Spring 2015, MATH-201

Cardinality of Sets

Do sets A and B have the same size? (is $|\mathbb{Z}| > |\mathbb{N}|$?)

Two sets A and B have the same cardinality (same size), written |A| = |B|, if there exists a bijective function $f: A \to B$.

Examples:

- $|\mathbb{N}| = |\mathbb{Z}|$ by creating a bijective function
- $|\mathbb{N}| \neq |\mathbb{R}|$ by Cantor's diagonalization (by contradiction)

1: Decide if the following sets have the same cardinality. Give a bijection or argument why the sets have different cardinality

- \mathbb{R} and (0,1)
- $\mathbb N$ and $\mathbb N\times\mathbb N$
- \mathbb{Z} and (0,1)

Let A be an infinite set. If $|A| = |\mathbb{N}|$, then A is countably infinite. Otherwise A is uncountable. A set A is countable if |A| = |B|, where $B \subseteq \mathbb{N}$.

Example: \mathbb{Z} is countable, \mathbb{R} is uncountable.

Notation: $|A| = \aleph_0$ (aleph-null). Features: $\aleph_0 + 7 = \aleph_0$, $2\aleph_0 = \aleph_0$, $\aleph_0^2 = \aleph_0$. Note: Set is countable if it elements can be ordered and labeled by $1, 2, 3, \ldots$

2: Show that $|\mathbb{Q}| = \aleph_0$. (Find ordering of \mathbb{Q} .)

3: Let A and B be countable sets. Show that $A \times B$ is countable. (Find ordering of $A \times B$.)

Comparing cardinalities: Let A and B be sets. We use |A| < |B| is there is an injective function $A \to B$ but no bijection between A and B. We use $|A| \le |B|$ if |A| < |B| or |A| = |B|.

Theorem: Let A be any set. Then $|A| < |\mathcal{P}(A)|$. Recall that $\mathcal{P}(A)$ is the power set of A, set of all subsets of A.

4: Show that $|A| < |\mathcal{P}(A)|$ for every set A. (Find an injective function from A to $\mathcal{P}(A)$). Show there is no bijection by contradiction, suppose for contradiction there is a bijection $f : A \to \mathcal{P}(A)$ and investigate what happens with set $B = \{x \in A : x \notin f(x)\} \in \mathcal{P}$.)

Corollary: $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < |\mathcal{P}(\mathcal{P}(\mathcal{P}(\mathbb{N})))| < \cdots$ Bigger and bigger sets.

The Cantor-Bernstein-Schröeder Theorem: (Tool for showing |A| = |B|.) If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|. In other words, if there are injections $f : A \to B$ and $g : B \to A$, then there is a bijection $h : A \to B$.

5: Use Cantor-Bernstein-Schröeder Theorem to show $\mathbb{R} = \mathcal{P}(\mathbb{N})$. Hint: For example find injective functions $\mathcal{P}(\mathbb{N}) \to (0,1)$ and $(0,1) \to \mathcal{P}(\mathbb{N})$. Use that there are countably infinitely many digits after the decimal point in real numbers.)

Continuum hypothesis: There is no set A such that $|\mathbb{N}| < |A| < |\mathbb{R}|$.

- **6:** Find bijections between:
 - Z and $S = \{x \in \mathbb{R} : \cos x = 1\}$
 - (0,1) and (0,1]
 - \mathbbm{R} and $\mathbbm{R}\times\mathbbm{R}$
- 7: Let A be a countably infinite set and let $B \subseteq A$ be infinite. Show that B is countably infinite.
- 8: If $U \subseteq A$, and U is uncountable, then A is uncountable.