Spring 2015, MATH-201

Chapters 2.6.1 - Root test

Proposition 2.6.1 (Root test). Let $\sum_{n=1}^{\infty} x_n$ be a series and let

$$L = \limsup_{n \to \infty} |x_n|^{\frac{1}{n}}$$

(i) If L > 1 then $\sum x_n$ diverges. (ii) If L < 1 then $\sum x_n$ converges absolutely. Example: $\sum_{n=1}^{\infty} \frac{(-2)^n}{n^n}$

Example: $\sum_{n=1}^{\infty} \left(\frac{-2n}{n+1}\right)^{5n}$

Proof of the Root test: Case 1: L > 1 goal: $\sum_{n=1}^{\infty} |x_n|$ contains infinitely many entries bigger than 1.

Case 2: L < 1: Use that $|x_n| < r^n$ if n large and L < r < 1. Then bound the tail of $\sum |x_n|$ using geometric series $\sum r^n$.

1: Find $\sum x_n$ that is absolutely convergent and L = 1.

2: Find $\sum x_n$ that is divergent and but L = 1.

3: Find $\sum x_n$ that is convergent (but not absolutely convergent) and L = 1.