Fall 2015, MATH-304

Chapter 2.3 - Combinations (Subsets) of Sets - Binomial coefficient

Let S be a set of n element. An r-combination is a subset of S of size r.
How many r-subsets are there? How many ways to pick r elements out of $n ?(=C(n, r))$

$$
C(n, r)=\frac{P(n, r)}{r!}=\frac{n!}{r!(n-r)!}=\binom{n}{r}
$$

Binomial coefficient is $\binom{n}{r}$.
Note: Binomial identities can often be proved by rewriting using factorials and manipulation (tedious, but often works) or by explaining what is being counted (needs idea, shorter, more elegant).

1: Show that $\binom{n}{r}=\binom{n}{n-r}$.

2: If a 5 -card hand is chosen at random (out of 52 cards), what is the probability of obtaining a flush (all cards are the same suit?) How about a full house? (Three cards of the same kind, and two of another kind, e.g., three queens and two " 4 "s)
(Recall that probability of an event is $\frac{\# \text { of desired outcomes }}{\text { \#all outcomes }}$).

3: Pascal's formula $C(n, k)=C(n-1, k)+C(n-1, k-1)$ That it

$$
\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}
$$

4: Committee approach Prove that

$$
\binom{n}{k}\binom{k}{m}=\binom{n}{m}\binom{n-m}{k-m} .
$$

Think of finding a subset of a subset.

5: Lattice paths Count the number of ways drive a corn harvester from the garage (located at 0,0) to a corn field, located at $(5,4)$.

Allowed movements are only right or up (you want to go the shortest path). (Try also counting in general to location (a, b), where $a, b \in \mathbb{Z}$)

6: Prove that

$$
\sum_{0 \leq j \leq b}\binom{a+j-1}{a-1}=\binom{a+b}{a}
$$

Hint: Use lattice paths.

7: Prove that

$$
\sum_{0 \leq j \leq n}\binom{n}{j}^{2}=\binom{2 n}{n}
$$

8: Prove that $\binom{a+b}{a}$ equals the number of partitions (a sequence of integers $P_{1} \geq P_{2} \geq \ldots \geq P_{b}$) satisfying $a \geq P_{1} \geq P_{2} \geq \ldots \geq P_{b} \geq 0$.

9: Binary string Prove that

$$
\sum_{0 \leq k \leq n}\binom{n}{k}=2^{n}
$$

10: Prove that

$$
\sum_{0 \leq k \leq n}\binom{k}{r}=\binom{n+1}{r+1}
$$

11: Prove

$$
\sum_{0 \leq k \leq r}\binom{m}{k}\binom{n}{r-k}=\binom{m+n}{r}
$$

