MATH304 HW 10

due Nov 12 before class, answer without justification will receive 0 points. The typing the HW in LATEX is optional.

- 1: Use Fibonacci numbers to count the following problems:
 - (a) Count the number of subsets of $\{1, 2, ..., n\}$ that do not have having consecutive integers?
- (b) Count the *n*-digit numbers that contains only digits 1 and 2 and no two adjacent 1s?
- (c) Count the number of ways of walk up n stairs where one step can be to the next step or you can skip one step.

(Hint: Derive a recurrence in each case.)

2: Show that consecutive Fibonacci have greatest common divisor one. That is $gcd(F_n, F_{n-1}) = 1$ for all $n \ge 1$. In other words, they are relatively prime.

3: Prove that Fibonacci numbers satisfy the following identities:

(a)
$$3F_n = F_{n+2} + F_{n-2}$$
 for $n \ge 2$.

(b) $4F_n = F_{n+2} + F_n + F_{n-2}$ for $n \ge 2$.

4: Find generating functions for the following sequences (and simplify them - i.e. without infinite sums):

(a) $0, 0, 0, 4, -4, 4, -4, 4, -4, 4, -4, \ldots$

(b) $1, 4, 9, 16, 25, 36, 49, \ldots$

Use derivative, integral and/or decomposing one sequence into several simpler ones.

5: Use generating functions to find the number of solutions to $z_1 + z_2 + z_3 + z_4 = 10$ where the z_i are nonnegative integers such that $z_1 \leq 4$, z_2 is odd, z_3 is prime (smallest prime is 2), and $z_4 \in \{1, 2, 3, 6, 8\}$. Use http://wolframalpha.com to expand the generating function.

6: Find coefficient of x^k in the following generating functions:

(a)
$$\frac{1}{(1-x)(1-2x)}$$

(b) $\frac{1}{(1-x)(1-x^2)}$