show that $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is a Cauchy series by verifying the definition when is series Cauchy.

8: 2.5.? (*Linearity of series*) Let $\sum x_n$ and $\sum y_n$ be convergent series. Show that $\sum (x_n+y_n)$ is also convergent and

$$\left(\sum_{n=1}^{\infty} x_n\right) + \left(\sum_{n=1}^{\infty} y_n\right) = \sum_{n=1}^{\infty} (x_n + y_n).$$